
Learning to Purify Noisy Labels via Meta Soft Label Corrector

Yichen Wu1, Jun Shu1, Qi Xie1, Qian Zhao1, Deyu Meng1,2,3∗

1Xi’an Jiaotong University, Shaanxi, China
2Pazhou Lab, Guangzhou, 510330, China

3Macau University of Science and Technology, Macau, China
wuyichen.am97@gmail.com, xjtushujun@gmail.com, xq.liwu@stu.xjtu.edu.cn

{timmy.zhaoqian,dymeng}@mail.xjtu.edu.cn

Abstract

Recent deep neural networks (DNNs) can easily overfit to bi-
ased training data with noisy labels. Label correction strat-
egy is commonly used to alleviate this issue by identifying
suspected noisy labels and then correcting them. Current ap-
proaches to correcting corrupted labels usually need manu-
ally pre-defined label correction rules, which makes it hard
to apply in practice due to the large variations of such man-
ual strategies with respect to different problems. To address
this issue, we propose a meta-learning model, aiming at at-
taining an automatic scheme which can estimate soft label-
s through meta-gradient descent step under the guidance of
a small amount of noise-free meta data. By viewing the la-
bel correction procedure as a meta-process and using a meta-
learner to automatically correct labels, our method can adap-
tively obtain rectified soft labels gradually in iteration ac-
cording to current training problems. Besides, our method is
model-agnostic and can be combined with any other existing
classification models with ease to make it available to noisy
label cases. Comprehensive experiments substantiate the su-
periority of our method in both synthetic and real-world prob-
lems with noisy labels compared with current state-of-the-art
label correction strategies.

Introduction
The remarkable success of deep neural networks (DNNs)
on various tasks heavily relies on pre-collected large-
scale dataset with high-quality annotations (He et al. 2016;
Krizhevsky, Sutskever, and Hinton 2012). However, prac-
tical annotated training dataset always contains certain
amount of noisy (incorrect) labels, easily conducting over-
fitting issue and leading to the poor performance of the
trained DNNs in generalization (Zhang et al. 2016; Arpit
et al. 2017). In fact, such biased training data are commonly
encountered in practice, due to the coarse annotation sources
for collecting them, like web searches (Liu et al. 2011) and
crowd-sourcing (Welinder et al. 2010). Therefore, how to
train DNNs robustly with such biased training data is a crit-
ical issue in current machine learning field.

To address this problem, various methods have been pro-
posed (Arazo et al. 2019; Shu et al. 2019; Jiang et al. 2018;
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Huang et al. 2019; Yi and Wu 2019; Sukhbaatar et al. 2014;
Vahdat 2017; Han et al. 2018), which can be coarsely cate-
gorized as sample selection and label correction approaches.
The sample selection approach tackles this challenge mainly
via adopting sample re-weighting schemes by imposing im-
portance weights sample-wisely according to their loss val-
ues, which typically include boosting and self-paced learn-
ing methods (Kumar, Packer, and Koller 2010; Meng, Zhao,
and Jiang 2017; Jiang et al. 2014). Recently, some pioneer-
ing works (Ren et al. 2018; Shu et al. 2019) further make
such weighting schemes more adaptive through employing a
small set of validation data to guide the network training pro-
cess. All these weighting methods aim to throw off the sus-
pected noisy samples in the training process. However, these
discarded samples, even most are noisy ones, usually con-
tain beneficial information that could improve the accuracy
and robustness of the network, especially in large noise-ratio
scenarios (Chang, Learned-Miller, and McCallum 2017).

The label correction approach alleviates this issue through
attempting to find and correct noisy labels to their underly-
ing true ones. Some works (Hendrycks et al. 2018; Patrini
et al. 2017; Shu et al. 2020; Xia et al. 2019) tried to estimate
the noise transition matrix, i.e., the probabilistic mapping
from true labels to noisy ones. Then, the estimated matrix is
used to correct the corrupted samples. However, matrix size
increases at a geometric rate with an increasing number of
classes, which makes it intractable to correct noisy labels for
large scale datasets. Besides, these methods assume that the
noise is class-dependent, which is not a valid assumption for
more complex noises such as feature-related noise.

Some other works attempt to rectify the noisy labels by
exploiting the prediction of network. E.g., (Reed et al. 2015)
adopted the bootstrapping loss, which assigns a weight to
the current network prediction in the learning objective, to
compensate for the wrong guiding of corrupted samples.
Similarly, SELFIE (Song, Kim, and Lee 2019) used the co-
teaching strategy to select clean samples and progressive-
ly refurbish noisy labels that most frequently predicted by
previous learned models. Another typical work, Joint Opti-
mization (Tanaka et al. 2018) used two progressive steps to
update the labels and classifier weights separately. Besides,
U-correction (Arazo et al. 2019) built a two-component Beta
Mixture Model (BMM) to estimate the probability of a sam-
ple being mislabeled and correct noisy labels by bootstrap-
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ping loss. Similar to some semi-supervised learning meth-
ods (Tarvainen and Valpola 2017; Laine and Aila 2016; Lee
2013; Li, Socher, and Hoi 2020), this line of works can be
viewed as different means of generating soft labels to re-
place the original targets. Albeit capable of correcting noisy
labels to a certain extent, the performance of these method-
s heavily rely on the reliability of the generated soft labels,
which depend on the accuracy of the classifier trained on
the noisy dataset. However, the predictions of the base mod-
el have a huge fluctuation during training especially to the
samples with corrupted labels. Some false predictions sup-
plied by the base model will further degrade the quality of
the obtained classifier.

To alleviate the above issues, in this study we design a
meta soft label corrector (MSLC) to automatically and grad-
ually purify the corrupted labels iteratively, from the per-
spective of meta-learning. Specifically, we treat the label
correction procedure as a mutually ameliorated two-stage
optimization process. One stage is to generate soft label-
s through MSLC by utilizing the original targets and dy-
namic information of predictions delivered from algorithm
iterations from the base model. Then the MSLC is updat-
ed by gradient descent step in order to minimize the loss
of clean meta data. The other stage is to train the base net-
work to fit the pseudo-soft-labels generated by MSLC. Such
an iteratively two-stage optimization strategy is expected to
automatically obtain a faithful soft label corrector through
sufficiently making use of the noise-free meta data. The con-
tributions of this paper can be summarized as follows:

• Our method can obtain a meta soft label corrector which
is able to map input labels (i.e. original target and some
side information) to its corrected soft ones automatically
without using conventional pre-defined generating rules,
and thus makes the label correction process more flexi-
ble and easily adapting to complicated real dataset with
different types and levels of noise.

• With the dynamic prediction in the iterative process to
gradually ameliorate meta soft label corrector, our method
tends to get more accurate classifiers through alleviating
false information accumulation brought by noisy labels.

• Our approach is model agnostic and can be readily e-
quipped on any existing classification models. Compre-
hensive experiments validate the superiority of the pro-
posed method on robust deep learning with noisy labels.
This can be interpreted by its obviously better noisy-clean
label distinguishing capability and more accurate pseudo-
labels generated by MSLC.

Typical Label Correction Methods
For a classification task, let X ⊂ Rd be the feature s-
pace, Y ⊂ {0, 1}C be the label space. Given training data
D = {(xi, yi)}Ni=1 ⊂ (X × Y)N , where xi denotes the
i-th sample, and yi is the corresponding one-hot encoding
label vector. Denoting the network as f(x;w), w represents
the network parameters. Under the classical setting of su-
pervised learning with a noisy dataset D (i.e. the label yi
can be wrongly annotated), the parameters w are learned by

optimizing a chosen loss function:

LD(w) =
1

N

N∑
i=1

l (f (xi;w) , yi) . (1)

Since the given dataset D involves wrong label annota-
tions which could misguide the training process and degrade
the performance of the classifier through optimizing the ob-
jective function in Eq. (1). The existing label correction
methods, therefore, mainly focus on how to generate more
accurate soft pseudo-labels (represent as ỹ) that replace the
original noisy ones (i.e. y) to increase the performance of
the classifier f(x;w), i.e.,

LD(w) =
1

N

N∑
i=1

l (f (xi;w) , ỹi) . (2)

Typically, Reed et al. (2015) proposed a static hard boot-
strapping loss to deal with label noise, which set ỹi(t) =

λiyi + (1 − λi)ŷ
(t)
i to replace the original label yi in the

training objective of the (t+ 1)th step:

LD(w) =
1

N

N∑
i=1

l
(
f (xi;w) , λiyi + (1− λi)ŷ(t)i

)
, (3)

where ŷ(t)i denotes the predicted soft label by the classifier
in the tth step, λi is the preset parameter and l(·) is a chosen
loss function.

In the similar formulation as Eq. (3), some other methods
design its own strategy to generate pseudo-labels. For ex-
ample, SELFIE (Song, Kim, and Lee 2019) set a threshold
to separate the low-loss instances as clean samples and de-
cide which samples are corrupted according to the volatility
of the predictions of samples, and then correct them by the
most frequently predicted label in previous q iterations.

Furthermore, Arazo et al. (2019) learned the λi dynam-
ically for every sample by using a Beta-Mixture model,
which is an unsupervised method to group the loss values
of samples into two categories, and choose the prediction of
the tth step as ŷ(t) similar to Eq. (3).

Different from the form of Eq. (3), Joint Optimization
(Tanaka et al. 2018) trained their model on the original tar-
gets in a large learning rate for several epochs, and then tried
to use the predictions of the model to generate pseudo-labels
without using the original labels. Their objective function is,

LD(w) =
1

N

N∑
i=1

l

f (xi;w) , 1
q

q−1∑
j=0

ŷ
(t−j)
i

 , (4)

where the pseudo-label is valued by ỹi(t) = 1
q

∑q−1
j=0 ŷ

(t−j)
i ,

i.e., the average of the predictions calculated from the past
q epochs. With a finely set hyper-parameters q, it could
achieve robust performance.

The aforementioned strategies represent the current t-
wo characteristics of existing label correction methods. The
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first is that the current methods are required to specifically
set the label correction rules with manually defined hyper-
parameters. However, the optimal hyper-parameters vary
across different problems, and thus it is difficult to construc-
t a unique label correction methodology finely adaptable to
different tasks.

The second is that these methods may cause evident error
accumulation issue by substituting its generated soft pseudo-
label with relatively low quality for the original labels. Boot-
strap (Reed et al. 2015) and U-correction (Arazo et al. 2019)
combined the observed label y with the current prediction
ŷ(t) to generate new soft labels. However, the prediction-
s ŷ(t) usually have significant variation during the training
process especially to the samples are corrupted. Compara-
tively, Joint Optimization (Tanaka et al. 2018) alleviates this
issue by integrating the predictions of the network at differ-
ent iterations, its strategy, however, uses the new soft label-
s to replace all the observed targets no matter whether it’s
clean or not. This tends to introduce additional error infor-
mation since some original clean labels might possibly be
wrongly corrected.

The Proposed MSLC Method
To alleviate the aforementioned issues, we propose the M-
SLC learning framework. Different from the existing label
correction methods, we view the label correction procedure
as a meta-process and use a meta-learner to automatically
correct labels. In this section we first introduce the MSLC
framework as well as presenting an efficient algorithm for
solving it, and then provide some theoretical evidences to
support its underlying effectiveness insights.

Framework Formulation
Following the research line of label correction methods, we
construct the label corrector with the expressoin as:

ỹ = g (y, I; θ) , (5)

where ỹ is the soft pseudo-label generated by our proposed
MSLC, y denotes the original label, I represents the side in-
formation that are helpful to generate fine pseudo-label out-
put, and θ denotes meta-learner parameters used for predict-
ing pseudo-labels. With meta soft label corrector Eq. (5), the
final training objective for (t+ 1)th step can be written as:

LD(θ, w) =
1

N

N∑
i=1

l
(
f (xi;w) , ỹ

(t)
i

)
. (6)

Synthesize the helpful experience that we analyzed in the
previous section, we choose ŷ(t) and ỹ(t−1) as the side in-
formation for helping correct the input label y1, which could
alleviate the negative impact of the predictions’ significant
fluctuation during the training process. i.e.,

ỹ(t) = g
(
y, I(t); θ

)
= g

(
y, ŷ(t), ỹ(t−1); θ

)
, (7)

1Note that more earlier generated pseudo-labels ỹ(t−j) for j >
1 could be easily adopted in our method. Our experiments show
that one projection ỹ(t−1) can already guarantee a good perfor-
mance.

Figure 1: The Structure of MSLC

where I(t) denotes the side information ŷ(t), ỹ(t−1) used in
the current iteration step.

Inspired by (Reed et al. 2015) and (Tanaka et al. 2018),
we set the corrected label as the form of soft label, which is
the convex combination of y, ŷ(t), ỹ(t−1). That is:

g
(
y, ŷ(t), ỹ(t−1); θ

)
=α(lα; θα)y + (1−α(lα; θα))

×
(
β(lβ ; θβ)ỹ

(t−1) + (1−β(lβ ; θβ))ŷ(t)
)
,

(8)

where α(·) and β(·) are two networks, whose outputs repre-
sent coefficients of this convex combination, with their pa-
rameters denoted as θα and θβ , respectively, and thus θ =

[θα, θβ ]. The two coefficient networks, with lα = l(ŷ(t), y)

and lβ = l(ŷ(t), ỹ(t−1)), constitute the main parts of our pro-
posed meta soft label corrector, which is intuitively shown in
Fig. 1. Through the two networks, the input target informa-
tion, i.e. y, ŷ(t), ỹ(t−1) , could be combined in a convex com-
bination to form a new soft target ỹ(t), which will replace the
original label y in the training process. The symbol α and β
denote the output value of α(·) and β(·) respectively.

In the framework of MSLC, α reflects the confidence of
the original label in the given corrupted dataset. Larger α
means that the corresponding sample tends to more reserve
the original label, conversely, smaller α indicates the MSLC
will more integrate the predictions of the classifier to replace
the initial target to compensate its erroneous guidance. Sim-
ilarly, the β could adaptively determine the proportion be-
tween the current and earlier prediction sample-wisely.

Training with Meta Dataset
We then introduce how to learn meta-learner parameter θ
(Eq. (8)). We readily employ a meta-data driven learning
regime as used in (Shu et al. 2019) under the guidance of a
small amount of noise-free meta data. The meta dataset con-
tains the meta-knowledge of underlying label distribution of
clean samples, and it is thus rationally to be exploited as a
sound guidance to help estimate θ. In this work, we denoted
meta dataset as

Dm = {(xmetai , ymetai )}Mi=1, (9)
where M (M � N ) is the number of data samples in meta
dataset. By utilizing the meta dataset, we can then design
the entire training framework for the noise label correction
model (Eq. (6)).
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Figure 2: Main flowchart of the proposed MSLC

Algorithm 1 The Learning Algorithm of Meta Soft Label
Corrector(MSLC)
Input: Training data D, meta data Dm, batch size n,m, MaxE-

poch T .
Output: Classifier network parameter w(T−1)

1: Initialize classifier parameterw(0) and meta-learner parameter
θ(0).

2: for t = 0 to T − 1 do
3: {x, y} ← SampleMiniBatch(D,n).
4: {x(meta), y(meta)} ← SampleMiniBatch(Dm,m).
5: Update θ(t+1) by Eq. (12).
6: Update w(t+1) by Eq. (13).
7: Update ŷ(t+1)

i , ỹ
(t+1)
i with parameters w(t+1) and θ(t+1).

8: end for

Specifically, we formulate the following bi-level mini-
mization problem:

w∗(θ) = argmin
w
LD(w; θ)

θ∗ = argmin
θ
LDm

(w∗(θ)),
(10)

where LDm(w) = 1
M

∑M
i=1 l (f (x

meta
i ;w) , ymetai ) is

the meta loss on meta dataset. After achieving θ∗, we can
then get the soft label corrector, which incline to ameliorate
noisy labels to be correct ones, and further improve the qual-
ity of the trained classifier.

Optimizing the classifier parameters w and meta-learner
parameters θ requires two nested loop of optimization (E-
q. (10)), which tends to be computationally inefficien-
t (Franceschi et al. 2018). We thus exploit SGD technique to
speedup the algorithm by approximately solving the prob-
lem in a mini-batch updating manner (Shu et al. 2019; Finn,
Abbeel, and Levine 2017) to jointly ameliorating θ and w.
The algorithm flowchart is shown in Fig. 2.

The algorithm includes mainly the following step-
s. Firstly, denote the mini-batch training samples
as {(xi, yi)}ni=1, and then the training loss becomes
1
n

∑n
i=1 l

(
f (xi;w) , g

(
yi, ŷ

(t)
i , ỹ

(t−1)
i ; θ

))
. We can then

deduce the formulate of one-step w updating equation with
respect to θ as

ŵ(θ)=w(t)−η1∇wLD(θ, w))

=w(t)−η1
1

n

n∑
i=1

∇wl
(
f(xi;w), g

(
yi, ŷ

(t)
i , ỹ

(t−1)
i , θ

))∣∣∣
w(t)

,
(11)

where η1 is the learning rate. Then, with curren-
t mini-batch meta data samples {(xmetai , ymetai )}mi=1,
we can perform one step updating for solving
minθ

1
m

∑m
i=1 l (f (x

meta
i ;w) , ymetai ), that is

θ(t+1)=θ(t)−η2∇θLDm(ŵ(θ))

= θ(t)−η2
1

m

m∑
i=1

∇θl
(
f(xmetai ; ŵ(θ)), ymetai

)∣∣
w(t) .

(12)

After achieving θ(t+1), we can calculate the pseudo label
by Eq. (5) and update w, that is

w(t+1)=w(t)−η1
1

n
×

n∑
i=1

∇wl
(
f(xi;w), g

(
yi, ŷ

(t)
i , ỹ

(t−1)
i ; θ(t+1)

))∣∣∣
w(t)

.
(13)

The predicted pseudo-labels ỹ(t+1)
i can then be updated

with parameters w(t+1) and θ(t+1). The entire algorithm is
then summarized in Algorithm 1.

Theoretical Analysis On the Algorithm
Weighting Scheme: The computation of Eq. (12) can be
rewritten as:

θ(t+1)=θ(t)−η2∇θLDm
(w(t) − η1∇wLD(θ, w))

= θ(t)+η2η1∇2
θ,w(t)LD(θ, w(t))∇ŵLDm(ŵ)

= θ(t)+η2η1∇θ(∇Tw(t)LD(θ, w(t))∇ŵLDm
(ŵ)).

(14)

It can be seen that ∇T
w(t)LD(θ, w(t))∇ŵLDm

(ŵ) repre-
sents the similarity between the gradient of the training sam-
ple computed on training loss and the average gradient of the
mini-batch meta data calculated on meta loss. It means that
if a pair of training and meta samples are very similar, then
this training sample is considered as helpful for getting right
results and should be up-weighted. Conversely, this train-
ing sample is harmful and should be suppressed. This under-
standing is consistent with (Finn, Abbeel, and Levine 2017;
Ren et al. 2018; Liu, Simonyan, and Yang 2018).

Generalization Bound: Following on work by (Zhao
et al. 2019), to better comprehend the effect of the parameter
dimension and the size of meta data to θ, we provide a theo-
retical analysis of an instance of MSLC where θ is searched
over a fixed candidate set A that covers the unit ball.
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Noise-type Symmetric Noise Asymmetric Noise
Dataset CIFAR-10 CIFAR-100 CIFAR-10 CIFAR-100

Method \ Noise ratio γ 0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 0.2 0.4 0.2 0.4

Cross-Entropy
Best 90.22 87.33 83.2 54.79 68.03 61.18 46.43 17.91 92.85 90.22 69.05 65.14
Last 86.33 79.61 72.99 54.26 63.67 46.92 30.96 8.29 91.29 87.23 63.68 50.10

Fine-tuning
Best 91.17 87.34 83.75 56.28 67.81 62.55 50.82 19.05 93.11 91.04 69.55 65.75
Last 88.27 82.16 79.36 54.82 63.97 51.14 38.22 18.86 92.35 89.49 66.43 55.08

GCE(Zhang and Sabuncu 2018)
Best 90.27 88.50 83.70 57.27 71.36 63.39 58.06 16.51 90.11 85.24 69.56 57.50
Last 90.15 88.01 82.87 57.22 71.02 52.15 45.31 15.71 89.33 82.04 66.36 56.81

GLC(Hendrycks et al. 2018)
Best 91.43 88.52 84.08 64.21 69.30 63.24 56.12 18.59 92.46 91.74 71.40 67.73
Last 90.13 87.04 82.63 62.19 66.62 59.03 51.96 8.08 92.41 91.02 70.01 66.68

MW-Net(Shu et al. 2019)
Best 91.48 87.34 81.98 65.88 69.79 65.44 55.42 19.62 93.44 91.64 67.54 60.24
Last 90.11 86.42 81.62 64.78 68.37 64.81 55.04 19.20 91.95 90.88 66.71 59.53

Bootstrap(Reed et al. 2015)
Best 91.46 88.75 84.03 63.80 69.79 63.73 57.20 17.63 93.08 91.18 70.93 67.82
Last 88.00 83.57 78.69 63.41 63.00 47.08 35.86 17.04 91.02 85.59 63.46 49.18

Joint Optimization(Tanaka et al. 2018)
Best 90.85 90.27 86.49 66.39 63.84 59.82 49.13 18.95 93.39 91.43 66.90 64.82
Last 89.77 88.58 85.57 65.92 60.10 56.85 47.68 17.38 92.12 90.20 66.69 59.31

U-correction(Arazo et al. 2019)
Best 92.05 89.07 85.64 68.23 68.37 62.37 55.19 17.10 91.85 90.34 67.71 66.75
Last 90.21 85.45 83.15 64.78 67.42 55.40 55.04 9.33 90.92 84.31 63.82 60.64

Ours
Best 93.46 91.42 87.39 69.87 72.51 68.98 60.81 24.32 94.39 92.81 72.66 70.51
Last 93.38 91.21 87.25 68.88 72.02 68.70 60.25 20.53 94.11 92.48 70.20 69.24

Table 1: Test accuracy (%) of all competing methods on CIFAR-10 and CIFAR-100 under Symmetric noise and Asymmetric
noise with different noise levels. The best results are highlighted in bold.

(a) Cifar100-Sym-Noise40% (b) Cifar100-Sym-Noise60% (c) Cifar100-Asy-Noise40%

Figure 3: The corrected label accuracy on different noise types and noise ratios. (a)(b)shows the accuracy of 40% and 60%
symmetric noise on Cifar100 respectively, (c) shows the accuracy of 40% asymmetric noise on Cifar100.

Theorem 1 Let θ ∈ Bd be the parameter of MSLC in a d-
dimensional unit ball. Let F be the underlying ground truth
distribution which doesn’t have noisy labels. Let m be the
meta data size. Define the generalization risk as:

R(w) = E(X,Y )∼F [l(f(X;w), Y )]

R̂(w) =
1

m

m∑
i=1

[l(f(xi;w), yi)]

Let A be an ε-cover of Bd (i.e. ∀θ∈Bd, ∃θ′ ∈ A : ||θ −
θ
′ || ≤ ε,). Let θ∗ = argmaxθ∈BdR(w∗(θ)) be the optimal

parameter in the unit ball, and θ̂ = argmaxθ∈AR̂(w
∗(θ))

be the empirically optima among a candidate setA. Assume:

• The loss function is sub-Gaussian with parameter σ.

• The loss function is λ-Lipschitz continuous w.r.t θ

For m > 9σ2, with probability at least 1− δ we have,

R(w∗(θ∗)) ≤ R̂(w∗(θ̂))+3σλ√
m
+

√
dln(m)

m
+ 2

1

m
ln(2/δ).

Theorem 1 establishes that our method approaches the op-
timal weight at a rate O(

√
dln(m)/m). Moreover, it shows

that the impact of meta data size (i.e. m) and parameter
dimension (i.e. d) to the generalization error when we use
R̂(w∗(θ̂)) to estimate R(w∗(θ∗)).

Experimental Results
To evaluate the capability of the proposed method, we imple-
ment experiments on CIFAR-10, CIFAR-100 (Krizhevsky,
Hinton et al. 2009) under different types and levels of noise,
as well as a real-word large-scale noisy dataset Clothing1M
(Xiao et al. 2015). For CIFAR-10/100, we use two type-
s of label noise: symmetric and asymmetric. Symmetric:
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# Method Accuracy # Method Accuracy
1 Cross Entropy 68.94 4 Joint Optimization(Tanaka et al. 2018) 72.23
2 Bootstrapping(Reed et al. 2015) 69.12 5 MW-Net(Shu et al. 2019) 73.72
3 U-correction(Arazo et al. 2019) 71.00 6 Ours 74.02

Table 2: Test accuracy (%) of different models on real-world noisy dataset Clothing1M.

(a) Asym-Noise40% (b) Sym-Noise40%

Figure 4: The comparison of confusion matrices between before and after correction on CIFAR-10 with (a) asymmetric noise
40% and (b) symmetric noise 40%.

We follow (Zhang et al. 2016; Tanaka et al. 2018) for la-
bel noise addition, which generates label corruptions by flip-
ping labels of a given proportion of training samples to one
of the other class labels uniformly (the true label could be
randomly maintained). Asymmetric: We use the setting in
(Yao et al. 2019), which designs to mimic the structure of
real-world label noise. Concretely, we set a probability r to
disturb the label to its similar class, e.g., truck → automo-
bile, bird→ airplane, deer→ horse, cat→ dog. For CIFAR-
100, a similar r is set but the label flip only happens in each
super-class as described in (Hendrycks et al. 2018).

Baselines. The compared methods include: Fine-tuning,
which finetunes the result of Cross-Entropy on the meta-data
to further enhance its performance. GCE (Zhang and Sabun-
cu 2018), which employs a robust loss combining the bene-
fits of both CE loss and mean absolute error loss against la-
bel noise. GLC (Hendrycks et al. 2018), which estimates the
noise transition matrix by using a small clean label dataset.
MW-Net (Shu et al. 2019), which uses a MLP net to learn
the weighting function. Bootstrap (Reed et al. 2015), which
deals with label noise by adding a perceptual term to the s-
tandard CE loss. Joint Optimization (Tanaka et al. 2018),
which updates the label and model at the same time by using
the pseudo-labels it generated. U-correction (Arazo et al.
2019), which models sample loss with BMM and applied
MixUp. For fair comparison, we only compare its proposed
method without mixup augmentation.

Experiment Details. We use ResNet-34 as classifier net-
work for all baseline experiments in Table 1. We use two
multi-layer perception (MLP) with one hidden layer (100 n-
odes) as the network structure of α(·) and β(·) respectively.
We chose cross-entropy as loss function and we began to
correct labels at 80th epoch (i.e. there is an initial warm-up).
Followed by (Shu et al. 2019), in synthetic datasets(noisy
CIFAR-10/100), we randomly selected 1000 images with
clean labels from the training dataset as the meta-data set.

In the Clothing1M dataset, we use 7000 clean data as the
metadata. More detail settings on synthetic dataset and real-
world dataset are shown in Appendix.

Comparison with State-of-the-Art Methods

Table 1 shows the results of all competing methods on
CIFAR-10/100 under symmetric and asymmetric noise as
aforementioned. To compare different methods in more de-
tail, we report both the best and the averaged test accuracy
over the last 5 epochs. It can be observed that our method
gets the best performance across both datasets and all noise
rates. Specifically, even under relatively high noise ratios
(E.g. γ = 0.8 on CIFAR-10 with sym-noise), our algorithm
has competitive classification accuracy (69.87%). It worths
noted that U-correction achieved best accuracy of 68.23%
that is comparable with, while its accuracy decreases in the
later training as 64.78% probably due to its error accumula-
tion issue. This indicates that our proposed meta soft label
corrector has better convergence under the guidance of meta
data in the training process. It also can be seen that MW-
Net has relatively poor performance in asymmetric condi-
tion, which might because all classes share one weighting
function in the method, which is unreasonable when noise
is asymmetric. Comparatively, our proposed MSLC has a
higher degree of freedom and thus performs better.

Fig.3 plots the corrected label accuracy, which used the
hard form of pseudo-labels (Eq. (5)) compared with the
ground truth. As can be seen in Fig. 3, the corrected labels
generated by our method attain the best accuracy. The accu-
racy of MW-Net is always below the value of the proportion
of clean samples, since it intrinsically tries to select the clean
samples while ignores the corrupted ones by its weighting
mechanism. From Fig. 3 (a)(c), one can see that the correct-
ed label accuracy of the U-correction are slightly decrease, it
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Dataset CIFAR-10 CIFAR-100
β 0 0.2 0.4 0.6 0.8 Ours 0 0.2 0.4 0.6 0.8 Ours

Accuracy
Best 89.84 90.49 91.04 90.34 89.46 91.27 67.42 68.52 68.25 67.13 67.08 68.84
Last 89.46 90.19 90.91 89.64 89.20 91.11 66.93 68.06 67.83 66.61 66.24 68.35

Corrected Label Accuracy 92.23 93.36 94.24 93.44 91.94 94.52 81.47 83.29 83.04 81.28 81.24 83.98

Table 3: The test accuracy(%) of ablation study under 40% of sym-noise. Mean accuracy over 3 repetitions are reported.

(a) The output weight of α(·)

(b) Accuracy in clean/noisy samples corresponding to Fig.3 (a)

Figure 5: The Analysis of the proposed method on CIFAR-
100 with Symmetric 40% noise. (a) denotes the output
weight of α(·) on clean/noise samples, (b) shows the cor-
rected label accuracy on clean/noisy data which split by the
whole dataset according to the ground-truth.

might be caused by its false correction2. Moreover, although
the accuracy of Joint Optimization increases all the time, it-
s performance is limited by the strategy that only uses the
pseudo-labels to replace all the targets, which has the risk of
corrupting the original clean labels.2.

Table 2 depicts the results on real noisy dataset Cloth-
ing1M, which consists of 1 million clothing images be-
longing to 14 classes. These images are obtained from on-
line websites with clean labels for validation(14K) and test-
ing(10K). Since the labels are generated by using surround-
ing texts of the images provided by the sellers, they thus
contain many error labels. From Table 2, we can observe that
the proposed method achieves the best performance, which
shows the effectiveness of our MSLC in real scenarios.

More Property Evaluations
Fig.4 shows the confusion matrices of our method obtained
under symmetric and asymmetric noise on CIFAR-10. The
left column of Fig. 4 (a) and (b) is the noise transition matrix,
which is the guideline for generating the synthesized noisy
datasets. And the right column is the matrix after corrected
by our proposed method, which x-axis denotes the hard form

2This will be further analyzed in Fig. 5

corrected labels. By comparing the left and right columns of
Fig. 4 (a) and (b), we can see that the probability of most
diagonal terms exceeds 0.95 after correction. That indicates
the high correction accuracy of our proposed MSLC.

Fig.5 demonstrates the output weights of α(·) and the cor-
rected labels accuracy on clean and noisy samples. From
Fig.5 (a), we can see that the weights of clean and noisy
samples are evidently different, implying that our proposed
MSLC inclines to preserve the original clean labels and use
other target information when the original labels are noisy.
Fig.5 (b) explains that our method can finely correct the
noise samples while retain the original clean samples. It is
worth noting that U-correction retains more than 99% of
clean samples. However, through experiments, it can be seen
that it inclines to treat many noisy samples as clean ones dur-
ing training, which limits its ability to correct noisy samples.
As for JointOptimization, one can see that its training pro-
cess corrupted the original clean labels, since it used predic-
tion targets to replace all original labels without considering
whether they are clean or not.

For further analysis the effectiveness of the network β(·),
we compared its learned meta-learner parameters (β) with
a set of different manually set values on CIFAR-10 and
CIFAR-100. It can be observed from Table 3 that the per-
formance is worst when the β is set to 0, which means that
directly choosing the predictions of current model could not
accurately correct the original labels. Furthermore, we can
find that the best manually set β changes when the dataset
is different. Specifically, for CIFAR-10, the best test accu-
racy is 91.04% corresponding to β = 0.4 case, while for
CIFAR-100, the best is 68.52% corresponding to β = 0.2.
Compared with setting the β value manually, our algorithm
can learn it more flexibly and achieving good performance
in both test accuracy and the corrected label accuracy.

Conclusion
In this paper, we provide a solution to an important problem
in weakly supervised learning. Combining with the meta-
learning method, we proposed a label correction method that
can adaptively ameliorate corrupted labels for robust deep
learning with noisy labels. Compared with current method-
s that use a pre-fixed generation mechanism, our method
is able to do this task in a flexible automatic data-driven
manner. Moreover, our methods can generate more accu-
rate pseudo-labels to compensate the misguiding of the erro-
neous samples. The proposal is flexible to be used in various
deep classification algorithms and different noisy dataset-
s. Experimental results show consistent superiority of our
method in datasets with different types and levels of noise.
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