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Abstract

This paper aims at enlarging the problem of Neural Architec-
ture Search (NAS) from Single-Path and Multi-Path Search
to automated Mixed-Path Search. In particular, we model
the NAS problem as a sparse supernet using a new contin-
uous architecture representation with a mixture of sparsity
constraints. The sparse supernet enables us to automatically
achieve sparsely-mixed paths upon a compact set of nodes. To
optimize the proposed sparse supernet, we exploit a hierarchi-
cal accelerated proximal gradient algorithm within a bi-level
optimization framework. Extensive experiments on Convolu-
tional Neural Network and Recurrent Neural Network search
demonstrate that the proposed method is capable of searching
for compact, general and powerful neural architectures.

Introduction
While deep learning has proven its superiority over man-
ual feature engineering, most of the conventional neural net-
work architectures are still handcrafted by experts in a te-
dious and ad hoc fashion. Neural Architecture Search (NAS)
has been suggested as the path forward for alleviating the
network engineering pain by automatically optimizing ar-
chitectures. The automatically searched architectures per-
form competitively in computer vision tasks such as image
classification (Zoph and Le 2018; Liu et al. 2018b; Zoph
et al. 2018; Liu, Simonyan, and Yang 2018; Real et al. 2019;
Chen et al. 2019c; Luo et al. 2018; Cai, Zhu, and Han 2019;
Wu et al. 2019; Zheng et al. 2019; You et al. 2020), object
detection (Zoph et al. 2018), semantic segmentation (Liu
et al. 2019; Chen et al. 2019a) and image generation (Gong
et al. 2019; Tian et al. 2020).

As one of the most popular NAS families, one-shot NAS
generally models the architecture search problem as a one-
shot training process of an over-parameterized supernet that
comprises candidate architectures (paths). From the super-
net, either Single-Path or Multi-Path architecture can be de-
rived. However, both the existing Single-Path and Multi-
Path Search works typically require a predefined structure
on the searched architectures. For the Single-Path Search,
some works like (Liu, Simonyan, and Yang 2018; Liu et al.
2018a) search for a computation cell as the backbone block
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of the final architecture. Based on the modeling of directed
acyclic graph, the cell comprises a set of nodes, each of
which corresponds to a feature map, as well as their asso-
ciated edges that represent single operations such as convo-
lution and max-pooling. The resulting neural networks are
limited to Single-Path architectures where each intermedi-
ate feature map is processed by a single operation. On the
other hand, while Multi-Path architecture search methods
like (Chu et al. 2020a) search for a more flexible architecture
with multiple paths between nodes, they generally require to
fix the number of paths in advance. Moreover, both the ex-
isting Single-Path and Multi-Path Search methods have to
manually fix the node number, which is another strong con-
straint for architecture search.

In this paper, we target for a more automated NAS which
can automatically optimize the mixture of paths as well as a
changeable set of nodes. In other words, the target of auto-
mated Mixed-Path Architecture Search is to reduce unneces-
sary constraints on the structure of the searched architecture
so as to explore in a more broad and general search space.
For this purpose, we model the automated NAS problem as
a one-shot searching process of a sparse supernet, which
consists of sparsely-mixed paths and nodes without loss
of network power. In particular, we exploit a new continu-
ous architecture representation using Sparse Group Lasso to
achieve the sparse supernet. As a result, the supernet is not
only able to produce diverse mixed-paths between different
pairs of nodes, but also automatically removes some useless
nodes. The more general modeling however makes the opti-
mization much more challenging due to the complex bi-level
optimization with the non-differentiable sparsity constraint,
which cannot be optimized by traditional network optimiza-
tion algorithms well. To address this challenging issue, we
propose a hierarchical accelerated proximal gradient algo-
rithm that is capable of addressing the mixed sparsity under
the bi-level optimization framework. In summary, this paper
brings several innovations to the domain of NAS as follows:

• We suggest the new problem of Mixed-Path Neural Ar-
chitecture Search where the node and path structure of
the cell are automatically derived.

• We model the problem as a sparse supernet using a new
continuous architecture representation with a mixture of
sparsity constraints.
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Figure 1: Overview of various architecture search tasks over (a) Supernet that represents the continuous relaxation of the search
space: (b) Single-Path Architecture Search that optimizes architectures with one single operation between each node pair, (c)
Multi-Path Architecture Search that searches for multiple paths with a fixed amount between two nodes, and (d) the proposed
Mixed-Path Architecture Search that has no rigid constraint on the path and node structure.

• We propose a hierarchical accelerated proximal gradient
algorithm to optimize the supernet search with the mixed
sparsity constraints.

• We study that the searched Mixed-Path architectures are
compact, general and powerful for some standard NAS
benchmarks.

Problem Statement
Neural Architecture Search aims at searching for compu-
tation cells as the building block of the final architecture.
In general, each achitecture cell can be formulated as a
directed acyclic graph (DAG) as shown in Fig.1 (a), where
each node represents a feature map in neural networks,
and each directed edge is a mixture of operations that
transform the tail node to the head node. As a consequence,
the output of each intermediate node is a sum of incoming
feature maps from predecessors. The DAG modeling
enables the training of an over-parameterized supernet that
stacks multiple basic cells. The optimal architecture is then
derived from the supernet with the following three strategies.

Single-Path Architecture Search methods generally
search for one single operation between each node pair with
fixed edge amounts in each cell as shown in Fig.1 (b). To se-
lect a single path from a given supernet, they commonly first
optimize the mixture of all associated operations, and finally
choose those with the highest contribution to the supernet.
As one of the most representative Single-Path Search
methods, Differentiable Architecture Search (DARTS)
(Liu, Simonyan, and Yang 2018) optimizes the mixture
of operations within supernet using softmax combination.
For each edge, the operation with largest softmax weight
was selected. For each node, two input edges was selected
by comparing each edge’s largest operation weight. The
rigid requirement on final architecture highly reduces the
search space, such that the optimization process has a high
potential to be stuck at a local minimum.

Multi-Path Architecture Search searches for multi-
ple paths between any pair of nodes (Fig.1 (c)), which

is inspired by Multi-Path feature aggregations such as
Inception networks (Szegedy et al. 2015) and ResNeXt (Xie
et al. 2017). Nevertheless, the Multi-Path Search approach,
such as (Chu et al. 2020b,a) typically still requires a strong
prior knowledge about the aggregation intensity (i.e., path
number) in advance of search. Furthermore, enforcing the
same number of operations for each pair of nodes is very
likely to reach a locally optimal architecture.

Mixed-Path Architecture Search is hence proposed
for the exploration of a more general search space to avoid
the human intervene as much as possible. For this purpose,
we suggest to enlarge the search space of NAS by relaxing
the constraints on the network structure. In particular, the
supernet is merely required to learn a complete and compact
neural architecture, without any more rigid constraints on
the node and path structure. In other words, it should be
trained to automatically derive an optimal node and path
structure as compact as possible without loss of classifi-
cation or regression ability. The suggested new problem
is conceptually illustrated in Fig.1 (d). In comparison to
Single-Path Search and Multi-Path Search, Mixed-Path
Search dramatically increases the architecture search space,
leading to a much more challenging NAS problem.

Related Work
For Neural Architecture Search, early one-shot models
generally aim for Single-Path architecture search (Liu, Si-
monyan, and Yang 2018; Cai, Zhu, and Han 2019; Wu et al.
2019; Liang et al. 2019; Xie et al. 2019; Chen et al. 2019b;
Li et al. 2020a). For instance, DARTS (Liu, Simonyan, and
Yang 2018) introduces a continuous relaxation of the dis-
crete search space by aggregating candidate paths with soft-
max weights, so that a differentiable Single-Path Architec-
ture Search can be performed. Based on DARTS, improve-
ments including progressive search (Chen et al. 2019b) and
early stopping (Liang et al. 2019) are proposed. In addition,
ProxylessNAS (Cai, Zhu, and Han 2019) and FBNet (Wu
et al. 2019) perform Single-Path Architecture Search with
single-path sampling.
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Multi-Path Architecture Search problem is proposed
and addressed by some recent works. For example, Mix-
Path (Chu et al. 2020a) activates m paths each time and
a Shadow Batch Normalization is proposed to stabilize
the training. GreedyNAS (You et al. 2020) is also Multi-
Path architecture search with activating multiple paths.
CoNAS (Cho, Soltani, and Hegde 2019) achieves Multi-
Path Architecture Search by sampling sub-graph from a pre-
trained one-shot model and doing Fourier analysis based
on sub-graphs’ performances. Multiple paths are selected
based on the coefficients. Path amount of Fourier basis is
controlled by its degree d. FairDARTS (Chu et al. 2020b)
uses sigmoid instead of softmax to eliminate the unfair opti-
mization and allows multi paths, but it limits the maximum
2 paths between nodes. Generally, Multi-Path architecture
search is still limited to search for a fixed number of paths.

Few works approach the variants of our defined Mixed-
Path Architecture Search. For instance, DSO-NAS (Zhang
et al. 2020) enforces the `1-norm sparsity constraint (i.e.,
Lasso) to individual architecture parameters, which can
achieve sparsely-mixed paths but overlooks the quest for
sparse node structures especially when nodes are redundant
initially (e.g., DARTS’ cell structure). BayseNAS (Zhou
et al. 2019) exploits either `1-norm sparsity (with the same
drawback with (Zhang et al. 2020)) or group-level sparsity
with a weighted Group Lasso constraint in the classic
Bayesian leaning manner, leading to sparse node structures.
However, their Group Lasso constraint focuses on the
sparsity on groups (i.e., nodes), and theoretically it may
reach unsatisfactory sparsity on elements (i.e., paths). As
a concurrent work, Gold-NAS (Bi et al. 2020) suggests to
gradually prune individual paths using one-level optimiza-
tion to approach a mixed-path structure. By comparison, our
Mixed-Path Architecture Search problem aims at both node
and path structures. To this end, we model the Mixed-Path
Architecture Search as a supernet with the Sparse Group
Lasso constraint, which enables us to go for a more compact
structure of nodes and paths. This enables our work to
serve as a valuable pioneer study for such a more general
Mixed-Path Architecture Search problem.

Sparsity Constraints, including Lasso (Tibshirani 1996),
Group Lasso (Yuan and Lin 2006), Sparse Group Lasso
(Simon et al. 2013), etc. have been widely applied to areas
such as statistics, machine learning and deep learning.
A close application of sparsity constraints to NAS is
the network pruning task which targets for reducing the
model complexity by removing redundant network weights,
neurons, layers, etc.. Some network pruning works (Huang
and Wang 2017; Scardapane et al. 2017; Li et al. 2020b; Ye
et al. 2018; Liu et al. 2017; Wen et al. 2016; Alvarez and
Salzmann 2016) proposed to impose sparsity constraints on
network weights or auxiliary scale factors so as to sparsify
the networks. In particular, (Scardapane et al. 2017) applies
the same Sparse Group Lasso constraint to remove network
neurons and weights. There are two major differences
from our work: 1) The search space of (Scardapane et al.
2017) is fundamentally different from NAS. (Scardapane
et al. 2017) imposes SGL constraint on the filter weights

and focuses on pruning the neurons and weights, while
ours focuses on pruning the connections between different
layers, namely structural connections, and the sparsity
constraint is imposed on architecture weights which yields
a more challenging sparsity constrained problem under
the bi-level optimization framework. 2) (Scardapane et al.
2017) merely adopts the traditional Adam to optimize the
one-level Sparse Group Lasso constrained optimization
problem. It is known that stochastic gradient descent algo-
rithms, such as SGD and Adam are not proper to address
non-differentiable optimization problem. Some works like
(Simon et al. 2013; Ida, Fujiwara, and Kashima 2019)
have learned blockwise descent algorithms to optimize
Sparse Group Lasso, but they cannot be trivially applied
to the stochastic optimization framework. To address this,
we propose a hierarchical proximal bi-level optimization
algorithm.

Sparse Supernet
Our Mixed-Path Architecture Search starts from an over-
parameterized supernet, and aims at deriving an compact
and optimal neural architecture. With the target of automati-
cally selecting useful operations and nodes within the super-
net, we are inspired by the prevailing sparsity regularization
which can act as an automated feature selection mechanism.
We thereby consider to introduce a sparse constraint to our
supernet to select meaningful intermediate feature maps au-
tomatically. With the imposed sparsity constraint, we enable
an automated sparse Mixed-Path Architecture Search.

The supernet is designed as a stack of repetitive cells, and
each cell is formulated as a DAG cell as shown in Fig.1 (a).
In particular, the mixture of operations on each edge is for-
mulated in a “regression-like” way. Instead of employing the
widely-used softmax combination and its variants, such as
Gumbel softmax (Chang et al. 2019), we formulate the edge
eij between node xi and xj as a linear combination of op-
erations, and the feature map derived from each operation
o ∈ O is scaled by a weight factor Aoij . The output fea-
ture map of intermediate node is now a scaled linear combi-
nation of various feature maps from different predecessors
with their associated operations, i.e.,

xj =
∑
i<j

∑
o∈O

Aoijo(xi), A
o
ij ∈ R1 (1)

To relax the structure constraints on both the number of
nodes and paths per edge, we aim at achieving the operation
sparsity as well as the node sparsity. Sparse Group Lasso
(SGL) regularization (Simon et al. 2013) meets our expecta-
tion exactly, which allows for both element (operation) spar-
sity and group (node) sparsity. In a DAG with N interme-
diate nodes, for each node xj , we group weight factors for
all incoming feature maps Aoij , where i < j, o ∈ O as A(j).
Mathematically, the full objective function is derived as:
L(w,A) = l(w,A) + ΩSGL(A) (2)

= l(w,A) + λα||A||1 + λ(1− α)
N∑
n=1

√
|A(n)| · ||A(n)||2

(3)
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Algorithm 1: Bi-level Optimization with the Proposed Hierarchical Accelerated Proximal Gradient (HAPG) Algorithm
Require: Supernet parameterized by w and A with Aoi,j being applied for each operation o between nodes i, j;
while not converged do

Step1: Update architecture weights A with HAPG given in Eq.6-10. Note that the gradient are computed with the
second order approximation given in Eq.13.

Step2: Update w by descending∇wltrain(w,A);
end
Ensure: Sparse supernet based on sparse architecture weights A.

where ΩSGL corresponds to the mixed sparsity regulariza-
tion, λ is the sparsity strength factor, and α controls the
balance between operation sparsity and node sparsity. By
optimizing the network parameters w and the architecture
weights A with the target function in Eq.3, we can achieve a
sparse supernet structure. Ideally, the final architecture will
be derived by removing the operations with zero weights and
the nodes with all zero incoming weights.

To jointly optimize the supernet and learn a sparse net-
work structure, we target for solving the following bi-level
optimization problem:

min
A

lval(w
∗(A), A) + ΩSGL(A)

s.t. w∗(A) = argminw ltrain(w,A) (4)

where the network weights w and the architecture weights
A are optimized on two separate training and validation sets
to avoid architecture from overfitting to data.

Optimization
As `1-norm term is convex but non-differentiable, the SGL
regularization term yields a challenging optimization prob-
lem. Conventional stochastic gradient descent algorithms,
such as SGD and Adam generally cannot work well. While
some exiting works like (Simon et al. 2013; Ida, Fujiwara,
and Kashima 2019) have exploited blockwise descent algo-
rithms to fit SGL, it is non-trivial to apply their algorithms
to the stochastic optimization setting. We thereby turn to the
proximal methods (Bach et al. 2012) which is capable of
solving the optimization problem with the non-differentiable
term and enables us to learn some exact zero weights via
soft-threshold. We propose a Hierarchical Accelerated Prox-
imal Gradient algorithm (HAPG) and its improved version
(AdamHAPG), both of which are suitable for stochastic
optimization. Finally, we further appropriately incorporate
these two methods into the bi-level optimization framework.

Hierarchical Proximal Optimization
Computing the proximal operator ProxΩ(·) of the regular-
ization term Ω is a key part of proximal optimization al-
gorithms. The joint combination of `1 and `1/`2 norm in
SGL brings much higher complexity to the direct proximal
operator computing. Inspired by (Bach et al. 2012) that the
SGL norm is a special case of hierarchical norm (Zhao et al.
2009), with `1-norm of each individual weight factor being
a child group of the `1/`2-norm, we derive the hierarchical

proximal operator as a composition of `1-norm and `1/`2-
norm proximal operators:

ProxΩ(·) = Proxλ(1−α)||·||2 ◦ Proxλα||·||1(·) (5)

As for proximal algorithms, widely-used methods include
ISTA and FISTA (Beck and Teboulle 2009), and here we
employ an efficiently reformulated Accelerated Proximal
Gradient (APG) optimization scheme (Huang and Wang
2017) which allows for the stochastic optimization setting.
Accordingly, we propose a Hierarchical Accelerated Prox-
imal Gradient (HAPG) algorithm tailored for the Sparse
Group Lasso regularization:

zt = At−1 − ηtgt−1 (6)
vt = Proxηtλ(1−α)||·||2 ◦ Proxηtλα||·||1(zt)

−At−1 + ut−1vt−1 (7)
At = Proxηtλ(1−α)||·||2 ◦ Proxηtλα||·||1(zt) + utvt (8)

where gt−1 represents the gradient, ηt is the gradient step
size and ut = t−2

t+1 . And the proximal operators can be de-
rived as:

[Proxηtλα||·||1(z)]i = sgn(zi)(|zi| − ηtλα)+ (9)

[Proxηtλ(1−α)||·||2(z)]n =

(
1−

√
|z(n)|ηtλ(1− α)
||z(n)||2

)
+

z(n)

(10)

To further facilitate the optimization, we introduce the
powerful Adam into the proposed HAPG (AdamHAPG)
and replace the gradient descent in Eq.6 with an Adam gra-
dient update (Kingma and Ba 2015). We should note that
each weight factor gets an individual gradient step size in
AdamHAPG, and we thereby make small adaptations when
computing proximal operators. As for the `1-norm proximal
operator, we implement the proximal update using the corre-
sponding step size for each weight, while for the `1/`2-norm
proximal operator, we heuristically take the median value of
step sizes for each group as an approximation and we exper-
imentally show that it works properly for our problem.

Bi-level Optimization with Hierarchical Proximal
Optimization
We incorporate our proposed hierarchical proximal algo-
rithms into the bi-level optimization framework (Liu, Si-
monyan, and Yang 2018) to alternatively optimize the net-
work parameter ω and the architecture weight A. In particu-
lar, we follow (Liu, Simonyan, and Yang 2018) to compute
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Architecture Test Error (%) Params Search Cost Architecture
C10 C100 (M) (GPU days) Type

DenseNet-BC (Huang, Liu, and Weinberger 2016) 3.46 17.18 25.6 – manual

DARTS (first order) (Liu, Simonyan, and Yang 2018) 3.00 ± 0.14 17.76 3.3 1.5 Single-Path
DARTS (second order) (Liu, Simonyan, and Yang 2018) 2.76 ± 0.09 17.54 3.3 4 Single-Path
P-DARTS (Chen et al. 2019b) 2.50 16.55 3.4 0.3 Single-Path
PC-DARTS (Xu et al. 2020) 2.57 ± 0.07 – 3.6 0.1 Single-Path
FairDARTS (Chu et al. 2020b) 2.54 ± 0.05 – 3.32 ± 0.46 0.5 Multi-Path
CoNAS (Cho, Soltani, and Hegde 2019) 2.62 ± 0.06 – 4.8 0.7 Multi-Path
DSO-NAS (Zhang et al. 2020) 2.84 ± 0.07 – 3.0 1 Mixed-Path
BayesNAS (Zhou et al. 2019) 2.81 ± 0.04 – 3.4 0.2 Mixed-Path

SparseNAS + HAPG 2.73 ± 0.05 16.83 3.8 1 Mixed-Path
SparseNAS + AdamHAPG 2.69 ± 0.03 17.04 4.2 1 Mixed-Path
SparseNAS + AdamHAPG* 2.50 16.79 3.5 0.27 Mixed-Path

* Obtained by searching in a cherry-picked search space.

Table 1: Performance Comparison on CIFAR-10 and the Transferability to CIFAR-100 (lower error rate is better).

Architecture Test Error (%) Params Architecture
top-1 top-5 (M) Type

MobileNet (Howard et al. 2017) 29.40 10.5 4.2 manual

DARTS (second order) (Liu, Simonyan, and Yang 2018) 26.70 8.7 4.7 Single-Path
FairDARTS-B (Chu et al. 2020b) 24.90 7.5 4.8 Multi-Path
DSO-NAS (Zhang et al. 2020) 26.20 8.6 4.7 Mixed-Path
BayesNAS (Zhou et al. 2019) 26.50 8.9 3.9 Mixed-Path

SparseNAS + HAPG 25.48 8.1 5.3 Mixed-Path
SparseNAS + AdamHAPG 24.67 7.6 5.7 Mixed-Path

Table 2: Transferability Comparison on ImageNet in the Mobile Setting (lower error rate is better)

the gradient of the architecture weights (i.e., gt−1 in Eq.6):

gt = ∇Alval(w∗(At), At) (11)

≈ ∇Alval(w′t, At)
− γ∇2

A,wltrain(wt, At)∇w′ lval(w
′
t, At) (12)

≈ ∇Alval(w′t, At)

− ∇Altrain(w
+
t , At)−∇Altrain(w−t , At)

2ε
(13)

where w′t = wt − γ∇wltrain(wt, At), w±t = wt ±
ε∇wltrain(w′t, At) and ε and γ are set to be small scalars as
done in (Liu, Simonyan, and Yang 2018). Eq.12 is derived
by a one-step forward approximation, i.e., w∗(At) ≈ w′t =
wt − γ∇wltrain(wt, At), and Eq.13 follows the second-
order approximation in (Liu, Simonyan, and Yang 2018).
Especially, when introducing the HAPG and AdamHAPG to
the bi-level optimization framework, to stabilize the training,
we follow (Simon et al. 2013) to adopt a similar pathwise
solution for an incremental increase of regularization fac-
tor λ, and we experimentally show the effectiveness of this
progressive sparsifying solution. The complete optimization
algorithm is presented in Alg.1.

Evaluation

We evaluate the proposed SparseNAS for Convolutional
Neural Network (CNN) and Recurrent Neural Network
(RNN) architecture search on CIFAR-10 and Penn Treebank
(PTB) respectively, and further investigate the transferabil-
ity of searched architectures on CIFAR-10 to CIFAR-100
and ImageNet. In both CNN and RNN cell search experi-
ments, we follow the setup of DARTS (Liu, Simonyan, and
Yang 2018) to implement SparseNAS, where we use the
same search space, cell setup and we stack the same number
of cells for fair comparison. While there exist many direct
improvements over DARTS like progressive search (Chen
et al. 2019b) and early stopping (Liang et al. 2019), most
of them make orthogonal contributions to our work and thus
can be used to improve our method as well. However, fur-
ther applying them to our method is beyond the scope of
our paper. Hence, we mainly take the most related Single-
Path (DARTS (Liu, Simonyan, and Yang 2018)), Multi-Path
(FairDARTS (Chu et al. 2020b), CoNAS (Cho, Soltani, and
Hegde 2019)) and Mixed-Path (DSO-NAS (Zhang et al.
2020), BayesNAS (Zhou et al. 2019)) methods as our real
competitors. Note that the reported results of all the com-
petitors are from their original papers. For more detailed ex-
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Architecture Perplexity Params Search Cost Architecture
valid test (M) (GPU days) Type

LSTM (Merity, Keskar, and Socher 2018) 60.70 58.80 24 – manual

DARTS (first order) (Liu, Simonyan, and Yang 2018) 60.20 57.60 23 0.5 Single-Path
DARTS (second order) (Liu, Simonyan, and Yang 2018) 58.10 55.70 23 1 Single-Path
CoNAS (Cho, Soltani, and Hegde 2019) 59.10 56.80 23 0.25 Multi-Path

SparseNAS + AdamHAPG 57.73 55.37 23 0.25 Mixed-Path

Table 3: Performance Comparison on PTB (lower error rate is better)

Figure 2: Architectures searched on CIFAR-10 and PTB

periments setup, please refer to the supplementary material*.

Convolutional Neural Architecture Search
The convolutional cell is directly searched on CIFAR-10 and
transferred to CIFAR-100 and ImageNet.

On CIFAR-10, HAPG method obtains architecture with
error 2.73 ± 0.05. Due to the use of the adaptive learning
rate, AdamHAPG (2.69 ± 0.03) performs better. Both the
HAPG and AdamHAPG based SparseNAS outperform the
second-order DARTS (2.76±0.09) and all Mixed-Path com-
petitors. In particular, a search performed on a cherry-picked
search space achieves the best performance (2.50) among all
competitors. The results are shown in Table 1.

The transferability results from CIFAR-10 to CIFAR-100
and ImageNet are shown in Table 1 and Table 2 respectively.
Note that some competitors like CoNAS did not report their
transferability results from CIFAR-10 to CIFAR-100 and
ImageNet. The reported results show that our AdamHAPG
performs the best (even better than the recent FairDARTS
on ImageNet), and both the HAPG and AdamHAPG based
SparseNAS outperform the other competitors.

Note that we search for a sparse model structure, but not
necessarily a model with small model size, and our method
show a clear advantage in structural sparsity. We present the
normal and reduction cell searched on CIFAR-10 in Fig-
ure 2(a) and (b). Notably, we get compact reduction cells
with only 2 remained nodes, which proves our advantage in
group-level sparsity compared with DOS-NAS (Zhang et al.
2020). Compared with another Mixed-Path work BayesNAS
(Zhou et al. 2019), we have fewer paths in normal cells

*https://arxiv.org/pdf/2101.06658.pdf

and reduction cells and thus we achieve better element-level
sparsity and even higher performance. Compared with the
competitors, our searched architectures show more general
properties with more diverse path and node structures. In
addition, there is no obvious ”collapse” problem (e.g. exces-
sive skip-connection selected) problem observed.

Reccurent Neural Architecture Search
Recurrent cell search is performed on the PTB dataset, and
we follow the experiment setup of (Liu, Simonyan, and Yang
2018). When optimizing with HAPG, we observe that the
search phase does not converge with an exploded gradient of
architecture weights which is a typical RNN training prob-
lem. The AdamHAPG with adaptive learning rate is shown
to be helpful to stabilize the training for RNN model search.
The results are summarized in Table 3. Except for DARTS
and CoNAS, the other competitors did not report their results
on PTB. To our best knowledge, the derived architecture by
our method obtains a new state-of-the-art NAS on PTB with
valid perplexity 57.73 and test perplexity 55.37.

In Figure 2(c), we present the derived recurrent cell on
PTB. Compared to DARTS and CoNAS where each node
only receives a fixed number of incoming edges, the cell de-
rived by SparseNAS is more general that intermediate nodes
can have different numbers of incoming edges. And this gen-
eral architecture has shown its superior performance.

Ablation Study
HAPG/AdamHAPG vs. SGD/Adam We study the advan-
tage of our HAPG and AdamHAPG over conventional SGD
and Adam in the sparsity constrained optimization problem.
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Figure 3: Comparison between Lasso, Group Lasso and Sparse Group Lasso, and comparison between different optimization
methods, including SGD, Adam, HAPG and AdamHAPG. From left to right: the valid accuracy of standalone sparse network,
the number of selected input features, the number of remained inner neurons, the total sparsity percentage of network weights.
With comparable valid accuracy, the HAPG and AdamHAPG with Sparse Group Lasso give better element and group sparsity.

Following (Scardapane et al. 2017) that applies SGL con-
straint to network weights to select features and remove re-
dundant weights and neurons, we conduct various experi-
ments in this easier network pruning task, which is essen-
tially a one-level sparsity constrained optimization problem,
to purely evaluate the effectiveness and advantage of our
proposed optimization algorithms. Starting with a fully con-
nected network with two hidden layers (40 and 20 hidden
neurons respectively), we implement classification task on
DIGITS (Alimoglu and Alpaydin 1996). The 8×8 images
are flatten into 64-dim vectors as the input features.

The performances of these four methods are presented
in Fig.3. From left to right, Fig.3 shows the valid accuracy
of stand-alone sparse network, number of selected features,
number of remained inner neurons and the element spar-
sity percentage of network weights. The horizontal axis indi-
cates the different sparsity constraint factor λ. As λ increas-
ing, stronger sparsity regularization derives sparser network.
With λ ranging from 10−5 to 10−3.7, stand-alone architec-
tures are all well-performed with comparable performances.
Whereas, in terms of sparsity, our proposed HAPG and
AdamHAPG clearly outperform their counterparts Adam
and SGD. In particular, AdamHAPG shows a clear supe-
riority to have a more compact structure and more powerful
feature selection without loss in the classification accuracy.

SGL vs. Lasso and Group Lasso (GL) With the same
optimization method HAPG, 3 experiments with Lasso, GL,
SGL constraints are conducted respectively. Fig.3 shows that
enforcing SGL is clearly better than using Lasso and GL
both in group (features and neurons) and element (network
weights) sparsity, while having comparable valid accuracies.

Effect of α In Table 4, we study the effect of different α
on CNN task. Theoretically, α controls the balance between
path sparsity and node sparsity. With α decreasing, the algo-
rithm tend to obtain a more node-sparse architecture. Empir-
ically, in CNN task, with AdamHAPG, the α = 0.5 obtains
the optimal architecture with highest accuracy.

Effect of λ λ is another hyperparameter to control the
sparsity strength. Since we progressively increase the spar-
sity strength during search via a linearly increased λ, we
study the effect of λ increasing step to the training stability
of search process. We plot the evolution of valid accuracy
during CNN cell search phase with increasing λ step 0.01,
0.02 and 0.03 respectively in Fig. 4. With larger λ, we ex-

Test Error (%)
AdamHAPG(α=0.3) 3.30
AdamHAPG(α=0.5) 2.69
AdamHAPG(α=0.7) 2.79

Table 4: Study on the effect of α on CIFAR-10
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Figure 4: Valid accuracy during search with different λ steps

pect a better sparsity, but it is likely that architecture weights
fluctuate heavily at each updating step, and this can explain
that with step size 0.03, we see a large fluctuation in valid ac-
curacy after 15 epochs. And small step sizes 0.01, 0.02 lead
to a more stable training. As a trade-off between architecture
sparsity level and stability of searching process, we typically
choose a value like 0.01 as the step size in our experiments.

Conclusion
In this work, we launch Neural Architecture Search to ex-
plore in a more general and flexible Mixed-Path Search
space using a sparse supernet. Starting from a supernet pa-
rameterized by architecture weight factors, we exploit the
Sparse Group Lasso regularization on weight factors to au-
tomatically search for optimal structures of nodes and paths.
To address the challenging optimization problem with non-
differentiable sparsity constraint, we propose novel hierar-
chical proximal algorithms and incorporate them into a bi-
level optimization framework. We experimentally show very
competitive results and potentials of our derived Mixed-Path
architectures on various datasets. We believe that our gen-
eral Mixed-Path Search modeling will lead the future NAS
research to a much broader search space and bring the pos-
sibility to derive more flexible and powerful architectures.
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