
Federated Block Coordinate Descent Scheme for Learning Global and
Personalized Models

Ruiyuan Wu1, Anna Scaglione2, Hoi-To Wai3, Nurullah Karakoc2,
Kari Hreinsson2, Wing-Kin Ma1

1Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong SAR, China
2School of Electrical Computer and Energy Engineering, Arizona State University, USA

3Dept. Systems Engineering and Engineering Management, The Chinese University of Hong Kong, Hong Kong SAR, China
1{rywu, wkma}@ee.cuhk.edu.hk, 2{Anna.Scaglione, nkarakoc, khreinss}@asu.edu, 3htwai@se.cuhk.edu.hk

Abstract

In federated learning, models are learned from users’ data that
are held private in their edge devices, by aggregating them in
the service provider’s “cloud” to obtain a global model. Such
global model is of great commercial value in, e.g., improving
the customers’ experience. In this paper we focus on two
possible areas of improvement of the state of the art. First,
we take the difference between user habits into account and
propose a quadratic penalty-based formulation, for efficient
learning of the global model that allows to personalize local
models. Second, we address the latency issue associated with
the heterogeneous training time on edge devices, by exploiting
a hierarchical structure modeling communication not only
between the cloud and edge devices, but also within the cloud.
Specifically, we devise a tailored block coordinate descent-
based computation scheme, accompanied with communication
protocols for both the synchronous and asynchronous cloud
settings. We characterize the theoretical convergence rate of
the algorithm, and provide a variant that performs empirically
better. We also prove that the asynchronous protocol, inspired
by multi-agent consensus technique, has the potential for large
gains in latency compared to a synchronous setting when the
edge-device updates are intermittent. Finally, experimental
results are provided that corroborate not only the theory, but
also show that the system leads to faster convergence for
personalized models on the edge devices, compared to the
state of the art.

Introduction
Over the past few years, federated learning, an emerging
branch of distributed learning, has attracted increasing atten-
tion (McMahan et al. 2016; Li et al. 2018; Bonawitz et al.
2019; Yang et al. 2019). It focuses on scenarios where users’
data are processed for training machine learning models lo-
cally, i.e. on users’ edge devices such as cell phones and
wearable devices, so that the data remain private. Data pri-
vacy is, in fact, a top priority; users are willing to share trained
models with reliable service providers, but not necessarily the
raw data. In this context, the service provider seeks a global
model—which can, in turn, enhance the performance for the
users—by aggregating these local models. Such global model
reflects the “wisdom of the crowd” and helps the service

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

provider to better understand customer preferences. What dis-
tinguishes federated learning from conventional distributed
learning (where the optimization often happens in stable data
centers) are the following aspects (Li et al. 2020):

• the heterogeneity of the data and of the computational
power available in the users’ different edge devices;

• the intermittent (and costly) nature of the communication
between edge devices and the cloud.

To explain it in mathematical terms, the following problem
is prototypical in federated learning:

min
xi,z∈X

∑
i∈Q

gi(xi), s.t. xi = z, ∀i ∈ Q, (1)

whereQ is the set of edge devices, xi and gi are the model pa-
rameter and cost function on the ith edge device that depend
on the local data, and X is the feasible region. Specifically,
we can write gi(xi) := 1

|Si|
∑
r∈Si h(xi; sr), where h is the

training loss function, Si the index set of training data on
the ith edge device, |Si| the number of elements in the set
Si, and sr one of such samples. To solve problem (1), feder-
ated learning methods typically adopt a recursive mechanism:
edge devices process their own training data to update local
models xi’s, and a cloud is introduced to aggregate xi’s for a
global model z and synchronize all the local models with the
updated z. This process is considered standard in the current
development (McMahan et al. 2016; Li et al. 2018). However,
we notice that two facts leave some space for improvement:

(i) Is it efficient to maintain the same model everywhere?
Data are generally non-independent and identically dis-
tributed (i.i.d.) on edge devices, since they reflect the usage
habits of different users. In light of this, edge-device models
that work well on data of their users’ interest (which are also
non-i.i.d.) may suffice—in other words, personalized models
may be better at the tasks they are primarily used for. When a
sole model is maintained, users may sacrifice their customer
experience in order to improve the global model that is more
beneficial to the service provider to boost new users’ models.

(ii) Is the synchronous cloud model effective? The cloud con-
sists of a cluster of servers that work in parallel, and an
edge device only needs to talk with one such cloud server.
When regarding the cloud as a sole computation resource,

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

10355

one implicitly enforces some form of cloud synchroniza-
tion, or Sync-cloud (achievable by techniques such as AllRe-
duce (Patarasuk and Yuan 2009)); see Fig. 1(a) for an illustra-
tion. In federated learning, this synchronization may lead to
significant update latency. To see this, recall that due to the
capacity heterogeneity of communication and computation,
the times of availability and local training time from edge
devices can vary significantly. Consequently, a possible sce-
nario is that most cloud servers are stranded by a few “slow”
activated edge devices that even never talk with them.

Contributions
The focus of this paper is on addressing the above two issues.
Our contributions and novelty can be summarized as follows:
• Our work proposes a tailored hierarchical communication
architecture for federated learning. This structure, composed
of master-slave and multi-agent networks, albeit admitting a
“surprisingly” familiar look, has not been studied before.
• We propose a lightweight block coordinate descent com-
putation scheme, equipped with judiciously designed com-
munication protocols, which is the first work that can simul-
taneously achieve the model personalization and cloud server
asynchronous updates—two seemly irrelevant issues that are
actually closely related to federated learning (c.f. Remark 4).
• The sublinear convergence rate of the proposed algorithm
is shown. Since our communication architecture contains
two layers of information exchange, the analysis requires
different analytical tools from the existing work.
• We provide latency analysis to demonstrate the efficacy of
the asynchronous update for federated learning. Our latency
analytical framework practically allows to estimate runtime
from the distribution of the edge-device message arrival time,
and to connect the number of cloud servers involved in each
update with the runtime, which is new.
• Finally, numerical experiments on standard machine
learning applications are carried out to support our claims.

Related Work
FedAvg (McMahan et al. 2016), a simple iterative algorithm,
is considered the first work in federated learning. At each
round of FedAvg, the cloud sends the global model to part of
the edge devices that are activated; then, the activated edge
devices update its local model by a fixed epochs of stochastic
gradient descent (SGD) on local cost functions; finally, the
cloud aggregates the uploaded local models (via a weighted
summation) as the new global model. The majority of follow-
up work adopts a similar mechanism as that introduced by
FedAvg (Li et al. 2020). For example, a more recent vari-
ant called FedProx (Li et al. 2018) differs from FedAvg on
the edge-device update step, where it imposes an additional
proximal term to the cost function, and allows the use of
time-varying epochs of faster algorithms, such as accelerated
SGD.

Model personalization is a natural, but sometimes ignored,
issue under the federated learning scenarios. In the work
of (Mohri, Sivek, and Suresh 2019), the authors argue that,
due to personal preferences, models trained via FedAvg may

be biased towards the interest of the majority. They propose
AFL that has a sophisticated mechanism to determine the
weights of edge-device models involved in the cloud aggre-
gation, instead of the simple data size ratio used in FedAvg.
Per-FedAvg (Fallah, Mokhtari, and Ozdaglar 2020) distin-
guishes the global model from the ones on edge devices.
Their goal is to seek a good “initialization”, as the global
model, that can be easily upgraded locally to be optimal for
each edge device with a few steps of simple updates. (Smith
et al. 2017) regards model personalization as a multi-task
learning problem. Their proposed MOCHA can learn sepa-
rate but related models for each device, while leveraging a
shared representation via multi-task learning. Attesting the
importance of model personalization is the work published
during the preparation and submission of this paper (Jiang
et al. 2019; Arivazhagan et al. 2019; Wu, He, and Chen 2020;
Hu et al. 2020) that focus exclusively on this issue. On the
other hand, none of the work considers the penalty-based
approach as we do.

In contrast, there is a vast amount of literature on dis-
tributed learning in asynchronous multi-agents’ networks;
see (Nedić, Olshevsky, and Rabbat 2018) for a recent survey.
While such implementations require typically more iterations
than the master-slave ones, they have no coordination over-
head. Recently (Assran et al. 2019) demonstrates experimen-
tally that the reduction on overhead yields significant bene-
fits in terms of runtime. When tasked with a deep-learning
problem on a large distributed database the asynchronous
multi-agent algorithm runs faster than its master-slave coun-
terpart, because relaxed coordination requirements in turn
help complete each update without lags, compared to the
traditional master-slave or incremental architectures. As of
the submission of this paper, we have not seen the study of
this topic in the context of federated learning, as well as no
prior theory on how to characterize the performance trends
versus the runtime of the algorithm, as opposed to simply
focusing on number of iterations required. Though there is
work mentioning asynchronous federated learning (Chen et al.
2019; Lu et al. 2019), they concentrate on the asynchronous
update caused by the communication between edge devices
and cloud—the cloud is still regarded as a sole point.

Problem Statement

edge device

edge-device/cloud
communication

cloud server

cloud-server/cloud-server
communication

edge-device/cloud-server
communication

cloud

(a) Sync-cloud architecture (b) Async-cloud architecture

Figure 1: Two communication architectures.

10356

We detach the cloud servers from each other and con-
sider both server/server and device/server communication.
To explain, the cloud servers are connected by a (possibly)
dynamic multi-agent graph and they need to talk with each
other to achieve consensus, be it exact or asymptotic; the de-
vice/server communication is in a master-slave fashion and,
as in general federated learning, intermittent and random. We
call it the Async-cloud architecture, to distinguish it from
the Sync-cloud architecture adopted by FedAvg; see Fig. 1
for their difference. The Async-cloud architecture allows
model difference on cloud servers. As we will show later,
such flexibility can be exploited to promote more efficient
model updates.

Based on above architectures, our proposed formulation is

min
{xi}i∈Qn,n∈V
{zn}n∈V

∑
n∈V

∑
i∈Qn

(
gi(xi) +

γi
2
‖xi − zn‖2

)
s.t. xi ∈ X , ∀i ∈ Qn, n ∈ V ,

zn = zm, ∀(n,m) ∈ E ,

(2)

where V is the set of cloud servers, Qn is the set of edge de-
vices connected to the nth cloud server, xi’s are edge-device
models, zn’s are cloud-server models, E ⊆ (V×V) indicates
communication between cloud servers, and γi > 0 is the
penalty parameter. In the sequel, zn’s will be referred to as
the global model and xi’s the personalized models. Our for-
mulation distinguishes the global models on different cloud
servers, and allows (but penalizes by the quadratic penalty
regularizer) the deviations among personalized models.
Remark 1 The seemingly naı̈ve quadratic penalty has re-
cently been revisited in different distributed learning litera-
ture. In (Zhang, Choromanska, and LeCun 2015), this penalty
is used to seek better solution in deep learning tasks where
the underlying optimization has many local optima. This
quadratic penalty has also been investigated in adversarial
scenarios, where the global model is expected to resist the
attack of malicious devices (Yang, Gang, and Bajwa 2020).
Remark 2 (Motivation of Global and Personalized Mod-
els) Consider smartphone keyboard application. Users want
accurate next-word prediction, which tailored personalized
models can better deliver. However, each user produces very
limited data for training and, thus, its local personalized
model may fail to work for new scenarios, which is where the
comprehensive knowledge from the global model helps (in
our formation, this works by encouraging the personalized
model to be close to its global counterpart). Also, the global
model can serve as an unbiased initialization for new users.

Federated Block Coordinate Descent
In this section, we tackle the problem defined in (2). Our
development is based on the classic block coordinate descent
(BCD) scheme (Bertsekas 1997):

{x(t+1)
i }i∈Qn

n∈V
= argmin

xi∈X
gi(xi) +

γi
2
‖xi − z(t)n ‖2, (3a)

{z(t+1)
n }n∈V=argmin

{zn}n∈V

∑
n∈V

∑
i∈Qn

γi
2
‖zn − x(t+1)

i ‖2 (3b)

s.t. zn = zm, ∀(n,m) ∈ E .

Our subsequent effort can be interpreted as adapting the BCD
update (3) to the Sync-cloud and Async-cloud architectures.
Same as FedAvg, we assume that at each round only part of
edge devices are available, and use Q(t)

n ⊆ Qn to denote the
set of activated edge devices at round t (i.e., edge devices
that are available to do local training and are in stable com-
munication condition). In the sequel, we will elaborate on
the cloud-server and edge-device update separately.

Update on the edge device. If edge device i is not acti-
vated, i.e., i /∈ Q(t)

n , we have x(t+1)
i = x

(t)
i . Otherwise, time-

varying epochs of accelerated stochastic projected gradient
(ASPG) is applied. Specifically, letting t− be the last round
when the ith edge device was activated and given the initial-

ization x(t,0)
i = x

(t−,K
(t−)
i)

i and x(t,−1)
i = x

(t−,K
(t−)
i −1)

i ,
the edge device recursively performs:

x
(t,k)
i,ex = x

(t,k)
i + ζ(x

(t,k)
i − x(t,k−1)

i), (4a)

x
(t,k+1)
i = (4b)

ΠX

(
x
(t,k)
i,ex − ηx

(
∇g̃i(x(t,k)

i,ex) + γi(x
(t,k)
i,ex − z

(t)
n)
))

,

for k = 0, . . . ,K
(t)
i − 1, where ηx is the stepsize, ζ ≥ 0

is the momentum weight, ΠX is the projection onto X , and
∇g̃i is the mini-batch stochastic gradient such that ∇g̃i =
1
R

∑R
r=1∇h(xi; ξ

(t,k)
r) with ξ(t,k)r being a sample from the

ith edge device and R being the batch size. The final update

is x(t+1)
i = x

(t,K
(t)
i)

i . If ζ = 0, update (4) narrows down to
the standard SPG. Empirically, the ASPG update is observed
to converge faster (Beck and Teboulle 2009).

Update on the cloud server. We derive the update rule
for (3b) for both Sync-cloud and Async-cloud architectures.
In the synchronous case, same as FedAvg, we can denote the
global models on all participating cloud servers as zn = z
for n ∈ V . Then, given initialization z(t), the cloud updates

(Sync-cloud)

z(t+1) = z(t) − ηz
∑
n∈V

∑
i∈Qn

γi(z
(t) − x(t+1)

i), (5)

where ηz is the stepsize.
In the asynchronous setting, we propose the use of the

distributed gradient descent (DGD) algorithm (Ram, Nedić,
and Veeravalli 2010). Similarly, given initialization z(t)n , for
n ∈ V , each cloud server runs

(Async-cloud)

w(t)
n =

∑
m∈V

a(t)n,mz
(t)
m , (6a)

z(t+1)
n = w(t)

n − ηz
∑
i∈Qn

γi(w
(t)
n − x

(t+1)
i), (6b)

where a
(t)
n,m is a mixing coefficient decided by the

server/server communication link at round t.

10357

Algorithm 1 Pseudocode of FedBCD for problem (2)
1: for t = 0, 1, . . . , T − 1 do
2: for n ∈ V do
3: cloud server sends z(t)

n to activated edge device i ∈ Q(t)
n .

4: activated edge device updates x(t)
i by K

(t)
i epochs of

.......... ASPG (4) on gi(xi)+ γi
2
‖xi−z(t)

n ‖2 and obtainx(t+1)
i ;

.......... other edge device has x(t+1)
i = x

(t)
i .

5: cloud server receives the uploaded x(t+1)
i ’s from activated

..........edge devices.
6: cloud servers update z(t+1)

n ’s by the Sync-cloud/Async-
.....cloud update (5) or (6)

Combining (4)-(6), we obtain our FedBCD scheme. Due
to the page limit, we only give the pseudocode of FedBCD
in Algorithm 1, and the precise version is given in the sup-
plementary document. In Section , we will characterize the
theoretical convergence guarantee of FedBCD.

Sync-Cloud and Async-Cloud Communication
Protocols for FedBCD
We introduce two communication protocols to clarify how
FedBCD can be applied, and how the Async-cloud protocol
can allow potentially more efficient updates.
• Sync-cloud protocol. This protocol is similar to that
in (Bonawitz et al. 2019) and has two phases: (i) A new
round t starts with the “response and update” phase. In this
phase, cloud servers accept update requests from edge de-
vices, send the global model z(t) to these activated edge de-
vices, and wait for them to perform the local update (4). For
each cloud server, this phase ends when it receives x(t+1)

i ’s
from a pre-determined number of edge devices. Then, this
cloud server replaces its local copy of x(t)

i ’s with x(t+1)
i ’s

(for inactivated edge devices, it simply puts x(t+1)
i = x

(t)
i)

and sends
∑
i∈Qn

x
(t+1)
i to a coordinator that keeps the latest

global model z(t). (ii) Once hearing from all cloud servers,
this coordinator enters the “aggregation” phase, where it
executes (5) to obtain z(t+1) and broadcasts it back. After
receiving z(t+1), the cloud servers become available again
for the next round of update.
• Async-cloud protocol. This protocol requires more care-
ful implementation. (i) At round t, cloud servers that fin-
ished the “response and update” phase send their model
z
(t)
n ’s to the coordinator. (ii) The coordinator waits until it

hears from the first B cloud servers V(t) [in Fig. 2(b) it is
|V(t)|=B=2], and enters “aggregation” phase I. Then, this
coordinator calculates w(t) =

∑
n∈V(t) z

(t)
n /B and sends

w(t) to cloud servers in V(t). (iii) The cloud servers in V(t)

enter “aggregation” phase II, where they use receivedw(t) as
w

(t)
n and update z(t+1)

n by (6); the other cloud servers sim-
ply have z(t+1)

n = z
(t)
n . Back to our FedBCD scheme, this

protocol corresponds to the following setting: a(t)
n,m = 1/B

for n,m ∈ V(t), a(t)
n,n = 1 and a(t)

n,m = 0 for n,m /∈ V(t);
Q(t)
n = ∅ and η(t)zn = 0 for n /∈ V(t).

(a) Sync-cloud protocol

(b) Async-cloud protocol

cloud server coordinator

response and update phase sync-cloud aggregation phase

async-cloud aggregation phase I / II

sending model

Figure 2: Protocols under Sync-/Async-cloud architectures.

In the Sync-cloud protocol, the model aggregation hap-
pens when all cloud servers finish the “response and update”
phase; while in the second protocol, cloud servers work asyn-
chronously, and the model aggregation is carried out in a
“first come first serve” manner. By constructing the neigh-
borhoods of cloud servers that mix their model dynamically
based on those who are ready first, the Async-cloud proto-
col, as analyzed below, is expected to provide more efficient
update; see Fig. 2 for an illustration.
Remark 3 Some readers may argue that the use of the co-
ordinator in both protocols is not favorable for multi-agent
communication. However, unlike in the conventional setting,
herein the coordinator only involves lightweight computa-
tions. We believe that with the advent of software-defined
networking, it is fairly natural to assume that specialized
servers communications, such as multi-agent message ex-
changes, can be orchestrated in an effective way to support
specific applications. Methods that completely eliminate co-
ordination require re-normalizing the weights (Assran et al.
2019); typically the algorithms take longer to converge.

Latency analysis. Here we provide a methodology to gain
analytical insight, by assuming a certain distribution for the
inter-update time. Let τ (t)n , n ∈ V be random time taken by
cloud server n to accrue Q(t)

n edge-devices updates; assume
τ
(t)
n are i.i.d. with mean and standard deviation µτ , στ re-

spectively. Each τ
(t)
n equals the sum of update request ar-

rival time and the computation time associated to Q(t)
n edge-

devices. With |V| = N , denote by τ
(t)

(k), k = 1, . . . , N the
ordered statistics of the samples τ (t)n in increasing order, i.e.
τ
(t)

(1) ≤ τ
(t)

(2) ≤ . . . ≤ τ
(t)

(N) = maxn∈V τ
(t)
n . Let the latency of

10358

the Sync-cloud and Async-cloud protocols at round t be τ (t)SC

and τ (t)AC. It follows that τ (t)SC = τ
(t)

(N) and τ (t)AC = τ
(t)

(B). Hence
the reduction in the average duration per round is:

rB,N := E[τ
(t)
(B)]/E[τ

(t)
(N)] ≡ E[τ

(t)
AC]/E[τ

(t)
SC]. (7)

Let β = B/N denote the percentage of network nodes in-
volved in each update, and consider the fact that rB,N ≤
rB,N−1. For large N we can leverage a classic re-
sult (Mosteller 2006), showing the asymptotic normality of
ordered statistics for large sample size. In particular by de-
noting F−1τn (u) the quantile function of the random variable
τn, we have

τ
(t)
(βN) ∼ N

(
F−1τn (β),

β(1− β)

N
[
fτn
(
F−1τn (β)

)]2
)
⇒

rβN,N /
F−1τn (β)

F−1τn (1− 1/N)
, for N � 1. (8)

For τ (t)n with sample space [0,+∞), F−1
τn (1− 1/N)→ +∞,

there is an infinite gain in latency asymptotically. For typical
distributions, though, the rate is slow. For example, for τ (t)n
following a Weibull distribution, with shape parameter k
(irrespective of the scale parameter λ), we have rβN,N /
−(ln(1− β))

1
k (log(N))−

1
k .

For a random time distribution with finite support [0, τ]
with τ < +∞, instead, the reduction saturates to F−1τn (β)/τ .
Also notice that, in general, the smaller is the percentage
of network nodes in each update β the slower is the update
progress per round, yielding a trade-off between reducing
latency and increasing the update progress, which results in
an optimum choice of β. Finally, it should be pointed out
that we only provide a straightforward solution to illustrate
the potential of the Async-cloud architecture. Multi-agent
consensus techniques such as DGD have been well studied
in distributed learning (Assran et al. 2019), opening the door
to further advances to promote more efficient updates.

Remark 4 Model personalization and asynchronous up-
dates may seem to be two independent topics at first glance.
However, we emphasize that both of them inherently match
the heterogeneous nature of federated learning—they go hand
in hand, due to the idiosyncratic behavior of the edge devices
manifesting itself in both the non i.i.d. data and the non-
uniform times at which updates are carried out. In view of
this, only forcing equal models but applying asynchronous
updates (or the reverse) is actually a half-measure.

An Intuitive Variant of FedBCD
In FedBCD, edge devices update local models only when
they are in stable communication condition, which could
lead to slow local model update. On the other hand, it is
reasonable to assume that edge devices can also train lo-
cal models offline. For instance, think about a phone that is
charged and idle. This is a good time for the phone to do local
training, even if it is not connected to Wi-Fi. Thus, we have
Q(t)
n ⊆ Q̃(t)

n ⊆ Qn, where Q̃(t)
n is the set of edge devices

that are available for local training but in bad communication

Algorithm 2 Pseudocode of FedBCD-I for problem (2)
1: for t = 0, 1, . . . , T − 1 do
2: for i ∈ Q̃(t)

n , n ∈ V do
3: edge device updates x(t)

i by K(t)
i epochs of ASPG on

......... gi(xi) and obtain x(t+1)
i .

4: for n ∈ V do
5: cloud server sends z

(t)
n to activated edge device

................... i ∈ Q(t)
n ⊆ Q̃(t)

n .
6: activated edge device updates x(t+1)

i by K(t)
i epochs of

..........x(t+1)
i ← ΠX (x

(t+1)
i − γi(x(t+1)

i − z(t)
n)).

7: cloud server receives the uploaded x(t+1)
i ’s from activated

..........edge devices.
8: cloud servers update their models z

(t+1)
n ’s by Sync-

..........cloud/Async-cloud update with information only from

..........Q(t)
n ; i.e., replacingQn in (5) or (6) withQ(t)

n .

condition. We can then take the intuitive approach suggested
in (Zhang, Choromanska, and LeCun 2015) by tackling the
cost function and quadratic penalty in (2) separately. Simply
speaking, at round t, edge devices in Q̃(t)

n run local training
using cost functions gi’s. Then, the subset of edge devices in
Q(t)
n sends update requests to the cloud for the global model

to adjust their local models. The cloud-server updates remain
unchanged. We call the resulting scheme FedBCD-I, and sum-
marize its pseudocode in Algorithm 2. FedBCD-I can adopt
both the Sync-cloud and Async-cloud protocols introduced
for FedBCD with minor modification. The only difference
is that, herein edge devices send update requests only when
they finish their round of local training. If an edge device fails
to communicate with the cloud for a pre-determined number
of rounds, it will stop local training and wait for the earliest
opportunity to contact the cloud. A detailed algorithm and
protocol description is provided in the supplementary docu-
ment.

Theoretical Convergence Analysis
We investigate the behavior of FedBCD in this section. Our
result applies to both the Sync-cloud and Async-cloud set-
tings. Let us start with the following assumptions:
Assumption 1 The server/server and device/server commu-
nication satisfies that
(i) Each edge device is activated at least once every p itera-
tions, where p <∞.
(ii) In the Async-cloud update (6), the communication graph
within cloud servers is possibly time-varying and satisfies, for
some q <∞ that, (V,

⋃
t=1,...,q E

(t0+t)) is strongly connected
for all t0.

Assumption 2 In Problem (2) the conditions below are met:
(i) The feasible set X is convex and compact.
(ii) For all i ∈ Qn, n ∈ V , function gi is bounded on X , and
is Li-Lipschitz smooth on X̃ , where X̃ = conv[

⋃
0≤ζ≤1{x +

ζ(x − y) | |x,y ∈ X}] is the feasible set extended by the
momentum update. Also, its gradient∇gi is bounded on X .

Assumption 3 The mixing coefficient {a(t)n,m}t=0,1,..., in
Async-cloud update (6) satisfies the conditions below:

10359

(i) There exists a scalar c > 0 such that a(t)n,m ≥ c if (n,m) ∈
E(t) and a(t)n,m = 0 otherwise.
(ii) (doubly stochastic)

∑
m∈V a

(t)
n,m =

∑
n∈V a

(t)
n,m = 1.

Assumption 4 The stepsizes and momentum weight satisfy
(i) ηx ≤ mini∈Qn,n∈V{1/(Li + γi)}.
(ii) ηz = d/

√
T ≤ 1/(maxi∈Qn,n∈V{γi}·maxn∈V{|Qn|}),

for a positive constant d and total communication round T .
(iii)ζ ≤ mini∈Qn,n∈V{ω/

√
1 + ρiηx}, for some constants

ω ∈ (0, 1) and ρi such that ρi ≤ Li + γi.
Assumption 5 For any i, let ∇h(xi; ξi) be a stochas-
tic gradient of gi(xi), where ξi is a random sample
from the ith edge device [recall that in (1) we denote
gi(xi) := 1

|Si|
∑
r∈Si h(xi; sr)]. It holds for any xi and

ξi that E[∇gi(xi) − ∇h(xi; ξi)] = 0 and E[‖∇gi(xi) −
∇h(xi; ξi)‖2] ≤ σ2.
Let us briefly examine our assumptions: Assumption 1 makes
sure that no edge device or cloud server is isolated; Assump-
tions 2-3 are common in constrained optimization and av-
erage consensus algorithms; Assumption 4 requires that the
stepsize and the momentum weight are bounded; Assump-
tion 5 is typical for stochastic gradient descent. Careful read-
ers may notice that the Async-cloud protocol in Section
violates Assumption 4 by considering time-varying ηz . This
issue can be fixed by minor modification; the resulting ver-
sion is, however, more complicated in terms of implementa-
tion and is detailed in the supplementary document.

We characterize the convergence of FedBCD to a station-
ary point. Our convergence metric is the constrained version
of the one in (Assran et al. 2019).
Theorem 1 Suppose that Assumptions 1-5 hold, communi-
cation round T is sufficiently large (see the supplementary
document for a clear definition), and batch size R is used to
calculate the stochastic gradients (c.f.the detailed discussion
of the stochastic gradient below (4))
(i) Sequences {x(t)

i }, {z
(t)
n } generated by FedBCD satisfy

1

T

T−1∑
t=0

E
[〈
∇xi

fi(x
(t+1)
i , z̄(t)), x̂i − x(t+1)

i

〉]
≥ − A1

T 1/4
− A2

R1/4
, ∀x̂ ∈ X , i ∈ Qn, n ∈ V ,

1

T

T−1∑
t=0

E

∥∥∥∥∥∑
n∈V

∑
i∈Qn

γi(z
(t) − x(t+1)

i)

∥∥∥∥∥
2
 ≤ B1√

T
+

B2√
R
,

1

T

T−1∑
t=0

‖z̄(t) − z(t)n ‖ ≤
C√
T
, ∀n ∈ V ,

where A1, A2, B1, B2, C are positive constants (determined
by parameters in Assumption 1-5) whose accurate forms are
in the supplementary document, and z̄(t) = 1

|V|
∑
n∈V z

(t)
n .

(ii) If we use the exact gradients during updates, the above re-
sults hold with all terms related to the batch size R removed.
The proof of Theorem 1 is in the supplementary document.
We see that the batch size R and communication round T de-
termine the convergence rate, which is the case in projection-
based stochastic algorithms (Ghadimi, Lan, and Zhang 2016).

Note that on edge devices the data size is not large and thus ex-
act gradients are possibly computable. For this case, our result
reveals a sub-linear convergence rate of O(1/

√
T), which is

consistent with the existing decentralized non-convex algo-
rithms (Li et al. 2018; Assran et al. 2019).

Remark 5 In our analysis, we discuss the convergence of
both the Sync-cloud and Async-cloud settings in a unified
way. If we only consider the Sync-cloud setting, FedBCD
will become a special case of a centralized computation
scheme (Wu, Wai, and Ma 2020). By modifying the assump-
tions to make FedBCD fit this computation scheme, we will be
able to obtain a O(1/T) sub-linear convergence rate, which
is standard for centralized non-convex algorithms. On the
other hand, it should be pointed out that the Async-cloud
setting of FedBCD is not seen in the literature, and requires
careful and non-trivial analysis.

Numerical Experiments
We train two models on PyTorch: a three-layer neural net-
work for the classification of the MNIST dataset (LeCun
et al. 1998) and a deeper ResNet-20 model (He et al. 2016)
for the CIFAR-10 dataset. We assume that there are 10
cloud servers, each connected to 10 edge devices. To em-
ulate the data heterogeneity, we restrict the “diversity” of
training data; e.g., “diversity” being 3 means that each
edge device owns data of three labels. We also use a small
|Q(t)

n | to emulate occurrences of intermittent communica-
tion. The other settings are: the edge-device learning rate
is ηx = 0.005, the momentum weight ζ is 0.9, the edge-
device update epoch is sampled from [1, 5] every round, X
is an elementwise [−2, 2]-box constraint, the batch size is
R = 32; for FedBCD/FedBCD-I, the cloud-server learn-
ing rate is ηz = 0.5; for FedBCD, the penalty parameter is
γi = 1; for FedBCD-I, we use γi = 0.2, |Q̃(t)

n | = 8, and
edge devices suspend local training after finishing 4 offline
rounds; for FedProx, ASPG is used in edge-device update,
and the penalty parameter is µ = 5. The above parameters
selection was by trial and error.

Model Deviation vs. Model Consensus
We compare FedBCD/FedBCD-I (which allow model devia-
tions) with FedAvg/FedProx (which enforce model consen-
sus). Two performance measures are considered: the person-
alized performance, where edge devices test local models
on test data that have the same diversity as their training
data; and the global performance, where the cloud tests the
global model on the whole test data set. To be fair, in this
experiment all algorithms use the Sync-cloud protocol (see
the supplementary document for the Sync-cloud protocol
for FedAvg/FedProx), and the two types of performance are
recorded every round (i.e. the latency per round is not con-
sidered). It can be seen in Fig. 3 that, the personalized and
global performance of FedAvg/FedProx is almost the same.
This makes sense, since therein the same model is main-
tained everywhere. In comparison, FedBCD/FedBCD-I, by
allowing local models to deviate from the global one, provide
better personalized performance. We also see that FedBCD

10360

• (left column) average personalized, (right column) global

0 50 100

communication round

20

40

60

80

100
te

s
t
a
c
c
u
ra

c
y
 (

%
)

FedAvg
FedProx
FedBCD
FedBCD-I

0 50 100

communication round

20

40

60

80

100

te
s
t
a
c
c
u
ra

c
y
 (

%
)

FedAvg
FedProx
FedBCD
FedBCD-I

(a) MNIST-|Q(t)
n | = 3, diversity: 3

0 50 100

communication round

20

40

60

80

100

te
s
t

a
c
c
u

ra
c
y
 (

%
)

FedAvg
FedProx
FedBCD
FedBCD-I

0 50 100

communication round

20

40

60

80

100

te
s
t

a
c
c
u

ra
c
y
 (

%
)

FedAvg
FedProx
FedBCD
FedBCD-I

(b) MNIST-|Q(t)
n | = 3, diversity: 6

0 50 100

communication round

20

40

60

80

100

te
s
t

a
c
c
u

ra
c
y
 (

%
)

FedAvg
FedProx
FedBCD
FedBCD-I

0 50 100

communication round

20

40

60

80

100

te
s
t
a
c
c
u
ra

c
y
 (

%
)

FedAvg
FedProx
FedBCD
FedBCD-I

(c) MNIST-|Q(t)
n | = 6, diversity: 3

0 100 200

communication round

20

40

60

te
s
t

a
c
c
u

ra
c
y
 (

%
)

FedAvg
FedProx
FedBCD
FedBCD-I

0 100 200

communication round

10

20

30

40

50

60

te
s
t
a
c
c
u
ra

c
y
 (

%
)

FedAvg
FedProx
FedBCD
FedBCD-I

(d) CIFAR10-|Q(t)
n | = 5, diversity: 3

Figure 3: Test accuracy of models by different algorithms
with different diversity and activation.

suffers from slow update progress when the |Q(t)
n | is low

and is only faster than FedAvg (this is not surprising, see
Section). In contrast, its intuitive variant FedBCD-I turns
out to be more competitive; particularly, we see that in the
more challenging CIFAR-10 task, FedBCD-I has global per-
formance comparable to FedProx, while giving much better
personalized performance.

Sync-Cloud vs. Async-Cloud

Following the latency analysis in Section , we demonstrate
the possible efficiency gain of the Async-cloud update. To
emulate the distributed scenario of federate learning, we
simulate each edge device/cloud server and the coordinator in
Python using TCP sockets for inter-process communication,
and test it on four 60 core servers with Intel Xeon E7-4870
v2 CPUs and 256 GB of memory each. In the experiment, we

• global performance:

runtime
50

60

70

80

90

te
s
t

a
c
c
u

ra
c
y
 (

%
)

Sync
Async (=0.3)
Async (=0.5)
Async (=0.7)

(a) FedBCD
runtime

70

75

80

85

90

te
s
t

a
c
c
u

ra
c
y
 (

%
)

Sync
Async (=0.3)
Async (=0.5)
Async (=0.7)
FedProx

(b) FedBCD-I

runtime
60

70

80

90

te
s
t

a
c
c
u

ra
c
y
 (

%
)

Sync
Async (=0.3)
Async (=0.5)
Async (=0.7)

(c) FedBCD
runtime

70

75

80

85

90

te
s
t

a
c
c
u

ra
c
y
 (

%
)

Sync
Async (=0.3)
Async (=0.5)
Async (=0.7)
FedProx

(d) FedBCD-I

Figure 4: Efficiency of the algorithms, on MNIST with
|Q(t)

n | = 3 and “diversity ”(a-b) 3, (c-d) 6
.

generate numerically the random latency τ (t)n for the “respond
and update” phase (green phases in Figure 2) and assume
that server aggregation computation (non-green phases in
Figure 2) is negligible, i.e. the overall runtime is dominated
by τ (t)n . The detailed settings, and the statistics used in our
simulations are given in the supplementary document. The
results are shown in Fig. 4. We first notice that, the higher
“diversity” leads to a smoother improvement of the global
performance. This is reasonable, since a more “biased” local
model is expected to bring more “noise” to the global model
training. Besides, we can see that the Async-cloud update
is clearly more efficient. As mentioned before, based on the
size of β, there is a trade-off between the duration and the
update progress of each round. In this experiment, we see
that β = 0.3 or 0.5 seems to strike a good balance and leads
to appealing performance. We also compare FedBCD-I with
FedProx. Note that FedProx focuses on improving the global
performance, and is generally faster than our methods for
the global performance. However, by using the asynchronous
update, our scheme could outperform FedProx even for the
global performance in terms of runtime; see Fig. 4(d).

Conclusion
This work has two main contributions: first, we recognize
that machine learning models on edge devices reflect the user
habits, and can thus be different; second, we spotlight that
the cloud is a cluster of powerful servers, and their intra-
communication can be exploited for more efficient updates.
We study these two aspects and provide a solution that is
proven promising theoretically and empirically.

10361

Acknowledgments
This work was supported by the Army Research Office, USA,
under Project ID ARO #W911NF-20-1-0153. The work by
Ruiyuan Wu and Wing-Kin Ma was supported by a General
Research Fund (GRF) of the Research Grant Council (RGC),
Hong Kong, under Project ID CUHK 14208819.

References
Arivazhagan, M. G.; Aggarwal, V.; Singh, A. K.; and Choud-
hary, S. 2019. Federated learning with personalization layers.
arXiv preprint arXiv:1912.00818.
Assran, M.; Loizou, N.; Ballas, N.; and Rabbat, M. 2019.
Stochastic gradient push for distributed deep learning. In
Proc. Int. Conf. Mach. Learn., volume 97, 344–353. PMLR.
Beck, A.; and Teboulle, M. 2009. A fast iterative shrinkage-
thresholding algorithm for linear inverse problems. SIAM J.
Imaging Sci. 2(1): 183–202.
Bertsekas, D. P. 1997. Nonlinear programming. J. Oper. Res.
Soc. 48(3): 334–334.
Bonawitz, K.; Eichner, H.; Grieskamp, W.; Huba, D.; Inger-
man, A.; Ivanov, V.; Kiddon, C.; Konecny, J.; Mazzocchi, S.;
McMahan, H. B.; et al. 2019. Towards federated learning at
scale: System design. arXiv preprint arXiv:1902.01046.
Chen, Y.; Ning, Y.; Slawski, M.; and Rangwala, H. 2019.
Asynchronous online federated learning for edge devices
with non-IID data. arXiv preprint arXiv:1911.02134.
Fallah, A.; Mokhtari, A.; and Ozdaglar, A. 2020. Personal-
ized federated learning: A meta-learning approach. arXiv
preprint arXiv:2002.07948.
Ghadimi, S.; Lan, G.; and Zhang, H. 2016. Mini-batch
stochastic approximation methods for nonconvex stochastic
composite optimization. Math. Program. 155(1-2): 267–305.
He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep residual
learning for image recognition. In Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 770–778.
Hu, R.; Guo, Y.; Li, H.; Pei, Q.; and Gong, Y. 2020. Per-
sonalized federated learning with differential privacy. IEEE
Internet Things J. 7(10): 9530–9539.
Jiang, Y.; Konečnỳ, J.; Rush, K.; and Kannan, S. 2019. Im-
proving federated learning personalization via model agnostic
meta learning. arXiv preprint arXiv:1909.12488.
LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceed. IEEE 86(11): 2278–2324.
Li, T.; Sahu, A. K.; Talwalkar, A.; and Smith, V. 2020. Fed-
erated learning: Challenges, methods, and future directions.
IEEE Signal Process. Mag. 37(3): 50–60.
Li, T.; Sahu, A. K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.;
and Smith, V. 2018. Federated optimization in heterogeneous
networks. arXiv preprint arXiv:1812.06127.
Lu, Y.; Huang, X.; Dai, Y.; Maharjan, S.; and Zhang, Y. 2019.
Differentially private asynchronous federated learning for
mobile edge computing in urban informatics. IEEE Trans.
Industr. Inform. 16(3): 2134–2143.

McMahan, H. B.; Moore, E.; Ramage, D.; Hampson, S.; et al.
2016. Communication-efficient learning of deep networks
from decentralized data. In Proc. Int. Conf. Artif. Intell. Stat.
(AISTATS).
Mohri, M.; Sivek, G.; and Suresh, A. T. 2019. Agnostic
federated learning. arXiv preprint arXiv:1902.00146.
Mosteller, F. 2006. On some useful inefficient statistics. In
Selected Papers of Frederick Mosteller, 69–100. Springer.
Nedić, A.; Olshevsky, A.; and Rabbat, M. G. 2018. Net-
work topology and communication-computation tradeoffs in
decentralized optimization. Proc. IEEE 106(5): 953–976.
Patarasuk, P.; and Yuan, X. 2009. Bandwidth optimal all-
reduce algorithms for clusters of workstations. J. Parallel
Distrib. Comput. 69(2): 117–124.
Ram, S. S.; Nedić, A.; and Veeravalli, V. V. 2010. Distributed
stochastic subgradient projection algorithms for convex opti-
mization. J. Optim. Theory Appl. 147(3): 516–545.
Smith, V.; Chiang, C.-K.; Sanjabi, M.; and Talwalkar, A. S.
2017. Federated multi-task learning. Adv. Neural. Inf. Pro-
cess. Syst. 30: 4424–4434.
Wu, Q.; He, K.; and Chen, X. 2020. Personalized federated
learning for intelligent IoT applications: A cloud-edge based
framework. IEEE Comput. Graph Appl. .
Wu, R.; Wai, H.-T.; and Ma, W.-K. 2020. Hybrid inexact
BCD for coupled structured matrix factorization in hyper-
spectral super-resolution. IEEE Trans. Signal Process. 68:
1728–1743.
Yang, Q.; Liu, Y.; Chen, T.; and Tong, Y. 2019. Federated
machine learning: Concept and applications. ACM Trans.
Intell. Syst. Technol. 10(2): 1–19.
Yang, Z.; Gang, A.; and Bajwa, W. U. 2020. Adversary-
resilient distributed and decentralized statistical inference
and machine learning: An overview of recent advances under
the Byzantine threat model. IEEE Signal Process. Mag. 37(3):
146–159.
Zhang, S.; Choromanska, A. E.; and LeCun, Y. 2015. Deep
learning with elastic averaging SGD. In Adv. Neural Inf.
Process. Syst., 685–693.

10362

