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Abstract

In real-world applications, clustering or classification can
usually be improved by fusing information from different
views. Therefore, unsupervised representation learning on
multi-view data becomes a compelling topic in machine
learning. In this paper, we propose a novel and flexible un-
supervised multi-view representation learning model termed
Collaborative Multi-View Information Bottleneck Networks
(CMIB-Nets), which comprehensively explores the common
latent structure and the view-specific intrinsic information,
and discards the superfluous information in the data signif-
icantly improving the generalization capability of the model.
Specifically, our proposed model relies on the information
bottleneck principle to integrate the shared representation
among different views and the view-specific representation
of each view, prompting the multi-view complete represen-
tation and flexibly balancing the complementarity and con-
sistency among multiple views. We conduct extensive exper-
iments (including clustering analysis, robustness experiment,
and ablation study) on real-world datasets, which empirically
show promising generalization ability and robustness com-
pared to state-of-the-arts.

Introduction

For real-world applications, data are usually manifested in
multiple types of features (Dhillon, Foster, and Ungar 2011)
or multiple modalities (Ngiam et al. 2011; Baltrusaitis,
Ahuja, and Morency 2018) that are considered as multiple
views. For instance, an image can be described by color
(e.g., color histogram (Novak, Shafer et al. 1992)) or tex-
ture descriptor (e.g., GIST (Oliva and Torralba 2001), SIFT
(Lowe 2004), HOG (Dalal and Triggs 2005)). Basically,
due to the diversity of feature extraction or data acquire-
ment, various views are usually heterogeneous. The ubiq-
uity of multi-view data has attracted tremendous attention
to the multi-view representation learning (Sun 2013; Zhang
et al. 2020). Furthermore, integrating different views into a
compact representation is essential for the downstream spe-
cific tasks since the intact representation could be easily
developed by off-the-shelf algorithms (Zhang et al. 2018;
Liu et al. 2018). Generally, when information from differ-
ent views complements each other, it can be expected that
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the multi-view representation learning approaches can im-
prove performance (Tao et al. 2019). To effectively explore
the multi-view data, a series of methods have been proposed
in recent years (Wang et al. 2015). The representative ways
are Canonical Correlation Analysis (CCA) (Hotelling 1992)
and its variants, which mainly maximize the consistency of
multiple views by projecting different views into a common
subspace. However, the main drawback of the CCA-based
algorithms is that it overemphasizes exploring common in-
formation, while the view-specific intrinsic information of
each view is also important, which may degrade the quality
of the learned representation.

Consequently, it is still a long-term challenge to jointly
exploit the view-specific information of each view and the
complex relationships among different heterogeneous views
under the context of multi-view representation learning. In
this work, to address the above issues, we propose an unsu-
pervised multi-view representation learning method termed
Collaborative Multi-View Information Bottleneck Networks
(CMIB-Nets) based on the information bottleneck princi-
ple. The proposed CMIB-Nets aims to collaboratively en-
code and integrate the view-specific intrinsic information
and shared latent structure from heterogeneous views into
a comprehensive representation. Moreover, the model can
also adaptively balance the complementarity and consis-
tency among different views.

Specifically, we realize this by maximizing the mutual in-
formation between multi-view information-bottleneck rep-
resentation and shared representation (learning the com-
mon structure), while at the same time maximizing the mu-
tual information between multi-view information-bottleneck
representation and view-specific representations (learning
the view-specific information). We also minimize the mu-
tual information between original views and multi-view
information-bottleneck representation simultaneously (com-
pressing data to remove useless information). The result-
ing multi-view information-bottleneck representation can
integrate the advantages of other multi-view representa-
tions, which not only encodes the view-specific informa-
tion and cross-view underlying structure but also reduces
the influence of superfluous information in the multi-view
data. Therefore, it can be more robust to downstream tasks
and improve the generalization capability. Furthermore, by
utilizing the deep neural networks, the obtained represen-



tation can explore complex relationships among different
views. Compared with the other unsupervised multi-view
representation learning algorithms, the proposed CMIB-
Nets achieves impressive performance on various tasks with
different settings.

The main contributions of this work are summarized as:

We propose an unsupervised multi-view representation
learning method - Collaborative Multi-View Information
Bottleneck, which extends information bottleneck to un-
supervised multi-view setting and flexibly learns a repre-
sentation from heterogeneous data.

The proposed model can integrate various representations
with the help of information bottleneck, making the multi-
view information-bottleneck representation to collabora-
tively learn intra-view intrinsic information and inter-
view shared structure, and also reducing the influence of
superfluous information in the data. The resulting repre-
sentation can improve the robustness and generalization
ability of downstream tasks.

With the introduction of neural network and variational
inference, the general correlations among multiple views
could be researched and the mutual information can be
approximated through the variational bound.

Extensive experiments under various conditions verify the
advantages of our proposed model. Compared with exist-
ing state-of-the-art unsupervised representation learning
algorithms, our model achieves impressive performances
and exhibits satisfactory generalization ability.

Related Work
Information Bottleneck

Information bottleneck (Tishby, Pereira, and Bialek 2000)
is an approach based on information theory, which formally
describes meaningful and relevant information in the data.
The theory states that if the obtained representation discards
information from the input which is not useful for a given
task, it will increase robustness for the downstream tasks.
Specifically, given the original data x with the label y, the
information bottleneck can obtain a compact and effective
representation z of data x. And the objective of the informa-
tion bottleneck principle is as follows:

mZaXI(Y,Z) -BI(X,Z), (1)
where [ is a trade-off factor to balance I (Y,Z) and
I(X,Z).

Besides, the information bottleneck principle is used in
multi-view representation learning. (Xu, Tao, and Xu 2014)
uses this theory to learn a multi-view representation. To ex-
plore the nonlinear relationships of multiple views, (Wang
et al. 2019) proposes a deep information bottleneck model
with deep neural networks. Recently, (Federici et al. 2020)
analyzes the redundant information in multiple views to ob-
tain a robust representation.

Multi-View Representation Learning

Multi-view representation learning is designed to explore
the information from multiple views for better performances
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(Li, Yang, and Zhang 2018). To obtain a unified represen-
tation among multiple views, CCA-based (Hotelling 1992)
algorithms project different views into a common subspace
through maximizing correlations among different views. To
explore nonlinear correlations, DCCA (Andrew et al. 2013)
extends CCA with neural networks, DCCAE (Wang et al.
2015) combines CCA and autoencoders. (Zhao, Ding, and
Fu 2017) utilizes matrix factorization to obtain a represen-
tation from multi-view data with specific constraints. Re-
cently, AEZ2-Nets (Zhang, Liu, and Fu 2019) learns an intact
multi-view representation by a nested autoencoder.

Proposed Approach

In this work, we propose the CMIB-Nets for learning a ro-
bust and intact representation given a multi-view dataset
X = {XD . XV where X(*) € R%*" is the feature
matrix of the vth view with V, n and d, being the number
of views, number of samples and dimensionality of feature
space for the vth view, respectively. As shown in Fig. 1, we
construct a multi-view information-bottleneck representa-
tion Z linked with the shared representation H and the view-
specific representation S to explore the inter-view complex
relationship and intra-view intrinsic information of different
views, and then collaboratively learn a complete representa-
tion to improve the discriminative ability of the approach.

Consistency and Complementarity

Multi-view data generally contains consistent relationships
and complementary information, (i.e., consistency and com-
plementarity), which are necessary to improve the perfor-
mance of the model. In our proposed model, the shared rep-
resentation across different views can reveal inter-view com-
mon structural correlations, while the view-specific repre-
sentation of multiple views can indicate intra-view exclusive
intrinsic information.

Consistency: Shared Representation. To explore the
complex associations among different views, inspired by
the reconstruction method (Lee 1996; Zhang et al. 2017),
our method assumes that the multiple views are originated
from an underlying latent representation (White et al. 2012;
Guo 2013). Given N multi-view observations which con-
sist of V' views, our method is to infer a shared representa-
tion H for each view. Intuitively, we can reconstruct each
view in a stable way from the shared representation (e.g.,
x, V) = f, (h;)), which can essentially describe the under-
lying structure shared by different views. Generally, we also
assume that the shared latent representation h; of an arbi-
trary sample x; in each view is conditionally independent.

vV . is replaced by D;, and then we

: (v)
For convenience, {x; ’},_;

have

\4
P(Difhy) = [T P(x{" ), 2)
v=1

which denotes the joint distribution of P(x!"|h;) in all
views. We model the likelihood with condition h; as
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where A(x -v), fo(h;;©,)) represents the reconstruction
loss and ®,, are parameters of f,,. Accordingly, by assuming
the data is independent and identically distributed (IID), we
can get the log-likelihood function as follows:

N
®) = InP(Dilh;)
=1

Since maximizing the likelihood is equivalent to minimiz-
ing the A loss function, we can obtain the following objec-
tive function Ly, (+) for learning the shared representation
part:
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where we use a reconstruction network for the transforma-
tion function f, in vth view.

In this way, H can encode consistent information of mul-
tiple views, and different views are projected into a common
space. Since the shared representation integrates informa-
tion from different views, it could reveal the common latent
structure shared by different views.

Complementarity: View-specific Representation. Apart
from modeling the consistency across multiple views, it is
also important to preserve the complementary information.
Since it is basically difficult to separate the private informa-
tion from common or shared information for each view, here
we alternatively learn representations for each view inde-
pendently to guarantee the private information is contained.
Under the unsupervised setting, it is natural to obtain the em-
beddings via auto-encoders. Therefore, we should minimize
the following reconstruction loss £,:
2
L. = min ||X® — Deec, (Encv (X(“))> H ,
AE, F

(6

where Enc, and Dec, denote the encoder and decoder net-
works respectively, and © 4, is the parameters for each
view-specific auto-encoder. The introduced AE networks
can extract unique intrinsic information and encode it into
a low-dimensional representation instead of directly pro-
cessing the original high-dimensional data. We concatenate
the reconstructed representation for each view to obtain the
view-specific representation S.

Multi-view Information-Bottleneck Representation

In order to obtain a compact and comprehensive multi-
view information-bottleneck representation Z, we extend
the information bottleneck principle to the unsupervised
multi-view setting. By integrating the advantages of view-
specific representation and shared representation, the pro-
posed model can effectively encode multiple views into a
complete representation, thereby improving the generaliza-
tion capability and adaptively balancing the complementar-
ity and consistency among different views.
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Figure 1: Illustration of the Collaborative Multi-View Infor-
mation Bottleneck Networks for multi-view representation
learning. The proposed CMIB-Nets collaboratively consid-
ers guidance of multi-view coding and view-specific cod-
ing, which can integrally explore the intra-view intrinsic in-
formation and inter-view latent correlations through “’bot-
tleneck” to filter worthless information and learn an intact
multi-view fusion representation, thus improving general-
ization ability.

Specifically, in this work, we encourage to maximize
the mutual information between multi-view information-
bottleneck representation and shared representation
I(Z,H) to explore the underlying structure shared by
different views. Simultaneously, we also encourage to learn
the intrinsic information of each single view by maximizing
the mutual information between multi-view information-
bottleneck representation and view-specific representation
I1(Z,S). Meanwhile, the mutual information between
original views and multi-view information-bottleneck
representation [ (Z,X) is minimized to reduce the su-
perfluous and unnecessary information by compressing
the description of the data. Accordingly, the objective is
induced as

max 1 (Z,H) + I (Z,S) Zﬂv (z X”)) ()
where the task is to maximize 7 (Z7 H) and I (Z,S), while,
as in rate-distortion theory (Davisson 1972), simultaneously
compress the description of data.

The main challenge of optimizing the above objective
function Eq. (7) is that the mutual information is compu-
tationally intractable. Recently, some variational methods
(Fabius and van Amersfoort 2014; Alemi et al. 2016) have
been used to deal with the problem. The variational ap-
proaches can optimize the variational lower bounds of the
objective function to find an approximate solution to the
original objective function.

For the first term I (Z, H), according to the definition of
mutual information, we have

z)

I1(Z,H) :/dhdzp(h,z) log P p(2)

p(h,z)
»(h)p
» (hlz) ®)

/dhdzp(h z) log o)

Since it is intractable in our case, let ¢ (h|z) be a varia-
tional approximation to p (h|z). Using the fact that the Kull-



back Leibler divergence is always positive, we have
p (h[z)
KL [p (hfz) g (bl2)] > 0= [ dhp(hiz)log” 175 > 0

= [ty (biz) tog (bl2) > [ dbp (ul2) toga (hiz).

9
and hence we have,
q (h|z)
I1(Z,H) > /dhdzp (h,z)log )
— | dndap (b,2)loga (hfz) + H (h)
(10)

Z/dhdzp(h,z) log g (h|z)
— [ np ) [ dzp (alb)toga (b

Similarly, for the second term I (Z,S), let ¢ (s|z) be a
variational approximation, we have

I1(Z,S) > /dsp(s)/dzp (z|s)logt (s|z) . (11)
Then for the third term, we have
I (Z X(”)) = /dzdxp (x(”) z)logw. (12)
’ ’ p(2)

Basically, calculating the marginal distribution of p (z)
might be difficult. So let r (z) be a variational approxi-
mation to this marginal. Since KL [p(z),r(z)] > 0 =
fdzp )logp (z) > [ dzp (z)logr (z), we have the follow-
ing upper bound

z|x)

I (Z,X(”)) < /dxdzp (x('“)) ( |x(“)) log((z)
= /dxp (x(”)) /dzp( \x(“)) log

p (zx™)
Combining the above inequalities, we have

r(z)
13)

1(Z,H)+1(Z,S) Zﬁv (z X”)>

v=1

> [ dnp() [ dap (al) 0g g (bl2)
+/dsp(s)/dzp (z|s) logt (s|z)
r(z)

- Zﬁv /dxp (X(” ) /dzp( \x(“)) log
(14)

In practice, the integral over h, s and x(*) can be approxi-
mated by Monte Carlo sampling (Shapiro 2003). Therefore,

p(x)
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we have

1(Z,H)+I(Z,S) Zﬁv (z,x™)
~ %Z {/ dzp (z|h;) log q (h;|z)
=1
-|—/ dzp (zls;) logt (s;|z)
—Zﬂv/dzp x(")iog

v=1

5)

plex.”) )

r(z)
where N is the size of total sampled data.

Then we employ the reparameterization trick (Kingma
and Welling 2013; Alemi et al. 2016) to rewrite p (z|h) dz =
p(e1)dey and p (z|s) dz = p (e2) dea, where z = gy (h, €1)
and z = g (s,e2) with the Gaussian random variable &4
and e5. Accordingly, we can obtain the following objec-
tive function £, (-) for learning the multi-view information-
bottleneck representation, which is to be minimized:

N
1
r=5 Z{—Esllogq (hilg1 (hi,e1))

L
i=1
_Egzlogt ( S; |g2 (Si7 62)) (16)
+ ZBUDKL ‘X >T(Z)]}7
v=1

where (3, > 0 are trade-off factors. The first and the second
terms are reconstruction loss, and the third term is the KL
divergence. In this way, the irrelevant and superfluous infor-
mation in the original view can be reduced, and we can ob-
tain a compact and comprehensive multi-view information-
bottleneck representation which encodes view-specific in-
trinsic information and the across-view latent relationships.

Experiments

In the experiments, we compare our proposed CMIB-
Nets with existing state-of-the-art multi-view representa-
tion learning algorithms on real-world multi-view datasets.
Specifically, we evaluate the performances on clustering in
terms of common metrics, and verify the generalization and
robustness of the model through a variety of experiments.

Datasets

We evaluate our model on six multi-view benchmark
datasets in the experiments, including:

1) Handwritten' contains 2000 examples of numbers 0-
9 with 200 samples per class. These images are represented
with two different types of features. 2) ORL? face dataset
includes 40 different categories, and each category has 10
different facial images. The intensity and Gabor are used
as different views. 3) COIL-20° consists of 1440 pictures

"https://archive.ics.uci.edu/ml/datasets/Multiple+Features
Zhttps://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase
*http://www.cs.columbia.edu/CAVE/software/softlib/coil-20



Datasets  Metrics  FeatConcate CCA DCCA DCCAE DMF MIB AE?-Nets Ours
ACC 76.084+2.14 66.42+4.81 66.16t£1.16 69.29+1.02 71.854+3.55 81.5242.37 85.62+1.82 89.72+1.06
Handwritten NMI 75.744+1.44 69.66+4.06 66.04+0.49 66.95+0.91 73.114+2.23 76.70+0.82 76.39+1.50 81.78+1.17
F-score  70.95+£2.05 62.06+£4.77 59.094+0.38 60.504+1.30 66.67+£2.97 72.93+2.23 74.58+1.85 81.641+0.23
RI 93.9240.42 91.87+£1.34 91.36+0.08 91.76+0.22 92.864+1.01 94.11+0.47 95.69+0.38 96.25+0.13
ACC 61.11+1.50 56.96+£2.04 59.64+2.20 59.424+2.06 65.364+2.88 66.69+2.01 68.85+2.11 72.07+1.81
ORL NMI 79.2940.73 76.01£0.79 77.82+0.86 77.544+0.83 82.8641.21 83.454+1.26 85.74+0.78 88.23+0.48
F-score  47.02+£2.11 45.10+1.87 47.71+2,05 46.694+2.27 52.03£3.34 56.50+2.59 59.93+1.31 68.324+1.05
RI 97.1240.26 97.29+0.10 97.40+0.14 97.37+0.13 97.3240.22 97.584+0.28 97.94+0.11 98.39+0.10
ACC 67.1543.79 58.64+1.39 63.71+£1.08 62.72+1.41 53.9345.06 74.254+2.56 73.42+1.90 77.58+1.17
COIL20 NMI 79.964+1.63 70.60£0.75 75.99+1.15 76.32+0.66 72.3542.33 82.43+1.73 82.55+£1.01 84.61+0.79
F-score  64.854+3.67 53.094+1.40 58.744+0.57 57.56+£1.12 46.39+4.39 71.454+2.56 69.384+1.98 74.95+1.26
RI 96.294+0.40 95.15£0.22 95.57+0.10 95.274+0.32 92.574+1.28 96.864+0.22 96.19+0.14 97.16+0.17
ACC 47.2240.22 45.3540.13 56.50+£3.05 62.17+£2.78 55.67+2.67 47.65+0.67 66.454+2.55 71.02+0.98
Caltech101 NMI 57.12+£0.62 50.5240.13 57.64+3.75 64.38+4.12 45.56+2.18 55.43+£0.56 60.93+1.73 62.47+1.86
attec F-score  52.284+0.28 53.514+0.19 62.324+5.07 65.24+2.17 57.70+2.25 53.464+0.56 73.324+2.73 75.92+1.44
RI 73.47+£0.12 73.254+0.16 76.31+£2.46 79.36+1.78 73.43+2.73 73.30+£0.40 83.134+2.17 85.48+1.15
ACC 41.9443.26 39.5142.36 69.39+1.80 72.98+3.13 41.31+£3.09 51.2943.65 62.284+3.25 77.13+1.63
BBCSport NMI 1594+2.19 12.45+1.88 50.36+1.83 54.5544.03 15.57+£1.57 35.11+£2.44 54424349 71.47+3.12
P F-score  41.53+2.23 40.42+1.88 61.204+2.49 66.464+1.89 41.16£2.19 46.56+1.81 58.39+3.34 73.451+2.78
RI 37.45+1.13 34.084+3.26 80.614+0.39 83.354+1.51 36.49+£2.50 49.37+2.27 69.76+2.85 84.35+1.98
ACC 73.814+0.10 45.85£1.46 54.49+0.29 66.72+1.52 37.554+2.61 79.2743.28 77.75£1.63 80.37+2.06
CUB NMI 71.484+0.41 46.60+£0.58 52.51£1.09 65.77+1.36 37.844+2.03 77.3440.75 78.61£1.62 77.40+1.02
F-score  61.08+£0.17 39.904+1.28 45.85+0.31 58.2141.12 28.96+1.61 72.65£1.73 70.964+2.03 73.89+1.29
RI 91.9840.05 87.41+0.46 88.63+0.09 91.2440.25 85.5640.30 93.9540.43 93.3940.63 94.32+0.24

Table 1: Performance comparison on clustering task.

of 20 categories. In the experiments, the intensity and Ga-
bor features are extracted as two different perspectives. 4)
Caltech101-7* is a subset of the original Caltech101 image
dataset. This subset selected 1,474 images in seven views.
And HOG and GIST are used as two types of features. 5)
BBCSport’ is a collection of 544 documents associated
with two views of sports articles from 5 subject areas. 6)
Caltech-UCSD Birds (CUB)® has 200 different categories,
including 11788 images of birds with the corresponding tex-
tual descriptions (Reed et al. 2016). The image features are
extracted by GoogLeNet, and the text features are extracted
by Doc2Vec. The two kinds of features are used as different
views.

Compared Methods

We compare our approach CMIB-Nets with the following
multi-view algorithms:

e FeatConcate: This method directly concatenates the fea-
tures of multiple views.

e CCA (Canonical Correlation Analysis) (Hotelling 1992):
This method maps different types of features onto a pro-
jection subspace by maximizing the correlations.

e DCCA (Deep Canonical Correlation Analysis) (Andrew
et al. 2013): This method extends CCA applying deep
neural networks, and then maximizes the correlations
among the different views.

*“http://www.vision.caltech.edu/Image Datasets/Caltech101/
Shttp://mlg.ucd.ie/datasets/
Shttp://www.vision.caltech.edu/visipedia/CUB-200

e DCCAE (Deep Canonically Correlated AutoEncoders)
(Wang et al. 2015): This method uses autoencoder to max-
imize the correlation of the learned representations, and
then assembles the representations together.

e DMF-MVC (Deep Semi-NMF for MVC) (Zhao, Ding,
and Fu 2017): This method takes advantage of the semi-
nonnegative matrix factorization to obtain a representa-
tion included consistent information of multiple views.

e AE2-Nets (Autoencoder in Autoencoder Networks)
(Zhang, Liu, and Fu 2019): This method integrates in-
formation from multiple views into a representation by
nested autoencoder.

e MIB (Multi-view Information Bottleneck) (Federici et al.
2020): This method identifies redundant information as
that which is not shared by both views, and discards the
superfluous information through information bottleneck.

Performance Evaluation

We evaluate the proposed CMIB-Nets on clustering task.
Specifically, we conduct the k-means algorithm by using the
learned representations from different algorithms. The rea-
son for applying k-means is that the algorithm is relatively
simple and can reflect the quality of the learned representa-
tions based on Euclidean distance.

In the experiments, we adopt four different metrics: Ac-
curacy (ACC), Normalized Mutual Information (NMI), F-
score, and Rand Index (RI). Employing different metrics can
reflect different clustering characteristics, while it is consis-
tent that the higher the value, the better the clustering per-
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Datasets Noise () CCA DCCA DCCAE MIB AE?-Nets Ours
0 37.5540.03 43.30+2.61 49.43+0.71 54.924+4.01 57.4442.12 60.92+2.36
MNIST 0.1 36.3540.01 40.591+0.07 40.84+0.38 51.714+2.94 52.504+1.49 57.33+1.84
0.2 33.2840.02 22.624+0.17 10.461+0.07 48.62+1.49 51.084+0.87 55.83+1.06
0 47.4640.53 46.48+2.99 47.284+0.87 57.60+1.21 53.1940.58 62.82+1.17
Fashion-MNIST 0.1 46.58+0.94 45.76+1.52 43.96+1.86 56.8241.40 51.7940.36 61.56+1.25
0.2 44.294+1.18 44.8612.01 40.4342.27 53.984+1.64 50.784+0.90 60.10+1.53

Table 2: Performance comparison on datasets with noise in terms of accuracy.
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Figure 2: t-SNE visualizations of original features and various representations on Handwritten (top) and BBCSport (bottom).

formance. To reduce the effect of randomness, we run each
method 30 times and report the average performances.

Table 1 reports the performances of different multi-view
methods on clustering task. On the whole, our algorithm al-
most outperforms other compared methods on all datasets.
Obviously, the performance of CCA is not unsatisfactory
than other methods, especially on Caltech101 and CUB
datasets, since it only focuses on linear correlations, which is
difficult to deal with complex relationships. Instead, DCCA
and DCCAE perform better, where the deep neural networks
are effective to handle complex correlations. However, they
all map different views onto a projection subspace by maxi-
mizing the correlations but cannot learn the complementary
information of multiple views, which may degrade the qual-
ity of learned representation. Moreover, compared with the
recent methods of AE2-Nets and MIB, our method still ob-
tains clear improvements. Our method captures intra-view
intrinsic information and inter-view common latent struc-
ture, thus effectively improves the generalization ability of
our model and shows obvious superiority.

Robustness Assessment

We verify the robustness of the algorithms by adding the
noise to the datasets. Specifically, we conduct clustering
experiments on two datasets, i.e., MNIST! and Fashion-

"http://yann.lecun.com/exdb/mnist
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MNIST?. For both datasets, each image is equally split into
left and right parts as two views. In our experiment, a gen-
erated noise matrix is produced by randomly sampling from
the range [0, 1]. Then, we multiply the noise matrix with a
scalar 0 < p < 1 to adjust the noise level.

According to the clustering results in Table ??, our al-
gorithm performs more robustly by increasing the level of
noise. It can be clearly observed that as the noise level in-
creases, the performances of all algorithms decrease, how-
ever, the performance of our algorithm is always the top per-
former. These results indicate that when the datasets con-
tain noise, our algorithm can suppress the noise and en-
sure promising clustering performance. Although the noise
is involved, the intrinsic information and the latent structure
across different views are still encoded into the multi-view
information-bottleneck representation, resulting in robust-
ness and superior generalization performance.

Ablation Study

In this part, we conduct the ablation study to further demon-
strate the effectiveness of the proposed CMIB-Nets.

Comparison of performances. In order to investigate
the effectiveness of different components of the proposed
approach, we conduct a series of clustering experiments

*https://github.com/zalandoresearch/fashion-mnist



Datasets Methods ACC NMI
Viewl 73.01£1.62 70.73£2.15
View2 70.80+1.81 65.86+3.13
Handwritten S 76.24+1.81 71.39+1.50
H 81.85+1.57 75.944+1.36
Z 89.72+1.06 81.78+1.17
Viewl 42.31£2.55 18.2443.39
View?2 46.56£2.82 23.99+4.10
BBCSport S 52.92+3.65 40.24+3.19
H 60.34+£2.57 52.39+3.73
Z 77.13+1.63 71.47+3.12
Viewl 64.25+2.11 64.83£1.32
View2 61.10£1.82 58.57£3.15
CUB S 74.23£0.81 72.08+1.20
H 72.75£1.36 70.69£1.58
Z 80.37+2.06 77.40+1.02
'S represents view-specific representation, H denotes

the shared representation, and Z means the multi-view
information-bottleneck representation.

Table 3: Ablation study of the original views and different
representations with clustering task.
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Figure 3: Comparison of the robustness of the original views
and various representations on the noisy datasets.

by using the original features, shared representation H,
view-specific representation S, and multi-view information-
bottleneck representation Z, respectively. The results of the
ablation study are shown in Table 3. It can be observed
that the multi-view information-bottleneck representation Z
learned by our model achieves the best results.

Comparison of visualizations. Furthermore, we also vi-
sualize the original features and different multi-view repre-
sentations with t-SNE (Maaten and Hinton 2008) on Hand-
written and BBCSport datasets in Fig. 2, to intuitively il-
lustrate the advantages of our model. Obviously, it can
be seen that the learned representation can better express
the structural relationship of the original data. In addition,
the multi-view information-bottleneck representation Z can
jointly learn the intra-view intrinsic information and the
inter-view latent structure, thereby making the clustering
structure more clear.

Comparison of robustness. Moreover, the multi-view
information-bottleneck representation Z is not only more
discriminative, but also more robust than other features or
representations. Specifically, we perform clustering abla-
tion experiments on the noisy datasets, and the results are
shown in Fig. 3. It can be observed that as the level of noise
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Figure 4: Model analysis: (a) Dimensionality analysis (i.e.,
Z and H); (b) Convergence analysis.

increases, the performances of all representations will de-
crease, but the multi-view information-bottleneck represen-
tation Z is always promising and is more stable.

Model Analysis

In this work, we select the dimensionality of shared repre-
sentation H from {4, 8, 16,32,50,64} and the dimension-
ality of multi-view information-bottleneck representation Z
from {32, 50, 64, 100, 128, 150}. As shown in Fig. 4(a), we
show the performances of our proposed CMIB-Nets with
different dimensions of the representations on Handwritten
dataset. Moreover, if the dimensionality decreases too much,
the representation may not have enough capacity to encode
information from all views. Too larger dimensionality also
produces lower performance, where high-dimensional rep-
resentation tends to overfit and may contain possible noise.
To demonstrate the convergence of the proposed method,
we conduct the convergence analysis as shown in Fig. 4(b).
The optimization process of our model is relatively stable,
where the loss decreases rapidly and converges within a
number of iterations on Handwritten dataset in practice.

Conclusion

In this paper, we propose a novel multi-view representation
learning method, which relies on multiple views to produce a
reliable representation for downstream tasks. The proposed
model explores the latent relationships and intrinsic infor-
mation among different views, and exploits the information
bottleneck principle to discard the useless information from
the multi-view data. The resulting multi-view information-
bottleneck representation can retain intrinsic information,
and adaptively balance the consistency and complementar-
ity among multiple views. The experimental results indi-
cate that the proposed CMIB-Nets achieves superior per-
formances on various real-world datasets for different tasks
compared to state-of-the-art methods, showing better gen-
eralization performance and robustness. In future work, we
will extend the current method to an end-to-end model.
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