The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases

Chris Wendler, Andisheh Amrollahi, Bastian Seifert, Andreas Krause, Markus Piischel

Department of Computer Science, ETH Zurich, Switzerland
wendlerc @ethz.ch, amrollaa@ethz.ch, baseifert @ethz.ch, krausea@ethz.ch, pueschel @inf.ethz.ch

Abstract

Many applications of machine learning on discrete domains,
such as learning preference functions in recommender systems
or auctions, can be reduced to estimating a set function that is
sparse in the Fourier domain. In this work, we present a new
family of algorithms for learning Fourier-sparse set functions.
They require at most nk — k log, k + k queries (set function
evaluations), under mild conditions on the Fourier coefficients,
where n is the size of the ground set and k£ the number of
non-zero Fourier coefficients. In contrast to other work that
focused on the orthogonal Walsh-Hadamard transform (WHT),
our novel algorithms operate with recently introduced non-
orthogonal Fourier transforms that offer different notions of
Fourier-sparsity. These naturally arise when modeling, e.g.,
sets of items forming substitutes and complements. We demon-
strate effectiveness on several real-world applications.

Introduction

Numerous problems in machine learning on discrete domains
involve learning set functions, i.e., functions s : 2N 4 R
that map subsets of some ground set N to the real numbers.
In recommender systems, for example, such set functions
express diversity among sets of articles and their relevance
w.r.t. a given need (Sharma, Harper, and Karypis 2019; Balog,
Radlinski, and Arakelyan 2019); in sensor placement tasks,
they express the informativeness of sets of sensors (Krause,
Singh, and Guestrin 2008); in combinatorial auctions, they
express valuations for sets of items (Brero, Lubin, and Seuken
2019). A key challenge is to estimate s from a small number
of observed evaluations. Without structural assumptions an
exponentially large (in n = | N|) number of queries is needed.
Thus, a key question is which families of set functions can
be efficiently learnt, while capturing important applications.
One key property is sparsity in the Fourier domain (Stobbe
and Krause 2012; Amrollahi et al. 2019).

The Fourier transform for set functions is classically
known as the orthogonal Walsh-Hadamard transform (WHT)
(De Wolf 2008; Li and Ramchandran 2015; Cheraghchi and
Indyk 2017). Using the WHT, it is possible to learn functions
with at most & non-zero Fourier coefficients with O(nk) eval-
uations (Amrollahi et al. 2019). In this paper, we consider an

Copyright (© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

10283

alternative family of non-orthogonal Fourier transforms, re-
cently introduced in the context of discrete signal processing
on set functions (DSSP) (Piischel 2018; Piischel and Wendler
2020). In particular, we present the first efficient algorithms
which (under mild assumptions on the Fourier coefficients),
efficiently learn k-Fourier-sparse set functions requiring at
most (n + 1)k — klog, k evaluations. In contrast, naively
computing the Fourier transform requires 2™ evaluations and
n2n-1 operations (Piischel and Wendler 2020).

Importantly, sparsity in the WHT domain does not imply
sparsity in the alternative Fourier domains we consider, or
vice versa. Thus, we significantly expand the class of set
functions that can be efficiently learnt. One natural exam-
ple of set functions, which are sparse in one of the non-
orthogonal transforms, but not for the WHT, are certain pref-
erence functions considered by Djolonga, Tschiatschek, and
Krause (2016) in the context of recommender systems and
auctions. In recommender systems, each item may cover the
set of needs that it satisfies for a customer. If needs are cov-
ered by several items at once, or items depend on each other
to provide value there are substitutability or complementarity
effects between the respective items, which are precisely cap-
tured by the new Fourier transforms (Piischel and Wendler
2020). Hence, a natural way to learn such set functions is to
compute their respective sparse Fourier transforms.

Contributions. In this paper we develop, analyze, and
evaluate novel algorithms for computing the sparse Fourier
transform under various notions of Fourier basis:

1. We are the first to introduce an efficient algorithm to com-
pute the sparse Fourier transform for the recent notions
of non-orthogonal Fourier basis for set functions (Piischel
and Wendler 2020). In contrast to the naive fast Fourier
transform algorithm that requires 2" queries and n2"~!
operations, our sparse Fourier transform requires at most
nk — klogy k + k = O(nk — klog k) queries and O(nk?)
operations to compute the k£ non-zero coefficients of a
Fourier-sparse set function. The algorithm works in all
cases up to a null set of pathological set functions.

We then further extend our algorithm to handle an even
larger class of Fourier-sparse set functions with O(n?k —
nk log k) queries and O(n?k + k*n) operations using fil-
tering techniques.

3. We demonstrate the effectiveness of our algorithms in three

real-world set function learning tasks: learning surrogate
objective functions for sensor placement tasks, learning
facility locations functions for water networks, and pref-
erence elicitation in combinatorial auctions. The sensor
placements obtained by our learnt surrogates are indistin-
guishable from the ones obtained using the compressive
sensing based WHT by Stobbe and Krause (2012). How-
ever, our algorithm does not require prior knowledge of
the Fourier support and runs significantly faster. The fa-
cility locations function learning task shows that certain
set functions are sparse in the non-orthogonal basis while
being dense in the WHT basis. In the preference elicita-
tion task also only half as many Fourier coefficients are
required in the non-orthogonal basis as in the WHT basis,
which indicates that bidders’ valuation functions are well
represented in the non-orthogonal basis.

Because of the page limit, all proofs are in the supplemen-
tary material.

Fourier Transforms for Set Functions

We introduce background and definitions for set functions
and associated Fourier bases, following the discrete-set signal
processing (DSSP) introduced by (Piischel 2018; Piischel and
Wendler 2020). DSSP generalizes key concepts from classical
signal processing, including shift, convolution, and Fourier
transform to the powerset domain. The approach follows a
general procedure that derives these concepts from a suitable
definition of the shift operation (Piischel and Moura 2008).

Set functions. We consider a ground set N
{z1,...,z,}. An associated set function maps each subset
of N to a real value:

s:2V S RiA— s(A).

ey

Each set function can be identified with a 2"-dimensional
vector s = (s (A)) ac v by fixing an order on the subsets. We
choose the lexicographic order on the set indicator vectors.
Shifts. Classical convolution (e.g., on images) is associ-
ated with the translation operator. Analogously, DSSP con-
siders different versions of "set translations", each yielding a
different DSSP model, numbered 1-5. One choice is

(model 4) Tos(A)=s(AUQ), forQCN. (2

The shift operators T(y are parameterized by the powerset
monoid (2V,U), since the equality T (Trs) = Tours
holds for all Q, R C N, and s € R2" .

Convolutional filters. The corresponding linear, shift-
equivariant convolution in model 4 is given by

(hxs)(A) =Y h(Q)s(AUQ).

QCN

Namely, (h * Trs) (A) = Tr(h * s) (A), for all R C N.
Convolving with h is a linear mapping called a filter and h is
also a set function. In matrix notation we have h x s = Hs,
where H is the filter matrix.

Fourier transform and convolution theorem. The
Fourier transform (FT) simultaneously diagonalizes all filters,
i.e., the matrix FHF~1is diagonal for all filter matrices H,

3

10284

where F' denotes the matrix form of the Fourier transform.
Thus, different definitions of set shifts yield different notions
of Fourier transform. For the shift in (2) the Fourier transform
of s takes the form

sB)= Y, (-1n""Fls(4a) e
ACN:AUB=N
with the inverse
s(A)= > 3(B).)
BCN:ANB=0
As a consequence we obtain the convolution theorem
(hxs)(B)=h(B)3(B). (6)

Interestingly, A (the so-called frequency response) is com-
puted differently than S, namely as

h(B) >

ACN:ANB=0

- h(A). 7

In matrix form, with respect to the chosen order of s, the
Fourier transform and its inverse are
Qn
) , (8

Xn
F(O 1) and Fl(

1 -1
respectively, in which M®" = M @ --- ® M denotes the
n-fold Kronecker product of the matrix M. Thus, the Fourier
transform's = F's and its inverse s = F'~'S can be computed
in n2"~! operations.

The columns of F~! form the Fourier basis and can be
viewed as indexed by B C N. The B-th column is given
by 8 = 1 4np—g, where tgnp—p = 1if AN B = () and
tanB=p = 0 otherwise. The basis is not orthogonal as can
be seen from the triangular structure in (8).

Example and interpretation. We consider a special class
of preference functions that, e.g., model customers in a
recommender system (Djolonga, Tschiatschek, and Krause
2016). Preference functions naturally occur in machine learn-
ing tasks on discrete domains such as recommender sys-
tems and auctions, in which, for example, they are used
to model complementary- and substitution effects between
goods. Goods complement each other when their combined
utility is greater than the sum of their individual utilities.
Analogously, goods substitute each other when their com-
bined utility is smaller than the sum of their individual utili-

i€A i€A

ties. Formally, a preference function is given by
3 ()
k=1

max ap; — Qi
oA ki Z ki

€A
Equation (9) is composed of a so-called modular term
parametrized by u € R", a repulsive term parametrized by
r e Rig", with L € N, and an attractive term parametrized

by a € Rfoxn, with K € N. The repulsive term captures

substitution and the attractive term complementary effects.

1 1
1 0

p(A) :Zui+z

L
max7re; — E Tei
- 7,EA 7 2

=

(€))

Example 1 (Running example). Consider the ground set
{x1,x2,x3}, in which x, represents a tablet, x5 a laptop
and x3 a tablet pen. Now, we create a preference function
with a substitution effect between the laptop and the tablet
which is expressed in the repulsive termr = (2,2,0) and a
complementary effect between the tablet and the tablet pen
which is expressed in the attractive term a = (1,0, 1). The
individual values of the items are expressed in the modular
termu = (2,2,1). As a result we get the following preference
function p and also show its Fourier transform p, where x5
is short for {x1,x2}:

0 @z x2 m2 T3 X1z T2z Ti23
p 0 2 2 2 1 4 3 4
p 4 -1 0 2 2 1 0 0

Namely, as desired, p ({x1,22}) < p({z1}) —&—p({x/\g})
and p ({z1,23}) > p({x1}) + p ({z3}). Note that p is
sparse. Next, we show this is always the case.

Lemma 1. Preference functions of the form (9) are Fourier-
sparse w.r.t. model 4 with at most 1 +n + Ln + Kn non-zero
Fourier coefficients.

Motivated by Lemma 1, we call set functions that are
Fourier-sparse w.r.t. model 4 generalized preference func-
tions. Formally, a generalized preference function is defined
in terms of a collection of distinct subsets N = {S1,...,S,}
of some universe U : S; C U, ¢ € {1,...,n}, and a
weight function w : U — R. The weight of aset S C U is
w(S) = > ,csw(u). Then, the corresponding generalized
preference function is

For non-negative weights s is called a weighted coverage
function (Krause and Golovin 2014), but here we allow gen-
eral (signed) weights. Thus, generalized preference functions
are generalized coverage functions as introduced in (Piischel
and Wendler 2020). Generalized coverage functions can be
visualized by a bipartite graph, see Fig. 1a. In recommender
systems, S; could model the customer-needs covered by item
1. Then, the score that a customer associates to a set of items
corresponds to the needs covered by the items in that set.
Substitution as well as complementary effects occur if the
needs covered by items overlap (e.g., S; N S; # 0).

Concretely, we observe in Fig. 1a that in our running ex-
ample the tablet and the laptop share one need with a positive
sign which yields the substitution effect, and the tablet and
the tablet pen share a need with a negative sign which yields
the complementary effect.

Interestingly, the Fourier coefficients for model 4 in (4) of
a generalized coverage function are

{ZuEU w(u)7 it B= ®7

—w (nsj,eB Si\ USieN\B Si) , otherwise,
(11)
which corresponds to the weights of the fragments of the
Venn-diagram of the sets .S; (Fig. 1b). If the universe U con-
tains fewer than 2" items, some fragments will have weight

Us

S;,€A

S:QN—HR;AD—)W< (10)

10285

Y
Y

Sl SQ

(a) Coverage function (b) Fourier transform in (4)

Figure 1: Preference function p from Example 1 as general-
ized coverage function visualized as bipartite graph (a) and
as Venn diagram (b). The Fourier coefficients are the weights
of the fragments. Here, three are zero.

shift T s (A) F~'(sum):s4 =
model 3 s(A\ Q) Z (,1)\BI§(B)
model4 s(AUQ) 2 3(B)
AnB0
model 5 s(A\QUQ\ A) 2% Z (71)\A0BIA(B)

Table 1: Shifts and Fourier expansions.

zero, i.e., are Fourier-sparse. We refer to Section VIII of
Piischel and Wendler (2020) for an in-depth discussion and
interpretation of the spectrum (11).

Other shifts and Fourier bases. As mentioned before,
Piischel and Wendler (2020) considers 5 types of shift, i.e.
DSSP models, each with its respective shift-equivariant con-
volution, associated Fourier basis, and thus notion of Fourier-
sparsity. Model 5 is the classical definition that yields the
WHT and model 4 the version introduced above. Table 1
collects the key concepts, also including model 3.

The notions of Fourier-sparsity differ substantially be-
tween models. For example, consider the coverage function
for which there is only one element in the universe U and this
element is covered by all sets Sy, ...,Sy,. Then, 5(0) = 1,
S(N)=-1land5(B) =0for() C B C N w.rt. model 4,
ands(@) = 2" —land §(B) = —1forall) Cc BC N
w.r.t. the WHT.

More generally, one can show that preference functions in
(9) with at least one row of pairwise distinct values in either
the repulsive or attractive part are dense w.r.t. the WHT basis.

The Fourier bases have appeared in different contexts be-
fore. For example, (4) can be related to the W-transform,
which has been used by Chakrabarty and Huang (2012) to
test coverage functions.

Learning Fourier-Sparse Set Functions

We now present our algorithm for learning Fourier-sparse set
functions w.r.t. model 4. One of our main contributions is that
the derivation and algorithm are general, i.e., they also apply

to the other models. We derive the variants for models 3 and
5 from Table 1 in the supplementary material.

Definition 1. A set function s is called k-Fourier-sparse if
where we assume that k is significantly smaller than 2™.

Thus, exactly learning a k-Fourier-sparse set function is
equivalent to computing its k non-zero Fourier coefficients
and associated support. Formally, we want to solve:

Problem 1 (Sparse FT). Given oracle access to query a k-
Fourier-sparse set function s, compute its Fourier support
and associated Fourier coefficients.

Sparse FT with Known Support

First, we consider the simpler problem of computing the
Fourier coefficients if the Fourier support supp(5) (or a small
enough superset B D supp(s)) is known. In this case, the
solution boils down to selecting queries A C 2V such that
the linear system of equations

SA ZF;é/S\l% (13)

admits a solution. Here, s4 = (s (A4)) ac4 is the vector of
queries, FZé is the submatrix of F~! obtained by selecting
the rows indexed by .4 and the columns indexed by 3, and
Sy are the unknown Fourier coefficients we want to compute.

Theorem 1 (Piischel and Wendler (2020)). Let s be
k-Fourier-sparse with supp(s) = {B1,...,Br} = B. Let
A= {N\Bi,...,N\ By}. Then F}j is invertible and s
can be perfectly reconstructed from the queries s 4.

Consequently, we can solve Problem 1 if we have a way
to discover a B O supp(5s), which is what we do next.

Sparse FT with Unknown Support

In the following we present our algorithm to solve Problem 1.
As mentioned, the key challenge is to determine the Fourier
support w.r.t. (4). The initial skeleton is similar to the algo-
rithm Recover Coverage by Chakrabarty and Huang (2012),
who used it to test coverage functions. Here we take the
novel view of Fourier analysis to expand it to a sparse Fourier
transform algorithm for all set functions. Doing so creates
challenges since here the weight function in (10) is not guar-
anteed to be positive. Using the framework in Section we
will analyze and address them.

Let M C N, and consider the associated restriction of a
set function s on V:

s Lon: 2M S Ry A 5 (A) (14)

The Fourier coefficients of s and the restriction can be related
as (proof in supplementary material):

slov (B)= Y 5(AUB).

ACN\M

15)

We observe that, if the Fourier coefficients on the right hand
side of (15) do not cancel, knowing s |,» contains informa-

tion about the sparsity of m, forz € N\ M. To be
precise, if there are no cancellations, the relation

5 dont (B) = 5 Lywroge) (B) + 5 banroe (BU {z})
(16)

10286

implies that both s |ouuray (B) and s Lynuin (BU {z})

must be zero whenever s |, (B) is zero. As a consequence,
we can construct

B:

Besupp(S \LZM)

{B,BU{z}}, a7

with supp(m) C B, from (16), and then compute

S Jomu(zy with Theorem 1 in this case.

As a result we can solve Problem 1 with our algorithm
SSFT, under mild conditions on the coefficients that guaran-
tee that cancellations do not occur, by successively computing
the non-zero Fourier coefficients of restricted set functions
along the chain

5 1o0=5190,5 Late11,5 botarwar, ., 8 Lov =5, (18)

For example, SSFT works with probability one if all non-
zero Fourier coefficients are sampled from independent con-
tinuous probability distributions:

Lemma 2. With probability one SSFT correctly computes
the Fourier transform of Fourier-sparse set functions s with
supp(8) = B and randomly sampled Fourier coefficients,
that satisfy

1. 5(B) ~ Pp, where Pg is a continuous probability distri-
bution with density function pp, for B € supp(s),

2. pgp= HBeB pB.

Algorithm. We initialize SSFT with M, () and
s Joo (0) = s(0) (lines 1-2). Then, in each iteration of the
for loop (line 3), we grow our set M; = M;_; U {z;} by
adding the next element (line 4), determine the superset B

of supp(@) based on the Fourier coefficients from the

previous iteration m (lines 5-8) and solve the resulting
known-support-problem using Theorem 1 (lines 9-12). After
n iterations we end up with the Fourier coefficients of s.

We depict an execution of SSFT on p from Example 1 in
Fig. 2. We process the elements x1, 3, 3 in reverse order,
which results in the final Fourier coefficients being lexico-
graphically ordered. Note that in this example applying SSFT

naively would fail, as p o0 (§) = p () = 0 SSFT would

falsely conclude that both m (0) and m ({x3})
are zero resulting in them and their children being pruned.

Instead, we initialize the algorithm with m . The levels
of the tree correspond to the elements of the chain (18). When
computing the Fourier coefficients of a level, the ones of the
previous level determine the support superset 5. Whenever,
SSFT encounters a Fourier coefficient that is equal to zero,
all of its children are pruned from the tree. For example,

P lateaesy ({22, 23}) = 0, thus, {z2, 73} and {1, 22, 23}
are not included in the support superset B of p |y = p. While
pruning in our small example only avoids the computation
of p lon ({22, 23}) and p lon ({z1, 22, 23}), it avoids an
exponential amount of computation in larger examples (for

|N| = n, when m (B) = 0 the two subtrees of height
n — 1 containing its children are pruned).

SSFT Sparse set function Fourier transform of s

SSFT+ Filtering based SSFT of s

1: Mo(*m
2: S\LQZMO ((Z)) — S((Z))
3: fori=1,....,ndo

4: Ml — Mi—l U {’I‘Z}

5 B+ 0,A«0

6: for B € supp(m) do

7: B+ BU{B,BU{z;}}

8: A+~ AU{M;\ B, M; \ (BU{z;})}
9: sa ¢ (s(A4))aea

10: X < solvesy = F;éx for x

11: for B € Bwithxg # 0 do

12: 5 Lo, (B) < xp

13: return s |gn,

1: // Sample random coefficients.

ch(@)=1

:forz € {z1,...,z,} do

h({z}) + ¢~ N(0,1)

. // Fourier transform of filtered set function.
. % 5 < SSFT(h * s)

. // Compute the original coefficients.

: for B € supp(i;k\s) do

o

5p <+ (h*s)(B)/h(B)
: return s

—_
=]

I

4 -2
0 {z1} {zo} {x1,22} {3} {z1,23} {@2, 23} {x1,292, 23}

Figure 2: The Fourier coefficients of the restricted versions of
p from Example 1. Depth O (root) corresponds to the Fourier
transform of p |40, depth 1 to the one of p |4(x5), depth 2 to

the one of p |9(x,.-51 and depth 3 to the one of p.

Note that for practical reasons we only process up to kmax
subsets in line 6. In line 11, we consider a Fourier coefficient
|xp| < € (a hyperparameter) as zero.

Analysis. We consider set functions s that are k-
Fourier-sparse (but not (k — 1)-Fourier-sparse) with sup-
port supp(3) = {Bi,...,Bx} = B, ie, {s:2Y >R :
5(B) # 0iff B € B}, which is isomorphic to

S={secRF:5 #£0forallic {1,...,k}}. (19

Let)\ denote the Lebesgue measure on R¥. Let Pé@ =
{BEB:BﬁMi:C}.

Pathological set functions. SSFT fails to compute the
Fourier coefficients for which @(C) = 0 despite
Pé?i # (). Thus, the set of pathological set functions Dy,
i.e., the set of set functions for which SSFT fails, can be
written as the finite union of kernels

Ki(M;,C) = {S€R" 15 Lo, (C) =0} (20)
intersected with S.

Theorem 2. Using prior notation, the set of pathological set

10287

Sfunctions for SSFT is given by

p-U U

=0 oM P20

and has Lebesgue measure zero, i.e., \(D1) = 0.

Complexity. By reusing queries and computations from
the (¢ —1)-th iteration of SSFT in the i-th iteration, we obtain:

Theorem 3. SSFT requires at most nk — klog, k + k
queries and O(nk?) operations.

Shrinking the Set of Pathological Fourier
Coefficients

According to Theorem 2, the set of pathological Fourier co-
efficients for a given support has measure zero. However,
unfortunately, this set includes important classes of set func-
tions including graph cuts (in the case of unit weights) and
hypergraph cuts.!

Solution. The key idea to exclude these and further narrow
down the set of pathological cases is to use the convolution
theorem (6), i.e., the fact that we can modulate Fourier coef-
ficients by filtering. Concretely, we choose a random filter i
such that SSFT works for / * s with probability one. 5 is then
obtained from A * s by dividing by the frequency response
h. We keep the associated overhead in O(n) by choosing
a one-hop filter, i.e., h(B) = 0 for |B| > 1. Motivated
by the fact that, e.g., the product of a Rademacher random
variable (which would lead to cancellations) and a normally
distributed random variable is again normally distributed, we
sample our filtering coefficients i.i.d. from a normal distri-
bution. By filtering our signal with such a random filter we
aim to end up in a situation similar to Lemma 2. We call the
resulting algorithm SSFT+, shown above.

'As an example, consider the cut function c associated with the
graph V = {1,2,3}, E = {{1,2},{2,3}} and w12 = was = 1,
using € = (0,1,2,—2,1,0,—2,0)7. ¢ maps every subset of V to
the weight of the corresponding graph cut.

Algorithm. In SSFT+ we create a random one-hop filter
h (lines 2-4), apply SSFT [to the filtered signal h * s (line 6)
and compute s based on h * s (lines 8-9).

Analysis. Building on the analysis of SSFT, recall that S
denotes the set of k-Fourier-sparse (but not (k — 1)-Fourier-
sparse) set functions and P2’ are the elements B € supp(3)
satisfying B N M; = C. Let

Ko(M;,C) = {g €R* .5 Ly, (C) = 0 and

5 Tgrioty (C) = Oforj e {i+1,... ,n}})

Theorem 4. With probability one with respect to the random-
ness of the filtering coefficients, the set of pathological set
functions for SSFT+ has the form (using prior notation)

-U U

=0 oM P20

Ka(M;,CYNS. (23)

Theorem 4 shows that SSFT+ correctly processes
5 Lor; (C) = 0 with PYi # 0, iff there is an element
x € {Tit1,...,xp} for which s [oa,ut2y (C) # 0.

Theorem 5. If D, is non-empty, D- is a proper subset of D;.
In particular, K1(M;,C) N S # 0 implies Ko(M;,C) <g
K1(M;,C), forall C € M; C N with P # 0.

Complexity. There is a trade-off between the number of
non-zero filtering coefficients and the size of the set of patho-
logical set functions. For example, for the one-hop filters
used, computing (h * s) (A) requires 1 + n — |A| queries.

Theorem 6. The query complexity of SSFT+ is O(n?k —
nklog k) and the algorithmic complexity is O(n?k + nk?).

Related Work

We briefly discuss related work on learning set functions.
Fourier-sparse learning. There is a substantial body of
research concerned with learning Fourier/WHT-sparse set
functions (Stobbe and Krause 2012; Scheibler, Haghigh-
atshoar, and Vetterli 2013; Kocaoglu et al. 2014; Li and
Ramchandran 2015; Cheraghchi and Indyk 2017; Amrollahi
et al. 2019). Recently, Amrollahi et al. (2019) have imported
ideas from the hashing based sparse Fourier transform algo-
rithm (Hassanieh et al. 2012) to the set function setting. The
resulting algorithms compute the WHT of k-WHT-sparse
set functions with a query complexity O(nk) for general fre-
quencies, O(kdlogn) for low degree (< d) frequencies and
O(kdlognlog(dlogn)) for low degree set functions that are
only approximately sparse. To the best of our knowledge this
latest work improves on previous algorithms, such as the ones
by Scheibler, Haghighatshoar, and Vetterli (2013), Kocaoglu
et al. (2014), Li and Ramchandran (2015), and Cheraghchi
and Indyk (2017), providing the best guarantees in terms of
both query complexity and runtime. E.g., Scheibler, Haghigh-
atshoar, and Vetterli (2013) utilize similar ideas like hash-
ing/aliasing to derive sparse WHT algorithms that work under
random support (the frequencies are uniformly distributed on
27 and random coefficient (the coefficients are samples from

10288

continuous distributions) assumptions. Kocaoglu et al. (2014)
propose a method to compute the WHT of a k-Fourier-sparse
set function that satisfies a so-called unique sign property
using queries polynomial in n and 2*.

In a different line of work, Stobbe and Krause (2012)
utilize results from compressive sensing to compute the WHT
of k-WHT-sparse set functions, for which a superset P of the
support is known. This approach also can be used to find a
k-Fourier-sparse approximation and has a theoretical query
complexity of O(klog" |P|). In practice, it even seems to
be more query-efficient than the hashing based WHT (see
experimental section of Amrollahi et al. (2019)), but suffers
from the high computational complexity, which scales at
least linearly with |P|. Regrading coverage functions, to our
knowledge, there has not been any work in the compressive
sensing literature for the non-orthogonal Fourier bases which
do not satisfy RIP properties and hence lack sparse recovery
and robustness guarantees.

In summary, all prior work on Fourier-based methods for
learning set functions was based on the WHT. Our work
leverages the broader framework of signal processing with
set functions proposed by Piischel and Wendler (2020), which
provides a larger class of Fourier transforms and thus new
types of Fourier-sparsity.

Other learning paradigms. Other lines of work for learn-
ing set functions include methods based on new neural ar-
chitectures (Dolhansky and Bilmes 2016; Zaheer et al. 2017;
Weiss, Lubin, and Seuken 2017), methods based on back-
propagation through combinatorial solvers (Djolonga and
Krause 2017; Tschiatschek, Sahin, and Krause 2018; Wang
et al. 2019; Vlastelica et al. 2019), kernel based methods
(Buathong, Ginsbourger, and Krityakierne 2020), and meth-
ods based on other succinct representations such as decision
trees (Feldman, Kothari, and Vondrdk 2013) and disjunctive
normal forms (Raskhodnikova and Yaroslavtsev 2013).

Empirical Evaluation

We evaluate the two variants of our algorithm (SSFT and
SSFT+) for model 4 on three classes of real-world set func-
tions. First, we approximate the objective functions of sensor
placement tasks by Fourier-sparse functions and evaluate the
quality of the resulting surrogate objective functions. Second,
we learn facility locations functions (which are preference
functions) that are used to determine cost-effective sensor
placements in water networks (Leskovec et al. 2007). Finally,
we learn simulated bidders from a spectrum auctions test
suite (Weiss, Lubin, and Seuken 2017).

Benchmark learning algorithms. We compare our algo-
rithm against three state-of-the-art algorithms for learning
WHT-sparse set functions: the compressive sensing based
approach CS-WHT (Stobbe and Krause 2012), the hashing
based approach H-WHT (Amrollahi et al. 2019), and the
robust version of the hashing based approach R-WHT (Am-
rollahi et al. 2019). For our algorithm we set ¢ = 0.001 and
kmax = 1000. CS-WHT requires a superset P of the (un-
known) Fourier support, which we set to all B C N with
|B| < 2 and the parameter for expected sparsity to 1000. For
H-WHT we used the exact algorithm without low-degree as-

sumption and set the expected sparsity parameter to 2000. For
R-WHT we used the robust algorithm without low-degree
assumption and set the expected sparsity parameter to 2000
unless specified otherwise.

Sensor Placement Tasks

We consider a discrete set of sensors located at different fixed
positions measuring a quantity of interest, e.g., temperature,
amount of rainfall, or traffic data, and want to find an infor-
mative subset of sensors subject to a budget constraint on
the number of sensors selected (e.g., due to hardware costs).
To quantify the informativeness of subsets of sensors, we
fit a multivariate normal distribution to the sensor measure-
ments (Krause, Singh, and Guestrin 2008) and associate each
subset of sensors A C N with its information gain (Srinivas
et al. 2010)
1

G(A) = §log |1 a) + o 3(Kij)ijeals (24)
where (K;;)i jea is the submatrix of the covariance matrix
K that is indexed by the sensors A C NV and I} 4| the | A| x| A]
identity matrix. We construct two covariance matrices this
way for temperature measurements from 46 sensors at Intel
Research Berkeley and for velocity data from 357 sensors
deployed under a highway in California.

The information gain is a submodular set function and,
thus, can be approximately maximized using the greedy al-
gorithm by Nemhauser, Wolsey, and Fisher (1978): A* =~
arg max 4 v.a|<q G (A) to obtain informative subsets. We

do the same using Fourier-sparse surrogates s of G: AT ~
arg max 4 n.4|<q 8 (A) and compute G(A™). As a base-
line we place d sensors at random A, and compute
G (Arang)- Figure 3 shows our results. The x-axes correspond
to the cardinality constraint used during maximization and
the y-axes to the information gain obtained by the respective
informative subsets. In addition, we report next to the leg-
end the execution time and number of queries needed by the
successful experiments.

Interpretation of results. H-WHT only works for the
Berkeley data. For the other data set it is not able to recon-
struct enough Fourier coefficients to provide a meaningful
result. The likely reason is that the target set function is not
exactly Fourier-sparse, which can cause an excessive amount
of collisions in the hashing step. In contrast, CS-WHT is
noise-robust and yields sensor placements that are indistin-
guishable from the ones obtained by maximizing the true
objective function in the first task. However, for the Cal-
ifornia data, CS-WHT times out. In contrast, SSFT and
R-WHT work well on both tasks. In the first task, SSFT is
on par with CS-WHT in terms of sensor placement quality
and significantly faster despite requiring more queries. On
the California data, SSFT yields sensor placements of simi-
lar quality as the ones obtained by R-WHT while requiring
orders of magnitude fewer queries and time.

Learning Preference Functions

We now consider a class of preference functions that are used
for the cost-effective contamination detection in water net-
works (Leskovec et al. 2007). The networks stem from the

10289

[V a queries E o —p'll/lpl
20 SSFT 734 102 0
WHT 29 0.000143

o4 0.000078

219 0.000001

50 SSFT 10K 648 0
R-WHT 1 2,108K 1,380 0.001744

2 4,192K 2,739 0.000847

4 8,810K 5,054 0.000129

8 16, 7/2K 9,547 0.000108

100 SSFT 76K 2,308 0
R-WHT 1 16,544K 2,997 0.000546

2 33,100K 6,466 0.000380

200 SSFT 494K 7,038 0
300 SSFT 1,644K 16,979 0
400 SSFT 3,859K 28,121 0
500 SSFT 7,218K 38,471 0

Table 2: Comparison of model 4 sparsity (SSFT) against
WHT sparsity (R-WHT) of facility locations functions in
terms of reconstruction error ||p — p’||/||p|| for varying |N|;
The italic results are averages over 10 runs.

Battle of Water Sensor Networks (BSWN) challenge (Ostfeld
et al. 2008). The junctions and pipes of each BSWN network
define a graph. Additionally, each BSWN network has dy-
namic parameters such as time-varying water consumption
demand patterns, opening and closing valves, and so on.

To determine a cost-effective subset of sensors (e.g., given
a maximum budget), Leskovec et al. (2007) make use of
facility locations functions of the form

L

p:2N—>R;Al—>ZIZ_11€aI§(TM7 (25
£=1

where 7 is a matrix in RZX". Each row corresponds to an

event (e.g., contamination of the water network at any junc-
tion) and the entry r,; quantifies the utility of the i-th sensor
in case of the /-th event. It is straightforward to see that (25)

is a preference function with a 0 and u; = Zszl T0;.
Thus, they are sparse w.r.t. model 4 and dense w.r.t. WHT
(see Lemma 1).

Leskovec et al. (2007) determined three different utility
matrices r € R3424X12527 that take into account the fraction
of events detected, the detection time, and the population
affected, respectively. The matrices were obtained by costly
simulating millions of possible contamination events in a
48 hour timeframe. For our experiments we select one of
the utility matrices and obtain subnetworks by selecting the
columns that provide the maximum utility, i.e., we select the
|N| = n columns j with the largest maxy ry;.

In Table 2 we compare the sparsity of the corresponding
facility locations function in model 4 against its sparsity in the
WHT. For | N| = 20, we compute the full WHT and select the
k largest coefficients. For | V| > 20, we compute the k largest
WHT coefficients using R-WHT. The model 4 coefficients
are always computed using SSFT. If the facility locations

Information gain

2 SSFT

H-WHT
20 R-WHT
CS-WHT
GT

36K 65
371K 50s

5834K 484s
IK I5s

random

0 5 10 I5 20 25 30 35 40
[A%|

(a) Berkeley, n = 46

Information gain

200
SSFT

180 L WHT (failed)
160 R-WHT
140 CS-WHT (failed)
120 ST
100
80
60
40
20
0

347K 2307s

44M 27372s

~-" “random

0 5 10 15 20 25 30 35 40
A%

(b) California, n = 357

Figure 3: Comparison of learnt surrogate objective functions on submodular maximization tasks subject to cardinality constraints
(x-axis); On the y-axis we plot the information gain achieved by the informative subset obtained by the respective method. We
report the number of queries and execution time in seconds next to the legend or indicate failure.

number of queries (in thousands)

Fourier coefficients recovered

‘ relative reconstruction error

SSFT SSFT+ H-WHT SSFT SSFT+ H-WHT SSFT SSFT+ H-WHT
L 3+4 2294+£73 781+0 | 118140 303 +£93 675 £ 189 | 0.566 £ 0.490 0+0 00
R 20%£1 646 £12 781£0 659 £ 32 813 £ 36 1,779+ 0 | 0.012 £ 0.007 0£0 0£0
N 71+0 3,306+1 781+0 | 1,0284+3 1,027+6 4,1704+136 | 0.0124+0.001 0.015+0.009 0.268 &= 0.212

Table 3: Multi-region valuation model (n = 98). Each row corresponds to a different bidder type.

function is k sparse w.r.t. model 4 for some |N| = n, we
set the expected sparsity parameter of R-WHT to different
multiples «k up to the first « for which the algorithm runs
out of memory. We report the number of queries, number
of Fourier coefficients k, and relative reconstruction error.
For R-WHT experiments that require less than one hour we
report average results over 10 runs (indicated by italic font).
For |N| > 20, the relative error cannot be computed exactly
and thus is obtained by sampling 100,000 sets .A uniformly at
random and computing ||p.4 — P’ 4]|/|/p.a]|, where p denotes
the real facility locations function and p’ the estimate.
Interpretation of results. The considered facility loca-
tions functions are indeed sparse w.r.t. model 4 and dense
w.r.t. the WHT. As expected, SSFT outperforms R-WHT
in this scenario, which can be seen by an error of exactly
zero and the lower number of queries, which also lead to a
proportional speedup, for the SSFT. This experiment shows
certain classes of set functions of practical relevance are bet-
ter represented in the model 4 basis than in the WHT basis.

Preference Elicitation in Auctions

In combinatorial auctions a set of goods N = {z1,...,z,}
is auctioned to a set of m bidders. Each bidder 5 is modeled as
a set function b; : 2V — R that maps each bundle of goods
to its subjective value for this bidder. The problem of learning
bidder valuation functions from queries is known as the pref-
erence elicitation problem (Brero, Lubin, and Seuken 2019).
Our experiment sketches an approach under the assumption
of Fourier sparsity.

As common in this field, we resort to simulated bid-
ders. Specifically, we use the multi-region valuation model
(MRVM) from the spectrum auctions test suite (Weiss, Lu-

bin, and Seuken 2017). In MRVM, 98 goods are auctioned
off to 10 bidders of different types (3 local, 4 regional, and
3 national). We learn these bidders using the prior Fourier-
sparse learning algorithms, this time including SSFT+, but
excluding CS-WHT, since P is not known in this scenario.
Table 3 shows the results: means and standard deviations of
the number of queries required, number of Fourier coeffi-
cients recovered, and relative error (estimated using 10,000
samples) taken over the bidder types and 25 runs.

Interpretation of results. First, we note that SSFT+ can
indeed improve over SSFT for set functions that are rele-
vant in practice. Namely, SSFT+ consistently learns sparse
representations for local and regional bidders, while SSFT
fails. H-WHT also achieves perfect reconstruction for local
and regional bidders. For the remaining bidders none of the
methods achieves perfect reconstruction, which indicates that
those bidders do not admit a sparse representation. Second,
we observe that, for the local and regional bidders, in the
non-orthogonal model 4 basis only half as many coefficients
are required as in the WHT basis. Third, SSFT+ requires less
queries than H-WHT in the Fourier-sparse cases.

Conclusion

We introduced an algorithm for learning set functions that are
sparse with respect to various generalized, non-orthogonal
Fourier bases. In doing so, our work significantly expands the
set of efficiently learnable set functions. As we explained, the
new notions of sparsity connect well with preference func-
tions in recommender systems and the notions of comple-
mentarity and substitutability, which we consider an exciting
avenue for future research.

10290

Ethics Statement

Our approach is motivated by a range of real world applica-
tions, including modeling preferences in recommender sys-
tems and combinatorial auctions, that require the modeling,
processing, and analysis of set functions, which is notori-
ously difficult due to their exponential size. Our work adds
to the tool set that makes working with set functions com-
putationally tractable. Since the work is of foundational and
algorithmic nature we do not see any immediate ethical con-
cerns. In case that the models estimated with our algorithms
are used for making decisions (such as recommendations, or
allocations in combinatorial auctions), of course additional
care has to be taken to ensure that ethical requirements such
as fairness are met. These questions are complementary to
our work.

References

Amrollahi, A.; Zandieh, A.; Kapralov, M.; and Krause, A.
2019. Efficiently Learning Fourier Sparse Set Functions. In
Advances in Neural Information Processing Systems, 15094—
15103.

Balog, K.; Radlinski, F.; and Arakelyan, S. 2019. Transparent,
Scrutable and Explainable User Models for Personalized
Recommendation. In Proc. Conference on Research and
Development in Information Retrieval (ACM SIGIR), 265—
274.

Brero, G.; Lubin, B.; and Seuken, S. 2019. Machine Learning-
powered Iterative Combinatorial Auctions. arXiv preprint
arXiv:1911.08042.

Buathong, P.; Ginsbourger, D.; and Krityakierne, T. 2020.
Kernels over Sets of Finite Sets using RKHS Embeddings,
with Application to Bayesian (Combinatorial) Optimization.
In International Conference on Artificial Intelligence and
Statistics, 2731-2741.

Chakrabarty, D.; and Huang, Z. 2012. Testing Coverage Func-
tions. In International Colloquium on Automata, Languages,
and Programming, 170-181. Springer.

Cheraghchi, M.; and Indyk, P. 2017. Nearly optimal deter-
ministic algorithm for sparse Walsh-Hadamard transform.
ACM Transactions on Algorithms (TALG) 13(3): 1-36.

De Wolf, R. 2008. A brief introduction to Fourier analysis
on the Boolean cube. Theory of Computing 1-20.

Djolonga, J.; and Krause, A. 2017. Differentiable Learning
of Submodular Models. In Advances in Neural Information
Processing Systems, 1013—-1023.

Djolonga, J.; Tschiatschek, S.; and Krause, A. 2016. Varia-
tional Inference in Mixed Probabilistic Submodular Models.
In Advances in Neural Information Processing Systems, 1759—
1767.

Dolhansky, B. W.; and Bilmes, J. A. 2016. Deep Submodular
Functions: Definitions and Learning. In Advances in Neural
Information Processing Systems, 3404-3412.

Feldman, V.; Kothari, P.; and Vondrdk, J. 2013. Representa-
tion, Approximation and Learning of Submodular Functions

10291

Using Low-rank Decision Trees. In Conference on Learning
Theory, T11-740.

Hassanieh, H.; Indyk, P.; Katabi, D.; and Price, E. 2012.
Nearly Optimal Sparse Fourier Transform. In Proc. ACM
Symposium on Theory of Computing, 563-578.

Kocaoglu, M.; Shanmugam, K.; Dimakis, A. G.; and Klivans,
A.2014. Sparse Polynomial Learning and Graph Sketching.
In Advances in Neural Information Processing Systems, 3122—
3130.

Krause, A.; and Golovin, D. 2014. Submodular Function
Maximization. In Tractability: Practical Approaches to Hard
Problems, 71-104. Cambridge University Press.

Krause, A.; Singh, A.; and Guestrin, C. 2008. Near-optimal
Sensor Placements in Gaussian processes: Theory, Efficient
Algorithms and Empirical Studies. Journal of Machine Learn-
ing Research 9: 235-284.

Leskovec, J.; Krause, A.; Guestrin, C.; Faloutsos, C.; Van-
Briesen, J.; and Glance, N. 2007. Cost-effective Outbreak
Detection in Networks. In Proc. ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 420—
429.

Li, X.; and Ramchandran, K. 2015. An Active Learning
Framework using Sparse-Graph Codes for Sparse Polynomi-
als and Graph Sketching. In Advances in Neural Information
Processing Systems, 2170-2178.

Nembhauser, G. L.; Wolsey, L. A.; and Fisher, M. L. 1978. An
analysis of approximations for maximizing submodular set
functions — 1. Mathematical programming 14(1): 265-294.

Ostfeld, A.; Uber, J. G.; Salomons, E.; Berry, J. W.; Hart,
W. E.; Phillips, C. A.; Watson, J.-P.; Dorini, G.; Jonkergouw,
P; Kapelan, Z.; et al. 2008. The Battle of the Water Sen-
sor Networks (BWSN): A Design Challenge for Engineers
and Algorithms. Journal of Water Resources Planning and
Management 134(6): 556-568.

Piischel, M. 2018. A Discrete Signal Processing Framework
for Set Functions. In Proc. International Conference on
Acoustics, Speech and Signal Processing (ICASSP), 4359—
4363. IEEE.

Piischel, M.; and Moura, J. M. 2008. Algebraic signal pro-
cessing theory: Foundation and 1-D time. IEEE Trans. on
Signal Processing 56(8): 3572-3585.

Piischel, M.; and Wendler, C. 2020. Discrete Signal Process-
ing with Set Functions. arXiv preprint arXiv:2001.10290.

Raskhodnikova, S.; and Yaroslavtsev, G. 2013. Learning
pseudo-Boolean k-DNF and Submodular Functions. In Proc.
ACM-SIAM Symposium on Discrete Algorithms, 1356—1368.

Scheibler, R.; Haghighatshoar, S.; and Vetterli, M. 2013. A
Fast Hadamard Transform for Signals with Sub-linear Spar-
sity. In Proc. Annual Allerton Conference on Communication,
Control, and Computing, 1250-1257. IEEE.

Sharma, M.; Harper, F. M.; and Karypis, G. 2019. Learning
from Sets of Items in Recommender Systems. ACM Trans.
on Interactive Intelligent Systems (TiiS) 9(4): 1-26.

Srinivas, N.; Krause, A.; Kakade, S. M.; and Seeger, M. 2010.
Gaussian Process Optimization in the Bandit Setting: No
Regret and Experimental Design. In Proc. International
Conference on Machine Learning (ICML), 1015-1022.

Stobbe, P.; and Krause, A. 2012. Learning Fourier Sparse
Set Functions. In Artificial Intelligence and Statistics, 1125—
1133.

Tschiatschek, S.; Sahin, A.; and Krause, A. 2018. Differ-
entiable Submodular Maximization. In Proc. International
Joint Conference on Artificial Intelligence, 2731-2738.

Vlastelica, M.; Paulus, A.; Musil, V.; Martius, G.; and
Rolinek, M. 2019. Differentiation of Blackbox Combina-
torial Solvers. arXiv preprint arXiv:1912.02175 .

Wang, P.-W.; Donti, P. L.; Wilder, B.; and Kolter, Z. 2019.
SATNet: Bridging deep learning and logical reasoning us-
ing a differentiable satisfiability solver. arXiv preprint
arXiv:1905.12149 .

Weiss, M.; Lubin, B.; and Seuken, S. 2017. SATS: A Univer-
sal Spectrum Auction Test Suite. In Proceedings of the 16th
Conference on Autonomous Agents and MultiAgent Systems,
51-59.

Zaheer, M.; Kottur, S.; Ravanbakhsh, S.; Poczos, B.;
Salakhutdinov, R. R.; and Smola, A. J. 2017. Deep Sets. In
Advances in Neural Information Processing Systems, 3391—
3401.

10292

