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Abstract

As a scene graph compactly summarizes the high-level con-
tent of an image in a structured and symbolic manner, the
similarity between scene graphs of two images reflects the
relevance of their contents. Based on this idea, we pro-
pose a novel approach for image-to-image retrieval using
scene graph similarity measured by graph neural networks.
In our approach, graph neural networks are trained to predict
the proxy image relevance measure, computed from human-
annotated captions using a pre-trained sentence similarity
model. We collect and publish the dataset for image rele-
vance measured by human annotators to evaluate retrieval al-
gorithms. The collected dataset shows that our method agrees
well with the human perception of image similarity than other
competitive baselines.

Introduction
Image-to-image retrieval, the task of finding similar images
to a query image from a database, is one of the fundamen-
tal problems in computer vision and is the core technology
in visual search engines. The application of image retrieval
systems has been most successful in problems where each
image has a clear representative object, such as landmark
detection and instance-based retrieval (Gordo et al. 2016;
Mohedano et al. 2016; Radenović, Tolias, and Chum 2016),
or has explicit tag labels (Gong et al. 2014).

However, performing image retrieval with complex im-
ages that have multiple objects and various relationships be-
tween them remains challenging for two reasons. First, deep
convolutional neural networks (CNNs), on which most im-
age retrieval methods rely heavily, tend to be overly sensitive
to low-level and local visual features (Zheng, Yang, and Tian
2017; Zeiler and Fergus 2014; Chen et al. 2018). As shown
in Figure 1, nearest-neighbor search on ResNet-152 penulti-
mate layer feature space returns images that are superficially
similar but have completely different content. Second, there
is no publicly available labeled data to train and evaluate
the image retrieval system for complex images, partly be-
cause quantifying similarity between images with multiple
objects as label information is difficult. Furthermore, a sim-
ilarity measure for such complex images is desired to reflect
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Figure 1: Image retrieval examples from ResNet and IRSGS.
ResNet retrieves images with superficial similarity, e.g.,
grayscale or vertical lines, while IRSGS successfully returns
images with correct context, such as playing tennis or skate-
boarding.

semantics of images, i.e., the context and relationship of en-
tities in images.

In this paper, we address these challenges and build an
image retrieval system capable of finding semantically simi-
lar images to a query from a complex scene image database.
First of all, we propose a novel image retrieval framework,
Image Retrieval with Scene Graph Similarity (IRSGS),
which retrieves images with a similar scene graph to the
scene graph of a query. A scene graph represents an image
as a set of objects, attributes, and relationships, summariz-
ing the content of a complex image. Therefore, the scene
graph similarity can be an effective tool to measure seman-
tic similarity between images. IRSGS utilizes a graph neu-
ral networks to compute the similarity between two scene
graphs, becoming more robust to confounding low-level fea-
tures (Figure 1).

Also, we conduct a human experiment to collect human
decisions on image similarity. In the experiment, annotators
are given a query image along with two candidate images
and asked to select which candidate image is more similar to
the query than the other. With 29 annotators, we collect more
than 10,000 annotations over more than 1,700 image triplets.
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Thanks to the collected dataset, we can quantitatively evalu-
ate the performance of image retrieval methods. Our dataset
is available online1.

However, it is costly to collect enough ground truth an-
notation from humans to supervise the image retrieval al-
gorithm for a large image dataset, because the number of
pairwise relationships to be labeled grows in O(N2) for the
number of dataN . Instead, we utilize human-annotated cap-
tions of images to define proxy image similarity, inspired
by Gordo and Larlus (2017) which used term frequencies
of captions to measure image similarity. As a caption tends
to cover important objects, attributes, and relationships be-
tween objects in an image, the similarity between captions
is likely to reflect the contextual similarity between two im-
ages. Also, obtaining captions is more feasible, as the num-
ber of the required captions grow in O(N). We use the
state-of-the-art sentence embedding (Reimers and Gurevych
2019) method to compute the similarity between captions.
The computed similarity is used to train a graph neural net-
work in IRSGS and evaluate the retrieval results.

Tested on real-world complex scene images, IRSGS show
higher agreement with human judgment than other compet-
itive baselines. The main contributions of this paper can be
summarized as follows:

• We propose IRSGS, a novel image retrieval framework
that utilizes the similarity between scene graphs computed
from a graph neural network to retrieve semantically sim-
ilar images;

• We collect more than 10,000 human annotations for
semantic-based image retrieval methods and publish the
dataset into the public;

• We propose to train the proposed retrieval framework with
the surrogate relevance measure obtained from image cap-
tions and a pre-trained language model;

• We empirically evaluate the proposed method and demon-
strate its effectiveness over other baselines.

Related Work
Image Retrieval
Conventional image retrieval methods use visual feature rep-
resentations, object categories, or text descriptions (Zheng,
Yang, and Tian 2017; Babenko et al. 2014; Chen, Davis, and
Lim 2019; Wei et al. 2016; Zhen et al. 2019; Gu et al. 2018;
Vo et al. 2019; Gordo et al. 2017). The activation of inter-
mediate layers of CNN is shown to be effective as a rep-
resentation of an image for image retrieval tasks. However,
as shown in Figure 1, CNN often fails to capture semantic
contents of images and is confounded by low-level visual
features.

Image retrieval methods which reflects more semantic
contents of images are investigated in Gordo and Larlus
(2017); Johnson et al. (2015). Gordo and Larlus (2017) used
term frequencies in regional captions to supervise CNN for
image retrieval, but they did not utilize scene graphs. John-
son et al. (2015) proposed an algorithm retrieving images

1https://github.com/swyoon/aaai2021-scene-graph-img-retr

given a scene graph query. However, their approach does not
employ graph-to-graph comparison and is not scalable.

Scene Graphs
A scene graph (Johnson et al. 2015) represents the con-
tent of an image in the form of a graph nodes of which
represent objects, their attributes, and the relationships be-
tween them. After a large-scale real-world scene graph
dataset manually annotated by humans in Visual Genome
dataset (Krishna et al. 2017) was published, a number of
applications such as image captioning (Wu et al. 2017;
Lu et al. 2018; Milewski, Moens, and Calixto 2020) vi-
sual question answering (Teney, Liu, and van den Hengel
2017), and image-grounded dialog (Das et al. 2017) have
shown the effectiveness of the scene graphs. Furthermore,
various works, such as GQA(Hudson and Manning 2019),
VRD(Lu et al. 2016), and VrR-VG(Liang et al. 2019) pro-
vided the human-annotated scene graph datasets. Also, re-
cent researches (Yang et al. 2018; Xu et al. 2017; Li et al.
2017) have suggested methods to generate scene graphs au-
tomatically. Detailed discussion on scene graph generation
will be made in Experimental Setup Section.

Graph Similarity Learning
Many algorithms have been proposed for solving the iso-
morphism test or (sub-)graph matching task between two
graphs. However, such methods are often not scalable to
huge graphs or not applicable in the setting where node
features are provided. Here, we review several state-of-the-
art algorithms that are related to our application, image re-
trieval by graph matching. For the graph pooling perspec-
tive, we focus on two recent algorithms, the Graph Con-
volutional Network (GCN;Kipf and Welling (2016)) and
the Graph Isomorphism Network (GIN;(Xu et al. 2018)).
GCN utilized neural network-based spectral convolutions
in the Fourier domain to perform the convolution opera-
tion on a graph. GIN used injective aggregation and graph-
level readout functions. The learned graph representations,
then, can be used to get the similarity of two graphs. Both
networks transforms a graph into a fixed-length vector, en-
abling distance computation between two graphs in the vec-
tor space. Other studies viewed the graph similarity learn-
ing problem as the optimal transport problem (Solomon
et al. 2016; Maretic et al. 2019; Alvarez-Melis and Jaakkola
2018; Xu, Luo, and Carin 2019; Xu et al. 2019; Titouan
et al. 2019). Especially in Gromov Wasserstein Learning
(GWL;(Xu et al. 2019)), node embeddings were learned
from associated node labels. Thus the method can reflect
not only a graph structure but also node features at the same
time. Graph Matching Network (GMN;(Li et al. 2019)) used
the cross-graph attention mechanism, which yields different
node representations for different pairs of graphs.

Image Retrieval with Scene Graph Similarity
In this section, we describe our framework, Image Retrieval
with Scene Graph Similarity (IRSGS). Given a query image,
IRSGS first generates a query scene graph from the image
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Figure 2: An overview of IRSGS. Images I1, I2 are converted into vector representations φ(S1), φ(S2) through scene graph
generation (SGG) and graph embedding. The graph embedding function is learned to minimize mean squared error to surrogate
relevance, i.e., the similarity between captions. The bold red bidirectional arrows indicate trainable parts. For retrieval, the
learned scene graph similarity function is used to rank relevant images.

and then retrieves images with a scene graph highly simi-
lar to the query scene graph. Figure 2 illustrates the retrieval
process. The similarity between scene graphs is computed
through a graph neural network trained with surrogate rele-
vance measure as a supervision signal.

Scene Graphs and Their Generation
Formally, a scene graph S = {O,A,R} of an image I is
defined as a set of objectsO, attributes of objectsA , and re-
lations on pairs of objects R. All objects, attributes, and re-
lations are associated with a word label, for example, ”car”,
”red”, and ”in front of”. We represent a scene graph as a set
of nodes and edges, i.e., a form of a conventional graph. All
objects, attributes, and relations are treated as nodes, and as-
sociations among them are represented as undirected edges.
Word labels are converted into 300-dimensional GloVe vec-
tors (Pennington, Socher, and Manning 2014) and treated as
node features.

Generating a scene graph from an image is equivalent to
detecting objects, attributes, and relationships in the image.
We employ a recently proposed method (Anderson et al.
2018) in our IRSGS framework to generate scene graphs.
While end-to-end training of scene graph generation mod-
ule is possible in principle, a fixed pre-trained algorithm is
used in our experiments to reduce the computational burden.
We shall provide details of our generation process in Exper-
imental Setup Section. Note that IRSGS is compatible with
any scene graph generation algorithm and is not bound to
the specific one we used in this paper.

Retrieval via Scene Graph Similarity
Given a query image Iq , an image retrieval system ranks
candidate images {Ii}Ni=1 according to the similarity to the
query image sim(Ii, Iq). IRSGS casts this image retrieval

task into a graph retrieval problem by defining the similar-
ity between images as the similarity between corresponding
scene graphs. Formally,

sim(Ii, Ij) = f(Si,Sj) (1)

where Si,Sj are scene graphs for Ii, Ij , respectively. We
shall refer f(Si,Sj) as scene graph similarity.

We compute the scene graph similarity from the inner
product of two representation vectors of scene graphs. With
a scene graph, a graph neural network is applied, and the
resulting node representations are pooled to generate a unit
d-dimensional vector φ = φ(S) ∈ Rd. The scene graph
similarity is then given as follows:

f(S1,S2) = φ(S1)>φ(S2). (2)

We construct φ by computing the forward pass of graph
neural networks to obtain node representations and then ap-
ply average pooling. We implement φ with either GCN or
GIN, yielding two versions, IRSGS-GCN and IRSGS-GIN,
respectively.

Learning to Predict Surrogate Relevance
We define surrogate relevance measure between two im-
ages as the similarity between their captions. Let ci and
cj are captions of image Ii and Ij . To compute the simi-
larity between the captions, we first apply Sentence-BERT
(SBERT; Reimers and Gurevych (2019))2 and project the
output to the surface of an unit sphere to obtain representa-
tion vectors ψ(ci) and ψ(cj). The surrogate relevance mea-
sure s(ci, cj) is then given by their inner product: s(ci, cj) =
ψ(ci)

>ψ(cj). When there is more than one caption for an

2We use the code and the pre-trained model (bert-large-nli-
mean-tokens) provided in
https://github.com/UKPLab/sentence-transformers.
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image, we compute the surrogate relevance of all caption
pairs and take the average. With the surrogate relevance, we
are able to compute a proxy score for any pair of images
in the training set, given their human-annotated captions. To
validate the proposed surrogate relevance measure, we col-
lect human judgments of semantic similarity between im-
ages by conducting a human experiment (details in Human
Annotation Collection Section).

We train the scene graph similarity f by directly minimiz-
ing mean squared error from the surrogate relevance mea-
sure, formulating the learning as a regression problem. The
loss function for i-th and j-th images is given as Lij =
||f(Si,Sj) − s(ci, cj)||2. Other losses, such as triplet loss
or contrastive loss, can be employed as well. However, we
could not find clear performance gains with those losses and
therefore adhere to the simplest solution.

Human Annotation Collection
We collect semantic similarity annotations from humans to
validate the proposed surrogate relevance measure and to
evaluate image retrieval methods. Through our web-based
annotation system, a human labeler is asked whether two
candidate images are semantically similar to a given query
image. The labeler may choose one of four answers: either of
the two candidate images is more similar than the other, im-
ages in the triplet are semantically identical, or neither of the
candidate images is relevant to the query. We collect 10,712
human annotations from 29 human labelers for 1,752 image
triplets constructed from the test set of the VG-COCO, the
dataset we shall define in Experimental Setup Section.

A query image of a triplet is randomly selected from the
query set defined in the following section. Two candidate
images are randomly selected from the rest of the test set,
subjected to two constraints. First, the rank of a candidate
image should be less than or equal to 100 when the whole
test set is sorted according to cosine similarity in ResNet-
152 representation to the query image. Second, the surrogate
relevance of a query-candidate image pair in a triplet should
be larger than the other, and the difference should be greater
than 0.1. This selection criterion produces visually close yet
semantically different image triplets.

We define the human agreement score to measure the
agreement between decisions of an algorithm and that of the
human annotators, in a similar manner presented in (Gordo
and Larlus 2017). The score is an average portion of hu-
man annotators who made the same decision per each triplet.
Formally, given a triplet, let s1 (or s2) be the number of hu-
man annotators who chose the first (or the second) candi-
date image is more semantically similar to the query, s3 be
the number of annotators who answered that all three im-
ages are identical, and s4 be the number of annotators who
marked the candidates as irrelevant. If an algorithm choose
either one of candidate images is more relevant, the human
agreement score for a triplet is si+0.5s3

s1+s2+s3+s4
, where i = 1

if the algorithm determines that the first image is semanti-
cally closer and i = 2 otherwise. The score is averaged over
triplets with s1 + s2 ≥ 2. Randomly selecting one of two

candidate images produces an average human agreement of
0.472 with a standard deviation of 0.01. Note that the agree-
ment of random decision is lower than 0.5 due to the exis-
tence of the human choice of ”both” (s3) and ”neither” (s4).

The alignment between labelers is also measured with the
human agreement score in a leave-one-out fashion. If a hu-
man answers that both candidate images are relevant, the
score for the triplet is 0.5s1+0.5s2+s3

s1+s2+s3+s4
, where s1 . . . s4 are

computed from the rest of annotators. If a human marks that
neither of the candidates is relevant for a triplet, the triplet
is not counted in the human agreement score. The mean hu-
man agreement score among those annotators is 0.727, and
the standard deviation is 0.05. We will make the human an-
notation dataset public after the review.

Experimental Setup
Data
In experiments, we use two image datasets involving diverse
semantics. The first dataset is the intersection of the Visual
Genome (Krishna et al. 2017) and MS-COCO (Lin et al.
2014), which we will refer to as VG-COCO. In VG-COCO,
each image has a scene graph annotation provided by Vi-
sual Genome and five captions provided by MS-COCO. We
utilize the refined version of scene graphs provided by (Xu
et al. 2017) and their train-test split. After removing the im-
ages with empty scene graphs, we obtain fully annotated
35,017 training images and 13,203 test images. We ran-
domly select a fixed set of 1,000 images among the test set
and define them as a query set. For each query image, a re-
trieval algorithm is asked to rank the other 13,202 images
in the test set according to the semantic similarity. Besides
the annotated scene graphs, we automatically generate scene
graphs for all images and experiment with our approach to
both human-labeled and machine-generated scene graphs.

The second dataset is Flickr30K (Plummer et al. 2017),
where five captions are provided per an image. Flickr30K
contains 30,000 training images, 1,000 validation images,
and 1,000 testing images. For Flickr30k, the whole test set
is the query set. During the evaluation, an algorithm ranks
the other 999 images given a query image in a test set.
Scene graphs are generated in the same manner as in the
VG-COCO dataset.

Scene Graph Generation Detail
Since we focus on learning graph embeddings when two
scene graphs are given for the image-to-image retrieval task,
we use the conventional scene graph generation process.
Following the works (Anderson et al. 2018), objects in im-
ages are detected by Faster R-CNN method, and the name
and attributes of the objects are predicted based on the
ResNet-101 features from the detected bounding boxes. We
keep up to 100 objects with a confidence threshold of 0.3.
To predict relation labels between objects after extracting
information about the objects, we used the frequency prior
knowledge constructed from the GQA dataset that covers
309 kinds of relations.3 For each pair of the detected objects,

3We have been tried to predict relation labels by using recently
suggested SGG algorithms, such as (Yang et al. 2018; Xu et al.
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Method Data nDCG Human
Agreement5 10 20 30 40 50

Inter Human - - - - - - - 0.730 ± 0.05
Caption SBERT Cap(HA) 1 1 1 1 1 1 0.700

Random - 0.136 0.138 0.143 0.147 0.149 0.152 0.472 ± 0.01
Gen. Cap. SBERT Cap(Gen) 0.609 0.628 0.657 0.681 0.703 0.726 0.473

ResNet I 0.687 0.689 0.691 0.692 0.693 0.693 0.494
ResNet-FT I 0.642 0.656 0.682 0.703 0.724 0.745 0.478

Object Count I+SG 0.736 0.749 0.770 0.788 0.804 0.819 0.587
GMN I+SG 0.721 0.735 0.755 0.771 0.786 0.801 0.535

IRSGS-GIN I+SG 0.751 0.768 0.790 0.808 0.824 0.839 0.576
IRSGS-GCN I+SG 0.784 0.795 0.814 0.829 0.844 0.856 0.602

Table 1: Image retrieval results on VG-COCO with human-annotated scene graphs. Data column indicates which data modalities
are used. Cap(HA): human-annotated captions. Cap(Gen): machine-generated captions. I: image. SG: scene graphs.

relationships are predicted based on the frequency prior with
confidence threshold 0.2. To give position-specific informa-
tion, the coordinates of the detected bbox are used. Here, we
should note that even though the suggested method to gener-
ate a scene graph is quite simple than other methods (Yang
et al. 2018; Xu et al. 2017; Li et al. 2017), it outperforms all
the others.

Two-Step Retrieval using Visual Features
In information retrieval, it is a common practice to take a
two-step approach (Wang et al. 2019; Bai and Bai 2016): re-
trieving roughly relevant items first and then sorting (or ”re-
ranking”) the retrieved items according to the relevance. We
also employ this approach in our experiment. For a query
image, we first retrieve K images that are closest to the
query in a ResNet-152 feature representation space formed
by the 2048-dimension activation vector of the last hidden
layer. The distance is measured in cosine similarity. This
procedure generates a set of good candidate images which
have a high probability of having strong semantic similar-
ity. This approximate retrieval step can be further boosted
by using an approximate nearest neighbor engine such as
Faiss (Johnson, Douze, and Jégou 2017) and is critical if the
following re-ranking step is computationally involved. We
use this approximate pre-ranking for all experiments with
K = 100 unless otherwise mentioned. Although there is
large flexibility of designing this step, we shall leave other
possibilities for future exploration as the re-ranking step is
our focus.

Training Details
We use Adam optimizer with the initial learning rate of
0.0001. We multiply 0.9 to the learning rate every epoch. We
set batch size as 32, and models are trained for 25 epochs.
In each training step, a mini-batch of pairs is formed by
randomly drawing samples. When drawing the second sam-
ple in a pair, we employ an oversampling scheme to rein-
force the learning of pairs with large similarity values. With

2017; Li et al. 2017). However, we could not achieve any improve-
ment in image retrieval tasks. The reasons might be that 1) small
size vocabularies for object and relation are used for the conven-
tional SGG setting (only 150/50 kinds of objects/relations), 2) the
algorithms do not predict the attributes, and 3) the annotated scene
graphs used for training the methods have very sparse relations.

Method nDCG Human
Agreement5 10 20 40

Inter Human - - - - 0.730
Caption SBERT 1 1 1 1 0.700

Random 0.136 0.138 0.143 0.149 0.472
Gen. Cap. SBERT 0.609 0.628 0.657 0.703 0.473

ResNet 0.687 0.689 0.691 0.693 0.494
ResNet-FT 0.642 0.656 0.682 0.724 0.478

Object Count 0.73 0.743 0.761 0.794 0.581
GWL 0.748 0.758 0.774 0.803 0.598
GMN 0.728 0.740 0.755 0.781 0.539

IRSGS-GIN 0.764 0.781 0.802 0.834 0.612
IRSGS-GCN 0.771 0.784 0.805 0.836 0.611

Table 2: Image retrieval results on VG-COCO with machine-
generated scene graphs. Baselines which do not use scene
graphs are identical to the corresponding rows of Table 1.

a probability of 0.5, the second sample in a pair is drawn
from 100 most relevant samples with the largest surrogate
relevance score to the first sample. Otherwise, we select the
second sample from the whole training set. Oversampling
improves both quantitative and qualitative results and is ap-
ply identically for all methods except for GWL where the
scheme is not applicable.

Experiments

Evaluation

We benchmark IRSGS and other baselines with VG-COCO
and Flickr30K. Images in the query set are presented as
queries, and the relevance of the images ranked by an image
retrieval algorithm is evaluated with two metrics. First, we
compute normalized discounted cumulative gain (nDCG)
with the surrogate relevance as gain. A larger nDCG value
indicates stronger enrichment of relevant images in the re-
trieval result. In nDCG computation, surrogate relevance is
clipped at zero to ensure its positivity. Second, the agree-
ment between a retrieval algorithm and decision of human
annotators is measured in a method described in Human An-
notation Collection Section.
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Baseline Methods
ResNet-152 Features Image retrieval is performed based
on the cosine similarity in the last hidden representation of
ResNet-152 pre-trained on ImageNet.

Generated Caption To test whether machine-generated
captions can be an effective means for semantic image re-
trieval, we generate captions of images by soft attention
model (Xu et al. 2015) pretrained on Flickr30k dataset
(Plummer et al. 2017). We obtain SBERT representations
of generated captions, and their cosine similarity is used to
perform image retrieval.

Object Count (OC) Ignoring relation information given
in a scene graph, we transform a scene graph into a vector
of object counts. Then, we compute the cosine similarity of
object count vectors to perform image retrieval.

ResNet Finetune (ResNet-FT) We test whether a
ResNet-152 can be fine-tuned to capture semantic similarity.
Similarly to Siamese Network (Bromley et al. 1994), ResNet
feature extractor is trained to produce cosine similarity be-
tween images close to their surrogate relevance measure.

Gromov-Wasserstein Learning (GWL) Based on
Gromov-Wasserstein Learning (GWL) framework (Xu et al.
2019), we obtain a transport map using a proximal gradi-
ent method (Xie et al. 2018). A transport cost, a sum of
Gromov-Wasserstein discrepancy and Wasserstein discrep-
ancy, is calculated with the transport map and the cost ma-
trix, and used for retrieval. The method is computationally
demanding, and we only tested the method for VG-COCO
with generated scene graphs setting in Table 2.

Graph Matching Networks (GMN) GMNs are imple-
mented based on the publicly available code4. We use four
propagation layers with shared weights. The propagation in
the reverse direction is allowed, and the propagated repre-
sentation is updated using the gated recurrent unit. Final
node representations are aggregated by summation, result-
ing in a 128-dimensional vector which is then fed to a multi-
layer perceptron to produce final scalar output. As GMN
is capable of handling edge features, we leave relations as
edges instead of transforming them as nodes. To indicate
object-attribute connections, we append additional dimen-
sionality to edge feature vectors and define a feature vector
of an edge between an object and an attribute is a one-hot
vector where only the last dimension is non-zero.

Graph Embedding Methods in IRSGS
Here, we describe implementation details of graph neural
networks used in IRSGS.

IRSGS-GCN A scene graph is applied with GCN and the
final node representations are aggregated via mean pooling
and scaled to the unit norm, yielding a representation vec-
tor φ(S). We use three graph convolution layers with 300
hidden neurons in each layer. The first two layers are fol-
lowed by ReLU nonlinearity. Stacking more layers does not
introduce clear improvement. We always symmetrize the ad-
jacency matrix before applying GCN.

4https://github.com/deepmind/deepmind-research/tree/master/
graph matching networks

Method nDCG
5 10 20 40

Captions SBERT 1 1 1 1
Random 0.195 0.209 0.223 0.245

Gen. Cap. SBERT 0.556 0.576 0.610 0.659
Resnet 0.539 0.541 0.541 0.542

ResNet-FT 0.368 0.393 0.433 0.502
Object Count 0.511 0.530 0.560 0.615
IRSGS-GIN 0.564 0.584 0.618 0.673
IRSGS-GCN 0.567 0.590 0.623 0.672

Table 3: Image retrieval results on Flickr30K with machine-
generated scene graphs.

IRSGS-GIN Similarly to GCN, we stack three GIN con-
volution layers with 300 hidden neurons in each layer. For
multi-layer perceptrons required for each layer, we use one
hidden layer with 512 neurons with ReLU nonlinearity.
Other details are the same as that of the GCN case.

Quantitative Results
From Table 1, Table 2, and Table 3, IRSGS shows larger
nDCG score than baselines across datasets (VG-COCO and
Flickr30K) and methods of obtaining scene graphs (human-
annotated and machine-generated). IRSGS also achieves
best agreement to human annotator’s perception on semantic
similarity, as it can be seen from Table 1 and Table 2.

Comparing Table 1 and Table 2, we found that us-
ing machine-generated scene graphs instead of human-
annotated ones does not deteriorate the retrieval perfor-
mance. This result shows that IRSGS does not need human-
annotated scene graphs to perform successful retrieval and
can be applied to a dataset without scene graph annotation.
In fact, Flickr30K is the dataset without scene graph anno-
tation, and IRSGS still achieves excellent retrieval perfor-
mance in Flickr30K with machine-generated scene graphs.

On the other hand, using machine-generated captions in
retrieval results in significantly poor nDCG scores and hu-
man agreement scores. Unlike human-annotated captions,
machine-generated captions are crude in quality and tend to
miss important details of an image. We suspect that scene
graph generation is more stable than caption generation
since it can be done in a systematic manner, i.e., predicting
objects, attributes, and relations in a sequential way.

While not showing the optimal performance, GWL and
GMN also show competitive performance over other meth-
ods based on generated captions and ResNet. This overall
tendency of competence of graph-based method is interest-
ing and implies the effectiveness of scene graphs in captur-
ing semantic similarity between images.

Note that in Caption SBERT, retrieval is performed with
surrogate relevance, and their human agreement scores indi-
cate the agreement between surrogate relevance and human
annotations. With the highest human agreement score than
any other algorithms, this result assures that the proposed
surrogate relevance reflects the human perception of seman-
tic similarity well.
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Figure 3: Four most similar images retrieved by six algorithms. OC: Object Count, GIN: IRSGS-GIN, GCN: IRSGS-GCN. The
visual genome ids for the query images are 2323522 and 2316427.

Qualitative Results
Figure 1 and Figure 3 show the example images retrieved
from the retrieval methods we test. Pitfalls of baseline meth-
ods that are not based on scene graphs can be noted. As men-
tioned in Introduction, retrieval with ResNet features often
neglects the semantics and focuses on the superficial visual
characteristics of images. On the contrary, OC only accounts
for the presence of objects, yielding images with mislead-
ing context. For example, in the left panel of Figure 3, OC
simply returns images with many windows. IRSGS could
retrieve images containing similar objects with similar re-
lations to the query image, for example, an airplane on the
ground, or a person riding a horse.

Discussion
Ablation Study We also perform an ablation experiment for
effectiveness of each scene graph component (Table 4). In
this experiment, we ignore attributes or randomize relation
information from IRSGS-GCN framework. In both cases,
nDCG and Human agreement scores are higher than the
Object Count that uses only object information. This indi-
cates that both attributes and relation information are use-
ful to improve the image retrieval performance of the graph
matching-based algorithm. Further, randomizing relations
drops performance more than ignoring attribute information,
which means that relations are important for capturing the
human perception of semantic similarity.

Comparison to Johnson et al. (2015) We exclude John-
son et al. (2015) from our experiment because the CRF-
based algorithm from Johnson et al. (2015) is not feasible
in a large-scale image retrieval problem. One of our goals
is to tackle a large-scale retrieval problem where a query is
compared against more than ten thousand images. Thus, we
mainly consider methods that generate a compact vector rep-
resentation of an image or a scene graph (Eq.(2)). However,
the method in Johnson et al. (2015) requires object detection
results to be additionally stored and extra computation for
all query-candidate pairs to be done in the retrieval phase.
Note that Johnson et al. (2015) only tested their algorithm
on 1,000 test images, while we benchmark algorithms using
13,203 candidate images.

Method nDCG Human
Agreement5 10 20 40

IRSGS-GCN 0.771 0.784 0.805 0.836 0.611
No Attribute 0.767 0.782 0.803 0.834 0.606

Random Relation 0.764 0.777 0.797 0.828 0.604
Object Count 0.730 0.743 0.761 0.794 0.581

Table 4: Scene graph component ablation experiment results
on VG-COCO. Machine-generated scene graphs are used.

Effectiveness of Mean Pooling and Inner Product One
possible explanation for the competitive performance of
IRSGS-GCN and IRSGS-GIN is that the mean pooling and
inner product are particularly effective in capturing similar-
ity between two sets. Given two sets of node representations
{a1, · · · , aN} and {b1, · · · , bM}, the inner product of their
means are given as

∑
i,j a

>
i bj/(NM), the sum of the inner

product between all pairs. This expression is proportional to
the number of common elements in the two sets, especially
when a>i bj is 1 if ai = bj and 0 otherwise, measuring the
similarity between the two sets. If the inner product values
are not binary, then the expression measures the set similar-
ity in a ”soft” way.

Conclusion
In this paper, we tackle the image retrieval problem for com-
plex scene images where multiple objects are present in var-
ious contexts. We propose IRSGS, a novel image retrieval
framework, which leverages scene graph generation and a
graph neural network to capture semantic similarity between
complex images. IRSGS is trained to approximate surro-
gate relevance measure, which we define as a similarity be-
tween captions. By collecting real human data, we show that
both surrogate relevance and IRSGS show high agreement to
human perception on semantic similarity. Our results show
that an effective image retrieval system can be built by us-
ing scene graphs with graph neural networks. As both scene
graph generation and graph neural networks are techniques
that are rapidly advancing, we believe that the proposed ap-
proach is a promising research direction to pursue.
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