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Abstract

The policy-based reinforcement learning (RL) can be consid-
ered as maximization of its objective. However, due to the
inherent non-concavity of its objective, the policy gradient
method to a first-order stationary point (FOSP) cannot guar-
antee a maximal point. A FOSP can be a minimal or even a
saddle point, which is undesirable for RL. It has be found that
if all the saddle points are strict, all the second-order station-
ary points (SOSP) are exactly equivalent to local maxima. In-
stead of FOSP, we consider SOSP as the convergence criteria
to characterize the sample complexity of policy gradient. Our
result shows that policy gradient converges to an (ε,

√
εχ)-

SOSP with probability at least 1 − Õ(δ) after the total cost

of O
(

ε
− 9

2

(1−γ)√χ log 1
δ

)
= O(ε−

9
2 ), where γ ∈ (0, 1). It sig-

nificantly improves the state of the art cost Õ(ε−9).Our anal-
ysis is based on the key idea that decomposes the parameter
space Rp into three non-intersected regions: non-stationary
point region, saddle point region, and local optimal region,
then making a local improvement of the objective of RL in
each region. This technique can be potentially generalized to
extensive policy gradient methods. For the complete proof,
please refer to https://arxiv.org/pdf/2012.01491.pdf.

Introduction
Policy gradient method (Williams 1992; Sutton et al. 2000)
is widely used to search the optimal policy in modern re-
inforcement learning (RL). Such method (or its variant)
searches over a differentiable parameterized class of po-
lices by performing a stochastic gradient on a cumulative
expected reward function. Due to its merits such as the sim-
plicity of implementation in the simulated environment; it
requires low memory; it can be applied to any differentiable
parameterized classes (Agarwal et al. 2020), policy gradi-
ent method has achieved significant successes in challeng-
ing fields such as robotics (Deisenroth, Neumann, and Pe-
ters 2013; Duan et al. 2016), playing Go (Silver et al. 2016,
2017), neural architecture search (Zoph and Le 2017), NLP
(Kurita and Søgaard 2019; Whiteson 2019), computer vision
(Sarmad, Lee, and Kim 2019), and recommendation system
(Pan et al. 2019).

*Corresponding author.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Despite it has tremendous successful applications, suffer-
ing from high sample complexity is still a critical challenge
for the policy gradient (Haarnoja et al. 2018; Lee, Sungik,
and Chung 2019; Xu, Gao, and Gu 2020). Thus, for policy
gradient, theory analysis of its sample complexity plays an
important role in RL since the sample complexity not only
provides an understanding of the policy gradient but also
gives insights on how to improve the sample efficiency of
the existing RL algorithms.

Investigation of the sample complexity of policy gradient
algorithm (or its variant) can be traced back to the pioneer
works of (Kearns, Mansour, and Ng 2000; Kakade 2003).
Recently, to improve sample efficiency, Yang et al. (2018);
Papini et al. (2018); Shen et al. (2019); Xu, Gao, and Gu
(2020) introduce stochastic variance reduced gradient tech-
niques (Johnson and Zhang 2013; Nguyen et al. 2017a) to
policy optimization, and they have studied the sample com-
plexity of policy gradient methods to achieve a first-order
stationary point (FOSP), i.e., θ satisfies the following condi-
tion

‖∇J(θ)‖2 ≤ ε.

However, since the objective of RL is a non-concave func-
tion with respect to the standard policy parameterizations
(Papini et al. 2018; Agarwal et al. 2020), a FOSP could be
a maximal point, a minimal point, and even a saddle point.
Both minimal points and saddle points are undesirable for
policy gradient since its goal is to search a maximal point,
which implies within the numbers of samples provided by
Papini et al. (2018); Shen et al. (2019); Xu, Gao, and Gu
(2020), we can not guarantee the output of their policy gra-
dient algorithm is a maximal point. This motivates a funda-
mental question as follows,

Question 1. How many samples does an agent need to col-
lect to guarantee the policy gradient methods converge to a
maximal point certainly?

Our Work
In this paper, we consider the second-order stationary point
(SOSP) to answer Question 1. More specifically, inspired by
the previous works from non-convex optimization (Jin et al.
2017; Daneshmand et al. 2018), we investigate the sample
complexity of policy gradient methods finding an (ε,

√
εχ)-
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SOSP, see Definition 1, i.e., the convergent point θ satisfies

‖∇J(θ)‖2 ≤ ε, and λmax(∇2J(θ)) ≤ √χε.

The criterion of (ε,
√
εχ)-SOSP requires the convergent

point with a small gradient and with almost a negative semi-
definite Hessian matrix. This criterion not only ensures a
convergent point is a FOSP but also rules out both saddle
points (whose Hessian are indefinite) and minimal points
(whose Hessian are positive definite). Therefore, conver-
gence to a (ε,

√
εχ)-SOSP guarantees the policy gradient

methods converge to a local maximal point clearly. Our re-
sult shows that within a cost of

O
( ε−

9
2

(1− γ)
√
χ

log
1

δ

)
= Õ(ε−

9
2 ),

policy gradient converges to an (ε,
√
εχ)-SOSP with prob-

ability at least 1 − Õ(δ). Our result improves the state-of-
the-art result of (Zhang et al. 2019) significantly, where they

require O
(
ε−9χ

3
2

δ log 1
εχ

)
= Õ(ε−9) samples to achieve an

(ε,
√
εχ)-SOSP.

Notably, we provide a novel analysis that can be poten-
tially generalized to extensive policy gradient methods. Con-
cretely, we decompose the parameter space Rp into three
different regions: non-stationary point region, saddle point
region, and local optimal region, then making a local im-
provement in each region. The main challenge occurs on the
saddle point region, where we utilize a technique called cor-
related negative curvature (CNC) (Daneshmand et al. 2018)
to make a local improvement.

Notations
Let ‖·‖2 be the Euclidean norm of a vector in Rp. For a sym-
metric matrix A, we use λmin(A) and λmax(A) as its mini-
mum and maximum eigenvalue correspondingly. Let ‖A‖op
denote the operator norm of the matrix A; furthermore,
according to (Van Loan and Golub 1983), if A ∈ Rp×p
is a symmetric matrix, then ‖A‖op = max1≤i≤p{|λi|},
where {λi}pi=1 is the set of the eigenvalues of A. We use
A � 0 to denote a positive definite matrix A. For a func-
tion J(·) : Rp → R, let ∇J and ∇2J denote its gradient
vector and Hessian matrix correspondingly. Let B2(o, r) be
a p-dimensional `2 ball with the centre o and radius r, i.e.,
B2(o, r) = {x ∈ Rp; ‖x−o‖2 ≤ r}. For any real number x,
dxeand bxc denote the nearest integer to x from above and
below. We use Õ to hide polylogarithmic factors in the input
parameters, i.e., Õ(f(x)) = O(f(x) log(f(x))O(1)).

Paper Organization
Firstly, we introduce some necessary conceptions of rein-
forcement learning, policy gradient methods, some standard
assumptions for policy optimization. Later, we formally de-
fine (ε,

√
εχ)-SOSP. Our main contribution lies in the “Main

Result and Technique Overview” section, where we provide
the main result that presents the sample complexity of pol-
icy gradient finding an (ε,

√
εχ)-SOSP, and we provide an

overview of the proof technique. Finally, we discuss related
works and future works.

Policy Gradient Methods and Some Standard
Assumptions

In this section, we introduce some necessary concepts of re-
inforcement learning, policy gradient and some standard as-
sumptions in policy optimization.

Reinforcement Learning
Reinforcement learning (RL) (Sutton and Barto 2018) is of-
ten formulated as Markov decision processes (MDP)M =
(S,A, P,R, ρ0, γ), where S is the state space, A is the ac-
tion space; P (s

′ |s, a) is the probability of state transition
from s to s

′
under playing the action a; R(·, ·) : S ×

A → [Rmin, Rmax] is a bounded reward function, where
Rmin, Rmax two positive scalars. ρ0(·) : S → [0, 1] is the
initial state distribution and the discount factor γ ∈ (0, 1).

The parametric policy πθ is a probability distribution over
S × A with a parameter θ ∈ Rp, and we use πθ(a|s) to
denote the probability of playing a in state s. Let τ =
{st, at, rt+1}t≥0 ∼ πθ be a trajectory generated by the pol-
icy πθ, where s0 ∼ ρ0(·), at ∼ πθ(·|st), rt+1 = R(st, at)
and st+1 ∼ P (·|st, at). The state value function of πθ is
defined as follows,

V πθ (s) = Eπθ [
∞∑
t=0

γtrt+1|s0 = s],

where Eπθ [·|·] denotes a conditional expectation on actions
which are selected according to the policy πθ. The advan-
tage function of the policy πθ is defined as: Aπθ (s, a) =
Qπθ (s, a) − V πθ (s), where Qπθ (s, a) is the state-action
value function that is defined as follows,

Qπθ (s, a) = Eπθ [
∞∑
t=0

γtrt+1|s0 = s, a0 = a].

We use Pπθ (st = s|s0) to denote the probability of visit-
ing the state s after t time steps from the initial state s0 by
executing πθ, and

dπθs0 (s) =
∞∑
t=0

γtPπθ (st = s|s0)

is the (unnormalized) discounted stationary state distribution
of the Markov chain (starting at s0) induced by πθ. Further-
more, since s0 ∼ ρ0(·), we define

dπθρ0 (s) = Es0∼ρ0(·)[d
πθ
s0 (s)]

as the discounted state visitation distribution over the initial
distribution ρ0.

Recall τ = {st, at, rt+1}t≥0 ∼ πθ, we define J(πθ|s0)
as follows,

J(πθ|s0) = Eτ∼πθ,s0∼ρ0(·)[R(τ)]

= Es∼dπθs0 (·),a∼πθ(·|s)[R(s, a)],

where R(τ) =
∑
t≥0 γ

trt+1, and J(πθ|s0) is “conditional”
on s0 is to emphasize the trajectory τ that starts from
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s0. Furthermore, we define the expected return J(θ) =:
Es0∼ρ0(·)[J(πθ|s0)] as follows,

J(θ) = Es0∼ρ0(·)[J(πθ|s0)] = Es∼dπθρ0 (·),a∼πθ(·|s)[R(s, a)]

=

∫
s∈S

dπθρ0 (s)

∫
a∈A

πθ(a|s)R(s, a)dads. (1)

The goal of policy-based reinforcement learning is to solve
the following policy optimization problem:

max
θ∈Rp

J(θ). (2)

Policy Gradient Methods
The basic idea of policy gradient (Williams 1992; Sutton
et al. 2000) is to update the parameter according to the di-
rection with respect to the gradient of J(θ), i.e.,

θk+1 = θk + α∇̂J(θk), (3)

where α > 0 is step-size, ∇̂J(θk) is a stochastic estimator of
policy gradient ∇J(θk). According to (Sutton et al. 2000),
we present the policy gradient theorem as follows,
∇J(θ) = Es∼dπθρ0 (·),a∼πθ(·|s)[Q

πθ (s, a)∇ log πθ(a|s)]

=

∫
s∈S

dπθρ0 (s)

∫
a∈A

Qπθ (s, a)∇πθ(s, a)dads,

which provides a possible way to find the estimator of the
policy gradient∇J(θ).

One issue that we should address is how to estimate
Qπθ (s, a) appears in the policy gradient theorem. A sim-
ple approach is to use a sample return R(τ) to estimate
Qπθ (s, a), i.e., we calculate the policy gradient estimator as
follows,

g(τ |θ) =
∑
t≥0

∇ log πθ(at|st)R(τ). (4)

Replace ̂∇J(τ |θk) of (3) with g(τ |θk), we achieve the up-
date rule of REINFORCE (Williams 1992):

θk+1 = θk + αg(τ |θk). (5)
Notably, R(τ) of (4) could be replace by advantage func-
tionAπθ (s, a), temporal difference error, et al, a recent work
(Schulman et al. 2016) summarizes those expressions. In
this paper, we mainly consider the policy gradient estimator
(4), and the technique that we have proposed can be gener-
alized to other policy gradient estimators.

Fisher Information Matrix
For the policy optimization (1), we learn the parameter from
the samples that come from an unknown probability dis-
tribution. Fisher information matrix (Fisher 1920; Kakade
2002; Ly et al. 2017) provides the information that a sample
of the data for the unknown parameter.

Furthermore, according to (Kakade 2002; Bhatnagar et al.
2008), the Fisher information matrix F (θ) is positive defi-
nite, i.e., there exists a constant ω > 0 s.t.,

F (θ) � ωIp, ∀ θ ∈ Rp, (6)

where Ip ∈ Rp×p is the identity matrix, F (θ) =∫
s∈S d

πθ
ρ0 (s)

∫
a∈A∇ log πθ(a|s)[∇ log πθ(a|s)]>dsda.

Standard Assumptions
Assumption 1. For each pair (s, a) ∈ S × A, for any
θ ∈ Rp, and all components i, j, there exists positive two
constants 0 ≤ G,L,U <∞ such that∣∣∇θi log πθ(a|s)

∣∣ ≤ G;
∣∣∣ ∂2

∂θi∂θj
log πθ(a|s)

∣∣∣ ≤ L;∣∣∇θiπθ(a|s)∣∣ ≤ U. (7)

Assumptions 1 is a standard condition in policy optimiza-
tion, and it has be applied to several recent policy gradi-
ent literatures (Castro and Meir 2010; Pirotta, Restelli, and
Bascetta 2015; Papini et al. 2018; Shen et al. 2019; Xu,
Gao, and Gu 2020). Assumption 1 is reasonable a condition
since the widely used policy classes such as Gaussian, soft-
max (Konda and Borkar 1999), and relative entropy policy
(Peters, Mülling, and Altun 2010) all satisfy (7). Recently,
Zhang et al. (2019); Papini, Pirotta, and Restelli (2019);
Wang and Zou (2020) have provided the details to check
above policies satisfy Assumptions 1.

According to the Lemma B.2 of (Papini et al. 2018), As-
sumption 1 implies the expected return J(θ) is `-Lipschitz
smooth, i.e., for any θ, θ

′ ∈ Rp, we have

‖∇J(θ)−∇J(θ
′
)‖2 ≤ `‖θ − θ

′
‖2, (8)

where ` = Rmaxh(hG
2+L)

(1−γ) , h is a positive scalar that de-
notes the horizon of the trajectory τ . The property (8) has
been given as the Lipschitz assumption in previous works
(Kumar, Koppel, and Ribeiro 2019; Wang et al. 2020), and
it has been also verified by lots of recent works with some
other regularity conditions (Zhang et al. 2019; Agarwal et al.
2020; Xu, Wang, and Liang 2020).

Furthermore, according to the Lemma 4.1 of (Shen et al.
2019), Assumption 1 implies a property of the policy gradi-
ent estimator as follows, for each τ ∼ πθ, we have

‖g(τ |θ)−∇J(θ)‖2 ≤
GRmax

(1− γ)2
=: σ. (9)

The result of (9) implies the boundedness of the variance
of the policy gradient estimator g(τ |θ), i.e., Var(g(τ |θ)) =
E[‖g(τ |θ) − ∇J(θ)‖22] ≤ σ2. The boundedness of
Var(g(τ |θ)) are also proposed as an assumption in the previ-
ous works (Papini et al. 2018; Xu, Gao, and Gu 2019, 2020;
Wang et al. 2020).

Assumption 2 (Smoothness of Policy Hessian). The the
expected return function J(θ) is χ-Hessian-Lipschitz, i.e.,
there exists a constant 0 ≤ χ < ∞ such that for all
θ, θ

′ ∈ Rp:

‖∇2J(θ)−∇2J(θ
′
)‖op ≤ χ‖θ − θ

′
‖2. (10)

Assumption 2 requires that for the two near points, the
Hessian matrix ∇2J(·) can not change dramatically in the
terms of operator norm. For RL, the parameter χ can be de-
duced by some other regularity conditions, e.g., (Zhang et al.
2019) provides an estimation of χ, see Appendix A.
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Second-Order Stationary Point
Due to the non-concavity of J(θ), finding global maxima
is NP-hard in the worst case. The best one can hope is to
convergence to stationary points. In this section, we formally
define second-order stationary point (SOSP). Furthermore,
with the second-order information, we present Assumption
3 to make clear the maximal point that we mainly concern
for policy optimization.
Definition 1 (Second-Order Stationary Point (Nesterov and
Polyak 2006) 1). For the χ-Hessian-Lipschitz function J(·),
we say that θ is a second-order stationary point if

‖∇J(θ)‖2 = 0 and λmax(∇2J(θ)) ≤ 0; (11)

we say θ is an (ε,
√
χε)-second-order stationary point if

‖∇J(θ)‖2 ≤ ε and λmax(∇2J(θ)) ≤ √χε. (12)

The SOSP is a very important concept for the policy opti-
mization (2) because it rules the saddle points (whose Hes-
sian are indefinite) and minimal points (whose Hessian are
positive definite), which is usually more desirable than con-
vergence to a first-order stationary point (FOSP). Recently,
(Shen et al. 2019; Xu, Gao, and Gu 2020) introduce FOSP
to measure the convergence of policy gradient methods. As
mentioned in Section , for policy optimization (2), an algo-
rithm converges to a FOSP is not sufficient to ensure that
algorithm outputs a maximal point. While SOSP overcomes
above shortcomings, which is our main motivation to con-
sider SOSP as a convergence criterion.
Assumption 3 (Structure of J(θ)). For any θ ∈ Rp, at
least one of the following holds: (i) ‖∇J(θ)‖ ≥ ε; (ii)
λmax(∇2J(θ)) ≥ √εχ; (iii) θ nears a local maximal point
θ?: there exists a positive scalar % such that θ falls in to the
ball B2(θ?, %), and J(θ) is ζ-strongly concave on B2(θ?, %).

In the standard non-convex literature such as (Ge et al.
2015; Jin et al. 2017), the condition (ii) of Assumption 3 is
often called (ε, χ, %)-strict saddle. In this case, all the SOSP
are local maxima and hence convergence to second-order
stationary points is equivalent to convergence to local max-
ima. In the following three-states MDP (see Figure 1), we
verify that the Assumption 3 holds on policy optimization.
Example 1. In this deterministic MDP, the states s1 and s2
equip the action spaceA = {right, left}, while s0 equips
an additional action up. The policy πθ(·|·) with a parameter
θ = (θ1, θ2)> ∈ R2, Let Co =: [0, 1] × [0, 1], if θ ∈ Co,
we define πθ(right|s0) =: p1 = 1√

2π
(1 − θ21 + θ22); if

θ /∈ Co, we define Gaussian policy πθ(left|s0) =: p2 =
1√
2π

exp
{
− (2−‖θ‖22)

2

}
; otherwise, πθ(up|s0) =: p3 = 1 −

p1 − p2. Then J(θ) = p1R1 + p2R2 + p3R3, i.e.,

J(θ) =

{
1√
2π

(1− θ21 + θ22), θ ∈ Co
1√
2π

exp
{
− (2−‖θ‖22)

2

}
, θ /∈ Co.

(13)

1Recall problem (2) is a maximization problem, thus this
definition of SOSP is slightly different from the minimiza-
tion problem minx f(x), where it requires ‖∇f(x)‖2 ≤
ε and λmin(∇2f(x)) ≥ 0. Similarly, its (ε,

√
χε)-SOSP requires

‖∇f(x)‖2 ≤ ε and λmin(∇2f(x)) ≥ −√χε.

s0 s1s2

left right

p1, right

R1 = 1

p2, left

R2 = 1

up, p3, R3 = 0

Figure 1: Three-States MDP.

The function J(θ) (13) satisfies Assumption 3. Since the
origin (0, 0) ∈ Co is a saddle point of J(θ), and
λmax(∇2J(θ)|(0,0)) = 1, thus the point (0, 0) satisfies strict
saddle point property. Besides, on the complementary space
of Co, i.e., R2 − Co, J(θ) is a strongly concave function.

Main Result and Technique Overview
Our contribution lies in this section. Theorem 1 presents the
sample complexity of policy gradient algorithm (5) finding
an (ε,

√
χε)-SOSP. Firstly, we provide an overview of the

proof technique. Then, we provide all the key steps. Finally,
we provide a sketch of the proof of Theorem 1.
Theorem 1. Under Assumption 1-3, consider {θk}k≥0 gen-
erated according to (5), and ι is defined in (21). For a small
enough step-size α such that

α ≤ min
{ ε2

2
√
χεR2

minω
2
,

2ε2

(ε2 + σ2)`

}
= O(ε2),

the iteration (5) returns an (ε,
√
χε)-SOSP with probability

at least 1− δ − δ log
1

δ
= 1− Õ(δ) after the times of

K =
⌈ 6Rmax

α2(1− γ)ι2
√
χε

log
1

δ

⌉
= O

( ε−
9
2

(1− γ)
√
χ

log
1

δ

)
.

Remark 1. Theorem 1 illustrates that policy gradient algo-
rithm (5) needs a cost of Õ(ε−

9
2 ) to find an (ε,

√
χε)-SOSP.

To the best of our knowledge, Zhang et al. (2019) firstly con-
sider to introduce SOSP to measure the sample complexity
of policy-based reinforcement learning. Zhang et al. (2019)
propose a modified random-horizon policy gradient (MRPG)
algorithm, and they show that MRPG needs at least a cost
of O

(
ε−9χ

3
2
1
δ log 1

εχ

)
= Õ(ε−9) to find an (ε,

√
χε)-SOSP.

Clearly, result of Theorem 1 improves the sample complexity
of (Zhang et al. 2019) significantly from Õ(ε−9) to Õ(ε−

9
2 ).

Additionally, compared to (Zhang et al. 2019), our analysis
does not invoke a geometric distribution restriction on the
horizon. In the real world, the horizon of a trajectory only
depends on the simulated environment, it is not necessary to
draw a horizon from a geometric distribution, i.e., our result
is more practical.

Technique Overview
Recall that an (ε,

√
χε)-SOSP requires a point has a small

gradient, and whose Hessian matrix does not have a signifi-
cantly positive eigenvalue, which inspires us to consider an
idea that decomposes the parameter space Rp into three non-
intersected regions, and then analyzing them separately.
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¶ Case I: Non-Stationary Region. In this case, we con-
sider the region with large gradient, i.e.,

L1 =
{
θ ∈ Rp : ‖∇J(θ)‖2 ≥ ε

}
; (14)

· Case II: Around Saddle Point. We consider the region
where the norm of the policy gradient is small , while the
maximum eigenvalue of the Hessian matrix ∇2J(θ) is
larger than zero:

L2 =
{
θ ∈ Rp : ‖∇J(θ)‖2 ≤ ε

}⋂{
θ ∈ Rp : λmax(∇2J(θ)) ≥ √χε

}
; (15)

¸ Case III: Local Optimal Region. In this case, we con-
sider the region L3 = Rp − (L1 ∪ L2):

L3 =
{
θ ∈ Rp : ‖∇J(θ)‖2 ≤ ε

}⋂{
θ ∈ Rp : λmax(∇2J(θ)) ≤ √χε

}
. (16)

It is noteworthy that the local optimal region, i.e., L3 is the
desirable region where we expect policy gradient algorithm
converges to it with high probability. Before we provide the
formal proof of Theorem 1, in the next section, we present
three separate propositions to make local improvements on
above three regions correspondingly. The main challenge
occurs on regionL2, where we utilize a technique called cor-
related negative curvature (CNC) (Daneshmand et al. 2018)
to make a local improvement.

Local Improvement on Each Case
Proposition 1 (Local Improvement on L1). Under Assump-
tion 1-2. The sequence {θk}k≥0 generated according to (5).
If a point θk ∈ L1, let

α < min
{ 2ε2

(ε2 + σ2)`
,

2

`

}
= O(ε−2), (17)

then after one step, we have

E
[
J(θk+1)

]
− J(θk)

(a)
≥
(
α− `α2

2

)
‖∇J(θk)‖22 −

`α2σ2

2

(b)
≥ 1

2
αε2. (18)

Proof. See Appendix B.

Proposition 1 shows that when the gradient is large, the
expected return J(θ) increases in one step. It is notewor-
thy that the step-size plays an important role in achieving
the result of (18). Concretely, for a positive scalar α − `α2

2

(i.e., which requires α < 2
` ), Eq.(a) of (18) guarantees the

desired increase whenever the norm of the policy gradient
is large enough. At the same time, when considering the
lower threshold value ε of the norm of the policy gradi-
ent in the region L1, the second term of (18) achieves at
least αε2 − 1

2`α
2(ε2 + σ2). Thus, to make a clear improve-

ment, the condition (b) requires step-size α should satisfy
α < 2ε2

(ε2+σ2)` . This implies the step-size condition (17).

Proposition 2 (Local Improvement on L2). Under Assump-
tion 1-2, consider the sequence {θk}k≥0 generated by (5). If

a point θk falls in to L2, there exists a positive scalar ι (21),
and κ̂0 such that

κ̂0 =:

⌊
log
(
1/(1−

√
ασH0

)
)

log(1 + α
√
χε)

⌋
= O(ε−

1
2 ), (19)

where σH0
=

2p
√
phRmax(hG

2+L)

1−γ , then after at most j ≤ κ̂0
steps, we have

E[J(θk+j)]− J(θk) ≥ α2ι2
√
χε. (20)

Proof. See Appendix D.

Proposition 2 illustrates that even a point gets stuck in
the region thar nears a saddle point, policy gradient method
will ensure an increase in the value of J(θ) within at most
O(ε−

1
2 ) steps. We provide proof of Proposition 2 in Ap-

pendix C. The proof is very technical, the following cor-
related negative curvature (CNC) condition (Daneshmand
et al. 2018) plays a crucial role in achieving the result of
(20). Concretely, let up be the unit eigenvector correspond-
ing to the maximum eigenvalue of ∇2J(θ), CNC ensures
the second moment of the projection of policy gradient es-
timator g(τ |θ) along the direction up is uniformly bounded
away from zero, i.e., there exists a positive scalar ι s.t.,

CNC : E[〈g(τ |θ), up〉2] ≥ ι2, ∀θ ∈ Rp. (21)

We provide the derivation of Eq.(21) in the Discussion ?? of
Appendix C. CNC shows that the perturbation caused by a
stochastic policy gradient estimator g(τ |θ) is guaranteed to
take an increase in the value of J(θ).

Proposition 3. Under Assumption 1-3, consider the se-
quence {θk}k≥0 generated by (5). For any δ ∈ (0, 1), θ?
satisfies Assumption 3, let the step-size α and the stopping
time κ0 satisfy

κ0 =
⌊ 1

α2
log

1

δ

⌋
, α ≤ min

{
δ,

1

ζ
,
ζ

`2
ζ%2

3σ2

}
,

α log
1

α
≤ 2ζ%4

27
(
G2R2

max

(1−γ)2 + ζ%2 + σ2
)2 ,

and if some iteration θk falls into the ball B2(θ?,
√
3
3 %) ⊂

B2(θ?, %), i.e., ‖θk − θ?‖22 ≤ 1
3%

2. Then, ∀ j ∈ [0, κ0 − 1],

P
(∥∥θk+j − θ?∥∥2 ≤ %) ≥ 1− δ log

1

δ
.

Proof. See Appendix C.

Proposition 3 illustrates that once an iteration gets suffi-
ciently close to a local optimum θ?, it can get trapped in the
neighborhood of θ? for a really long time.

Proof Sketch of Theorem 1

Proof. Our proof contains three steps. Firstly, we will prove
that within

⌈
6Rmax

α2(1−γ)ι2√χε
⌉

steps, with probability at least
1
2 , one iteration falls into L3. Let above procedure lasts⌈
log 1

δ

⌉
steps, according to the inclusion-exclusion formula
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of probability: after Ko =
⌈

6Rmax

α2(1−γ)ι2√χε log 1
δ

⌉
steps, one

of {θk}k≥0 falls into L3 with probability 1 − δ. Secondly,
Proposition 3 shows that once an iteration enters the region
L3, the iteration gets trapped there for at least κ0 steps with

probability 1−δ log
1

δ
. Finally, letKo+1 < K < Ko+κ0,

combining above two results, the output θK falls into the re-
gion L3 with probability at least 1 − (δ + δ log 1

δ ), which
concludes the result of Theorem 1.

The above discussion implies that we only need to prove:
starting from any point, within

⌈
6Rmax

α2(1−γ)ι2√χε
⌉

steps, with

probability at least 1
2 , one of {θk}k≥0 falls into L3.

We define a stochastic process {ςk}k≥0 (ς0 = 0) to trace
the numbers of samples,

ςk+1 =

{
ςk + 1 if θςk ∈ L1 ∪ L3

ςk + κ̂0 if θςk ∈ L2,

where κ̂0 is defined in (19). Let β = ι2
√
χε, we can rewrite

the results of Proposition 1-2 as follows,

E[J(θςk+1
)− J(θςk)|θςk ∈ L1]

(18)

≥ 1

2
αε2, (22)

E[J(θςk+1
)− J(θςk)|θςk ∈ L2]

(20)

≥ α2β. (23)

Putting the results of (22)-(23) together, let α2β ≤ 1
2αε

2,
i.e., α ≤ ε2

2β ,we have

E[J(θςk+1
)− J(θςk)|θςk 6∈ L3]

≥α2βE[(ςk+1 − ςk)|θςk 6∈ L3]. (24)
We define the event

Ek =:
k⋂
j=0

{
j : θςj 6∈ L3

}
.

Let 1A denote the indicator function, where if event A hap-
pens, 1A = 1, otherwise 1A = 0.

E[J(θςk+1
)1Ek+1

− J(θςk)1Ek ] (25)

=E[J(θςk+1
)(1Ek+1

− 1Ek)] + E[(J(θςk+1
)− J(θςk))1Ek ]

(23)

≥ − Rmax

1− γ
(P(Ek+1 − Ek)) + α2βE[ςk+1 − ςk|1Ek ]P(Ek),

where we use the boundedness of J(θ) ≥ −Rmax

1−γ . Summing
the above expectation (25) over k, then

E[J(θςk+1
)1Ek+1

]− J(θ0)

=− Rmax

1− γ
(P(Ek+1)− P(E0))

+ α2β
k∑
j=0

(
E[ςj+1]P(Ej)− E[ςj ]P(Ej)

)
≥− Rmax

1− γ
+ α2β

k∑
j=0

(
E[ςj+1]P(Ej+1)− E[ςj ]P(Ej)

)
(26)

=− Rmax

1− γ
+ α2βE[ςk+1]P(Ek+1), (27)

where Eq.(26) holds since P(Ek+1)−P(E0) ≤ 1; Ej+1 ⊂ Ej
implies P(Ej+1) ≤ P(Ej); and Eq.(27) holds since ς0 = 0.

Finally, since

E[J(θςk+1
)1Ek+1

− J(θςk)1Ek ] ≤ 2Rmax

1− γ
,

and according to the result of (27), if

E[ςk+1] ≥ 6Rmax

α2(1− γ)β
=

6Rmax

α2(1− γ)ι2
√
χε
,

we have
P[Ek+1] ≤ 1

2
.

This concludes the proof.

Related Works and Future Works
Compared to the tremendous empirical works, theoretical
results of policy gradient methods are relatively scarce. In
this section, we compare our result with current works in
the following discussion. For clarity, we have presented the
complexity comparison to some results in Table 1. Further-
more, we discuss future works to extend our proof technique
to other policy gradient methods.

First-Order Measurement
According to (Shen et al. 2019), REINFORCE needs O(ε−4)
random trajectories to achieve the ε-FOSP, and no provable
improvement on its complexity has been made so far. Later,
Xu, Gao, and Gu (2019) notice the order of sample complex-
ity of REINFORCE and GPOMDP (Baxter and Bartlett 2001)
need O(ε−4) to achieve the ε-FOSP. With an additional as-
sumption Var

[∏
i≥0

πθ0 (ai|si)
πθt (ai|si)

]
,Var[g(τ |θ)] < +∞, Papini

et al. (2018) show that the SVRPG needs sample complex-
ity of O(ε−4) to achieve the ε-FOSP. Under the same as-
sumption as (Papini et al. 2018), Xu, Gao, and Gu (2019) re-
duce the sample complexity of SVRPG toO(ε−

10
3 ). Recently,

Shen et al. (2019), Yang et al. (2019a) and Xu, Gao, and
Gu (2020) introduce stochastic variance reduced gradient
(SVRG) techniques (Johnson and Zhang 2013; Nguyen et al.
2017a; Fang et al. 2018) to policy optimization, their new
methods improve sample complexity to O(ε−3) to achieve
an ε-FOSP. Pham et al. (2020) propose ProxHSPGA that is
a hybrid stochastic policy gradient estimator by combin-
ing existing REINFORCE estimator with the adapted SARAH
(Nguyen et al. 2017a) estimator. Pham et al. (2020) show
ProxHSPGA also need O(ε−3) trajectories to achieve the ε-
FOSP. To compare clearly, we summarize more details of
the comparison in Table 1.

Second-Order Measurement
As mentioned in the previous section, for reinforcement, an
algorithm converges to a FOSP is not sufficient to ensure
that algorithm outputs a maximal point, which is our main
motivation to consider SOSP to measure the convergence of
policy gradient method.

To the best of our knowledge, Zhang et al. (2019) firstly
introduce SOSP to RL to measure the sample complexity of
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Algorithm Conditions Measurement Complexity
REINFORCE

(Williams 1992) Assumption 1 First-Order O(ε−4)

GPOMDP
(Baxter and Bartlett 2001) Assumption 1 First-Order O(ε−4)

SVRPG
(Papini et al. 2018) Assumption 1; Var

[∏
i≥0

πθ0(ai|si)
πθt(ai|si)

]
< +∞ First-Order O(ε−4)

SVRPG
(Xu, Gao, and Gu 2019) Assumption 1; Var

[∏
i≥0

πθ0(ai|si)
πθt(ai|si)

]
< +∞ First-Order O(ε−

10
3 )

HAPG
(Shen et al. 2019) Assumption 1 First-Order O(ε−3)

VRMPO
(Yang et al. 2019a) Assumption 1 First-Order O(ε−3)

SRVR-PG
(Xu, Gao, and Gu 2020) Assumption 1; Var

[∏
i≥0

πθ0(ai|si)
πθt(ai|si)

]
< +∞ First-Order O(ε−3)

ProxHSPGA
(Pham et al. 2020) Assumption 1; Var

[∏
i≥0

πθ0(ai|si)
πθt(ai|si)

]
< +∞ First-Order O(ε−3)

MRPG
(Zhang et al. 2019) Assumption 1 and Eq.(6) Second-Order Õ

(
ε−9
)

Our work Assumption 1-3 Second-Order Õ
(
ε−

9
2

)
Table 1: Complexity comparison, where the result of first-order measurement requires ‖∇J(θ)‖2 ≤ ε, section-order measure-
ment requires an additional condition λmax(∇2J(θ)) ≤ √χε.

policy gradient methods. Zhang et al. (2019) propose MRPG

that needs at least Õ(ε−9) samples, which is worse than our
result Õ(ε−

9
2 ). We have discussed this comparison in the

previous Remark 1.
Additionally, it is noteworthy that although we are all

adopting the CNC technique to ensure the local improve-
ment on saddle point region, our technique is different from
Zhang et al. (2019) at least from two aspects: Firstly, our
CNC condition is more general since we consider the funda-
mental policy gradient estimator (5) and our analysis can be
extended to generalized to extensive policy optimization al-
gorithms; while the CNC result of Zhang et al. (2019) is lim-
ited in their proposed algorithm MRPG; Secondly, on the re-
gion L2, our result shows that within at most O(ε−

1
2 ) steps,

policy gradient ensures an increase in the value of J(θ).
While, Zhang et al. (2019) require Ω(ε−5 log 1

ε ), which is
the main reason why our analysis to achieve a better sample
complexity than Zhang et al. (2019).

Future Works
In this paper, we mainly consider Monte Carlo gradient es-
timator (4), the technique of proof can be generalized to ex-
tensive policy gradient methods such as replacingR(τ) with
state-action value function Qπ(st, at), advantage function
Aπ(st, at), baseline functionR(τ)−V π(st, at), and tempo-
ral difference (TD) learning error rt+1+γV π(st+1, at+1)−
V π(st, at). Our result of Õ(ε−

9
2 ) to achieve (ε,

√
εχ)-SOSP

is still far from the best-known ε-FOSP result O(ε−3). In
theory, Allen-Zhu and Li (2018) and Xu, Jin, and Yang
(2018) independently show that finding a SOSP is not much
harder than FOSP. Recently, in non-convex optimization, Ge
et al. (2019) show that with a simple variant of SVRG, we

can find a SOSP that almost matches the known the first-
order stationary points. This provides a motivation that we
can introduce some latest developments such as (Danesh-
mand et al. 2018; Jin, Netrapalli, and Jordan 2018; Zhou,
Xu, and Gu 2018a,b; Ge et al. 2019; Fang, Lin, and Zhang
2019) to give some fresh understanding to RL algorithms.
Besides, it will be also interesting to rethink the sample
complexity of (ε,

√
εχ)-SOSP of the works in reinforce-

ment learning (Papini et al. 2018; Shen et al. 2019; Yang
et al. 2019a; Pham et al. 2020), where they have proposed
SVRG version of policy gradient methods. It is notewor-
thy that we don’t consider the actor-critic type algorithms.
Recently Yang et al. (2019b); Kumar, Koppel, and Ribeiro
(2019); Agarwal et al. (2020); Xu, Wang, and Liang (2020);
Wang et al. (2020) have analyzed the complexity of actor-
critic or natural actor-critic algorithms. It will be very in-
teresting to rethink the sample complexity of the (ε,

√
εχ)-

SOSP of actor-critic or natural actor-critic algorithms.

Conclusion
In this paper, we provide the sample complexity of the pol-
icy gradient method finding second-order stationary points.
Our result shows that policy gradient methods converge to
an (ε,

√
εχ)-SOSP at a cost of Õ(ε−

9
2 ), which improves the

the best-known result of by a factor of Õ(ε−
9
2 ). Besides, we

think the technique of proof can be potentially generalized
to extensive policy optimization algorithms, and give some
fresh understanding to the existing algorithms.
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