
GraphMix: Improved Training of GNNs for Semi-Supervised Learning

Vikas Verma1,2, Meng Qu1, Kenji Kawaguchi3, Alex Lamb1, Yoshua Bengio1, Juho Kannala2, Jian
Tang1

1 Mila - Québec Artificial Intelligence Institute, Montréal, Canada, 2 Aalto University, Finland, 3 Massachusetts Institute of
Technology (MIT), USA

Abstract

We present GraphMix, a regularization method for Graph
Neural Network based semi-supervised object classification,
whereby we propose to train a fully-connected network jointly
with the graph neural network via parameter sharing and
interpolation-based regularization. Further, we provide a theo-
retical analysis of how GraphMix improves the generalization
bounds of the underlying graph neural network, without mak-
ing any assumptions about the “aggregation” layer or the depth
of the graph neural networks. We experimentally validate this
analysis by applying GraphMix to various architectures such
as Graph Convolutional Networks, Graph Attention Networks
and Graph-U-Net. Despite its simplicity, we demonstrate that
GraphMix can consistently improve or closely match state-
of-the-art performance using even simpler architectures such
as Graph Convolutional Networks, across three established
graph benchmarks: Cora, Citeseer and Pubmed citation net-
work datasets, as well as three newly proposed datasets: Cora-
Full, Co-author-CS and Co-author-Physics.

1 Introduction
Due to the presence of graph-structured data across a wide
variety of domains, such as biological networks, citation
networks and social networks, there have been several at-
tempts to design neural networks, known as graph neu-
ral networks (GNN), that can process arbitrarily structured
graphs. Early work includes (Gori, Monfardini, and Scarselli
2005; Scarselli et al. 2009) which propose a neural net-
work that can directly process most types of graphs e.g.,
acyclic, cyclic, directed, and undirected graphs. More recent
approaches include (Bruna et al. 2013; Henaff, Bruna, and
LeCun 2015; Defferrard, Bresson, and Vandergheynst 2016;
Kipf and Welling 2016; Gilmer et al. 2017; Hamilton, Ying,
and Leskovec 2017; Veličković et al. 2018, 2019; Qu, Bengio,
and Tang 2019; Gao and Ji 2019; Ma et al. 2019), among oth-
ers. Many of these approaches are designed for addressing the
problem of semi-supervised learning over graph-structured
data (Zhou et al. 2018). Much of these research efforts have
been dedicated to developing novel architectures.

Here we instead propose an architecture-agnostic method
for regularized training of GNNs for semi-supervised

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

node classification. Recently, regularization based on data-
augmentation has been shown to be very effective in other
types of neural networks but how to apply these techniques in
GNNs is still under-explored. Our proposed method Graph-
Mix 1 is a unified framework that draws inspiration from inter-
polation based data augmentation (Zhang et al. 2018; Verma
et al. 2019a) and self-training based data-augmentation
(Laine and Aila 2016; Tarvainen and Valpola 2017; Verma
et al. 2019b; Berthelot et al. 2019). We show that with our pro-
posed method, we can achieve state-of-the-art performance
even when using simpler GNN architectures such as Graph
Convolutional Networks (Kipf and Welling 2017), with no
additional memory cost and with minimal additional com-
putation cost. Further, we conduct a theoritical analysis to
demonstrate the effectiveness of the proposed method over
the underlying GNNs.

2 Problem Definition and Preliminaries
Problem Setup: We are interested in the problem of
semi-supervised node and edge classification using graph-
structured data. We can formally define such graph-structured
data as an undirected graph G = (V,A,X), where V =
Vl ∪Vu is the union of labeled (Vl) and unlabeled (Vu) nodes
in the graph with cardinalities nl and nu, and A is the adja-
cency matrix representing the edges between the nodes of
V , X ∈ R(nl+nu)×d is the input node features. Each node
v belongs to one out of C classes and can be labeled with
a C-dimensional one-hot vector yv ∈ RC . Given the labels
Yl ∈ Rnl×C of the labeled nodes Vl, the task is to predict the
labels Yu ∈ Rnu×C of the unlabeled nodes Vu.

Graph Neural Networks: Graph Neural Networks (GNN)
learn the lth layer representations of a sample i by leveraging
the representations of the samples NB(i) in the neighbour-
hood of i. This is done by using an aggregation function
that takes as an input the representations of all the samples
along with the graph structure and outputs the aggregated
representation. The aggregation function can be defined us-
ing the Graph Convolution layer (Kipf and Welling 2017),

1Code available at https://github.com/vikasverma1077/GraphMix
Appendix available at https://arxiv.org/abs/1909.11715
Correspondence: vikasverma.iitm@gmail.com

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

10024

Figure 1: The procedure for training with GraphMix . The labeled and unlabeled nodes are shown with different colors in the
graph. GraphMix augments the training of a baseline Graph Neural Network (GNN) with a Fully-Connected Network (FCN). The
FCN is trained by interpolating the hidden states and the corresponding labels. This leads to better features which are transferred
to the GNN via sharing the linear transformation parameters W (in Equation1) of the GNN and FCN layers. Furthermore, the
predictions made by the GNN for unlabeled data are used to augment the input data for the FCN. The FCN and the GNN losses
are minimized jointly by alternate minimization.

Graph Attention Layer (Veličković et al. 2018), or any gen-
eral message passing layer (Gilmer et al. 2017). Formally,
let h(l) ∈ Rn×k be a matrix containing the k-dimensional
representation of n nodes in the lth layer, then:

h(l+1) = σ(AGGREGATE(h(l)W,A)) (1)

where W ∈ Rk×k′ is a linear transformation matrix, k′
is the dimension of (l + 1)th layer, AGGREGATE is the
aggregation function that utilizes the graph adjacency matrix
A to aggregate the hidden representations of neighbouring
nodes and σ is a non-linear activation function, e.g. ReLU.

Interpolation Based Regularization Techniques: Re-
cently, interpolation-based techniques have been proposed
for regularizing neural networks. We briefly describe some of
these techniques here. Mixup (Zhang et al. 2018) trains a neu-
ral network on the convex combination of input and targets,
whereas Manifold Mixup (Verma et al. 2019a) trains a neural
network on the convex combination of the hidden states of a
randomly chosen hidden layer and the targets. While Mixup
regularizes a neural network by enforcing that the model
output should change linearly in between the examples in the
input space, Manifold Mixup regularizes the neural network
by learning better (more discriminative) hidden states.

Formally, suppose Tθ(x) = (f ◦g)θ(x) is a neural network
parametrized with θ such that g : x −→ h is a function
that maps input sample to hidden states, f : h −→ ŷ is
a function that maps hidden states to predicted output, λ
is a random variable drawn from Beta(α, α) distribution,
Mixλ(a,b) = λ∗a+(1−λ)∗b is an interpolation function,
D is the data distribution, (x,y) and (x′,y′) is a pair of
labeled examples sampled from distributionD and ` be a loss

function such as cross-entropy loss, then the Manifold Mixup
Loss is defined as:

LMM(D, Tθ, α) = E
(x,y)∼D

E
(x′,y′)∼D

E
λ∼Beta(α,α)

(2)

`(f(Mixλ(g(x), g(x′))),Mixλ(y,y′)).

We use above Manifold Mixup loss for training an auxil-
iary Fully-connected-network as described in Section 3.

3 GraphMix
3.1 Motivation
Data Augmentation is one of the simplest and most efficient
technique for regularizing a neural network. In the domains
of computer vision, speech and natural language, there exist
efficient data augmentation techniques, for example, random
cropping, translation or Cutout (Devries and Taylor 2017)
for computer vision, (Ko et al. 2015) and (Park et al. 2019)
for speech and (Xie et al. 2017) for natural language. How-
ever, data augmentation for the graph-structured data remains
under-explored. There exists some recent work along these
lines but the prohibitive computation cost (see Section 5)
introduced by these methods make them impractical for real-
world large graph datasets. Based on these limitations, our
main objective is to propose an efficient data augmentation
technique for graph datasets.

Recent work based on interpolation-based data augmenta-
tion (Zhang et al. 2018; Verma et al. 2019a) has seen sizable
improvements in regularization performance across a number
of tasks. However, these techniques are not directly appli-
cable to graphs for an important reason: Although we can
create additional nodes by interpolating the features and cor-
responding labels, it remains unclear how these new nodes

10025

must be connected to the original nodes via synthetic edges
such that the structure of the whole graph is preserved. To
alleviate this issue, we propose to train an auxiliary Fully-
Connected Network (FCN) using Manifold Mixup as dis-
cussed in Section 3.2. Note that the FCN only uses the node
features (not the graph structure), thus the Manifold mixup
loss in Eq. 2 can be directly used for training the FCN.

Interpolation based data-augmentation techniques have an
added advantage for training GNNs: A vanilla GNN learns
the representation of each node by iteratively aggregating
information from the neighbors of that node (Equation 1).
However, this induces the problem of oversmoothing (Li,
Han, and Wu 2018; Xu et al. 2018) while training GNNs
with many layers. Due to this limitation, GNNs are trained
only with a few layers, and thus they can only leverage the
local neighbourhood of each node for learning its represen-
tations, without leveraging the representations of the nodes
which are multiple hops away in the graph. This limitation
can be addressed using the interpolation-based method such
as Manifold Mixup: in Manifold Mixup, the representations
of a randomly chosen pair of nodes is used to facilitate bet-
ter representation learning; it is possible that the randomly
chosen pair of nodes will not be in the local neighbourhood
of each other. Based on these challenges and motivations we
present our proposed approach GraphMix for training GNNs
in the following Section.

3.2 Method
We first describe GraphMix at a high-level and then give
a more formal description. GraphMix augments the vanilla
GNN with a Fully-Connected Network (FCN). The FCN loss
is computed using Manifold Mixup as discussed below and
the GNN loss is computed normally. Manifold Mixup training
of FCN facilitates learning more discriminative node repre-
sentations (Verma et al. 2019a). An important question is how
these more discriminative node representations can be trans-
ferred to the GNN? One potential approach could involve
maximizing the mutual information between the hidden states
of the FCN and the GNN using formulations similar to those
proposed by (Hjelm et al. 2019; Sun et al. 2020). However,
this requires optimizing additional network parameters. In-
stead, we propose parameter sharing between FCN and GNN
to facilitate the transfer of discriminative node representa-
tions from the FCN to the GNN. It is a viable option because
as mentioned in Eq 1, a GNN layer typically performs an
additional operation (AGGREGATE) on the linear trans-
formations of node representations (which are essentially
pre-activation representations of the FCN layer). Using the
more discriminative representations of the nodes from FCN,
as well as the graph structure, the GNN loss is computed in
the usual way to further refine the node representations. In
this way we can exploit the improved representations from
Manifold Mixup for training GNNs.

In Section 3.3, without making any assumption about the
aggregation function and the depth of the graph neural net-
work, we show that GraphMix improves the generalization of
the underlying graph neural network. This makes GraphMix
applicable to various kind of architectures having different
aggregation functions, such as weighed averaging in GCN

(Kipf and Welling 2016), attention based aggregation in GAT
(Veličković et al. 2018) and graph-pooling/unpooling opera-
tions in Graph U-Nets (Gao and Ji 2019). In the aforemen-
tioned sense, GraphMix procedure is highly flexible: it can
be applied to any underlying GNN as long as the underlying
GNN applies parametric transformations to the node features.

Additionally, we propose to use the predicted targets from
the GNN to augment the training set of the FCN. In this way,
both the FCN and the GNN facilitate each other’s learning
process. Both the FCN loss and the GNN loss are optimized
in an alternating fashion during training. At inference time,
predictions are made using only the GNN.

A diagram illustrating GraphMix is presented in Figure 1
and the full algorithm is presented in Appendix A.3. Further,
we draw similarities and difference of GraphMix w.r.t. Co-
training framework in the Appendix A.2.

So far we have presented the general design of GraphMix,
now we present GraphMix more formally. Given a graph G,
let (Xl,Yl) be the input features and the labels of the labeled
nodes Vl and let (Xu) be the input features of the unlabeled
nodes Vu. Let Fθ and Gθ be a FCN and a GNN respectively,
which share the parameters θ. The FCN loss from the labeled
data is computed using Eq. 2 as follows:

Lsupervised = LMM((Xl,Yl), Fθ, α) (3)

For unlabeled nodes Vu, we compute the prediction Ŷu using
the GNN:

Ŷu = Gθ(Xu) (4)

We note that recent state-of-the-art semi-supervised learning
methods use a teacher model to accurately predict targets for
the unlabeled data. The teacher model can be realized as a
temporal ensemble of the student model (the model being
trained) (Laine and Aila 2016) or by using an Exponential
Moving Average (EMA) of the parameters of the student
model (Tarvainen and Valpola 2017; Verma et al. 2019b).
Different from these approaches, we use the GNN as a teacher
model for predicting the targets for the FCN. This is due
to the fact that GNNs leverage graph structure, which in
practice, allows them to make more accurate predictions than
the temporal ensemble or EMA ensemble of FCN (although
there is no theoretical guarantee for this).

Moreover, to improve the accuracy of the predicted targets
in Eq 4, we applied the average of the model prediction
on K random perturbations of an input sample along with
sharpening as discussed in Appendix A.1.

Using the predicted targets for unlabeled nodes, we create
a new training set (Xu, Ŷu). The loss from the unlabeled
data for the FCN is computed as:

Lunsupervised = LMM((Xu, Ŷu), Fθ, α) (5)

Total loss for training the FCN is given as the weighted sum
of above two loss terms.

LFCN = Lsupervised + w(t) ∗ Lunsupervised (6)

where w(t) is a sigmoid ramp-up function (Tarvainen and
Valpola 2017) which increases from zero to its max value γ
during the course of training.

10026

Now let us assume that the loss for an underlying GNN is
LGNN = `(Gθ(Xl),Yl); the overall GraphMix loss for the
joint training of the FCN and GNN can be defined as the
weighted sum of the GNN loss and the FCN loss:

LGraphMix = LGNN + λ ∗ LFCN (7)

However, throughout our experiments, optimizing FCN
loss and GNN loss alternatively at each training epoch
achieved better test accuracy (discussed in Appendix A.12).
This has an added benefit that it removes the need to tune
weighing hyper-parameter λ.

For Manifold Mixup training of FCN, we apply mixup
only in the hidden layer. Note that in (Verma et al. 2019a),
the authors recommended applying mixing in a randomly
chosen layer (which also includes the input layer) at each
training update. However, we observed under-fitting when
applying mixup randomly at the input layer or the hidden
layer. Applying mixup only in the input layer also resulted in
underfitting and did not improve test accuracy.

Memory and Computational Requirements: One of the
major limitations of current GNNs, which prohibits their ap-
plication to real-world large datasets, is their memory com-
plexity. For example, the fastest implementation of GCN,
which stores the entire adjacency matrix A in the memory,
has the memory complexity O(|V|2). Implementations with
lower memory requirements are possible but they incur higher
latency cost due to repeatedly loading parts of adjacency ma-
trix in the memory. Due to these reasons, methods which
have additional memory requirement in comparison to the
baseline GNNs, are less appealing in practice. In GraphMix,
since the parameters of the FCN and GNN are shared, there
is no additional memory requirement. Furthermore, Graph-
Mix does not add any significant computation cost over the
underlying GNN, because the underlying GNN is trained in
the standard way and the FCN training requires trivial addi-
tional computation cost for computing the predicted-targets
(Appendix A.1) and the interpolation function (Mixλ(a,b)
in Section 2).

3.3 Analysis
In this subsection, we study how GraphMix impacts the gen-
eralization bound of a underlying GNN. Our analysis, which
is based on Rademacher complexity (Bartlett and Mendelson
2002), provides a new generalization bound for GraphMix,
which shows how adding regularization to training the FCN
with pseudolabels improves overall generalization. We rely
on the effect of changing one sample in Manifold Mixup
and the fact that the weights are shared by a GNN and the
corresponding FCN in GraphMix.

Let G be a fixed graph with n total nodes. Define zi =
(xi, yi) to be the pair of the feature and the true label of the
i-th node. Without loss of generality, let S = (z1, . . . , zm)
be the training set with the labeled nodes where m = nl and
data points z1, . . . , zm are sampled according to an unknown
distribution D to form the labeled node set S. In this subsec-
tion, we follow the previous paper on graph neural networks
by assuming that all samples are i.i.d. (including replacement
sample) (Verma and Zhang 2019).

Let Γ be a finite set of the hyperparameters. For every
hyperparameter γ ∈ Γ, define Fγ to be a distribution-
dependent hypothesis space corresponding the hyperparam-
eter γ. That is, Fγ = {fγ : (∃S ∈ S)[fγ = Aγ(S)]}
where Aγ is an algorithm that outputs the hypothesis fγ
given a dataset S, and S is the set of training datasets such
that the probability of S ∈ S according to D is one. For
each fγ ∈ Fγ , fγ(· ;G) represents GNN with the graph G
and fγ(· ;G0) represents FCN where G0 is the null graph
version of G (i.e., G without edges). Let R`m(Fγ) be the
Rademacher complexity (Bartlett and Mendelson 2002) of
the set {(x, y) 7→ `(fγ(x;G), y) : fγ ∈ Fγ}.

Let LGNN(S, fγ) be the LGNN with the GNN
fγ(· ;G) and labeled data points S as LGNN(S, fγ) =
1
m

∑m
i=1 `(fγ(xi;G), yi). Let LFCN(S, fγ) be LFCN with the

FCN fγ(· ;G0) and labeled data points S as LFCN(S, fγ) =

LMM(S, fγ(· ;G0), α) + nu
m LMM((XS

u , Ŷ
S
u), fγ(· ;G0), α)

where (XS
u , Ŷ

S
u) is the unlabeled nodes (Xu, Ŷu)

that corresponds to the labeled node set S. Let
LGraphMix(S, fγ) = LGNN(S, fγ) + λLFCN(S, fγ). Let c be
the upper bound on per-sample loss as c ≥ `(fγ(xi;G), yi)
and c ≥ `(fγ(xi;G0), yi). For example, c = 1 for training
and test error (or 0-1 loss).

Theorem 1 provides a generalization bound for GraphMix,
which shows that GraphMix can improve the generalization
bound of the underlying GNN under the condition of V > 0
as discussed below.
Theorem 1. For any δ > 0, with probability at
least 1 − δ, the following holds: for all γ ∈ Γ and
all fγ ∈ Fγ , we have that Ex,y∼D[`(fγ(x;G), y)] −
LGraphMix(S, fγ) ≤ R`m(Fγ) + c

√
ln(|Γ|/δ)

2m − λV , where

V = ES′∼Dm [inffγ∈Fγ LFCN(S′, fγ)]− 4c
√

ln(|Γ|/δ)
2m .

The proof of Theorem 1 is given in the following.
The generalization bound in Theorem 1 becomes a gen-
eralization bound for GNN without GraphMix when
λ = 0 as desired. By comparing the generalization
bound with λ = 0 (no GraphMix) and λ > 0 (with
GraphMix), we can see that GraphMix improves the
generalization bound of underlying GNN when V =

ES′∼Dm [inffγ∈Fγ LFCN(S′, fγ)] − 4c
√

ln(|Γ|/δ)/(2m) >
0. Here, the first term ES′∼Dm [inffγ∈Fγ LFCN(S′, fγ)] in-
creases as the hypothesis space Fγ gets “smaller” or has
less complexity. Thus, GraphMix improves the generaliza-
tion bound of an underlying GNN when the hyperparameter
search over γ ∈ Γ results in Fγ of moderate complexity
such that the first term is greater than 4c

√
ln(|Γ|/δ)/(2m).

The first term contains the manifold mixup loss LFCN(S′, fγ)
over random training datasets S′ (6= S), which is expected
to be larger when compared with that of the standard loss
without manifold mixup.

For each fixed Fγ , the generalization bound in Theo-
rem 1 goes to zero as m → ∞ since R`m(Fγ) → 0 and
V → V0 ≥ 0 as m → ∞. The training loss is also min-
imized when the trained model fγ ∈ Fγ fits well to the
particular given training data set S. Therefore, given a par-
ticular training dataset S, the expected loss is minimized if

10027

we conduct a hyperparameter search over γ ∈ Γ such that
fγ ∈ Fγ minimize the training loss for the given S but Fγ
has moderate complexity to not being able to minimize the
manifold mixup losses for other datasets S′ (6= S) drawn
from D. Unlike the standard data points, the data points gen-
erated during manifold mixup in GraphMix are typically not
memorizable or interpolated by FCN.

3.4 Proof of Theorem 1
In the proof, we analyse the effect of changing one sample
in Manifold Mixup and GNN-generated targets by utilizing
the fact that the weights are shared by a GNN and the corre-
sponding FCN. The the fact of sharing weights also results
in the generalization bound that relates the generalization in
FCN via Manifold Mixup to the generalization of the GNN.

Proof. Let γ ∈ Γ be fixed. Define ϕ(S) =
supfγ∈Fγ Ex,y∼D[`(fγ(x;G), y)] − LGraphMix(S, fγ). We
first provide an upper bound on ϕ(S) by using McDiarmid’s
inequality. To apply McDiarmid’s inequality to ϕ(D), we
compute an upper bound on |ϕ(S)− ϕ(S′)| where S and S′
be two training datasets differing by exactly one point of an
arbitrary index i0; i.e., Si = S′i for all i 6= i0 and Si0 6= S′i0 .

ϕ(S′)− ϕ(S) ≤ sup
fγ∈Fγ

LGraphMix(S, fγ)− LGraphMix(S′, fγ)

= sup
fγ∈Fγ

(LGNN(S, fγ)− LGNN(S′, fγ))

+ λ(LFCN(S, fγ)− LFCN(S′, fγ))

where the first line follows the property of the supremum,
sup(a)− sup(b) ≤ sup(a− b), and the second line follows
the definition of LGraphMix.

For the first term,

LGNN(S, fγ)− LGNN(S′, fγ) =

1

m

(
`(fγ(xi0 ;G), yi0)− (`(fγ(x′i0 ;G), y′i0)

)
≤ c

m
,

where we used the fact that given a fixed G and a fixed fγ ,
`(fγ(xi;G), yi) = `(fγ(x′i;G), y′i) for i 6= i0. This holds
since fγ(· ;G) does not depend on S given a G and a fγ ,
even though fγ(xi;G) contains the aggregation functions
over the graph G.

For the second term,

LMM(S, fγ(· ;G0), α)− LMM(S′, fγ(· ;G0), α)

≤ c(2m− 1)

m2
≤ 2c

m
,

where we use the fact that LMM(S, fγ(· ;G0), α)
has m2 terms and 2m − 1 terms differ for S
and S′, each of which is bounded by the con-
stant c. Similarly, LMM((XS

u , Ŷ
S
u), fγ(· ;G0), α) −

LMM((XS′

u , Ŷ
S′

u), fγ(· ;G0), α) ≤ 2c
nu

, since the la-
bels ŶS

u and ŶS′

u are determined by fγ(xi;G), and
fγ(xi;G) = fγ(x′i;G) for i 6= i0, given a fixed G and a
fixed fγ . Therefore,

LFCN(S, fγ)− LFCN(S′, fγ) ≤ 4c

m
.

Using these upper bounds,

ϕ(S′)− ϕ(S) ≤ c(1 + 4λ)

m
.

Similarly, ϕ(S)− ϕ(S′) ≤ c(1+4λ)
m . Thus, by McDiarmid’s

inequality, for any δ > 0, with probability at least 1− δ/|Γ|,

ϕ(S) ≤ ES̄ [ϕ(S̄)] + c(1 + 4λ)

√
ln(|Γ|/δ)

2m
.

Moreover,

ES̄ [ϕ(S̄)] + λES̄
[

inf
fγ∈Fγ

LFCN(S̄, fγ)

]
≤ ES̄

[
sup
fγ∈Fγ

Ex̄′,ȳ′∼D[`(fγ(x̄′;G), ȳ′)]− LGNN(S̄, fγ)

]

≤ ES̄,S̄′

[
sup
fγ∈Fγ

1

m

m∑
i=1

(`(fγ(x̄′i;G), ȳ′i)− `(fγ(x̄i;G), ȳi))

]

≤ Eξ,D̄,D̄′

[
sup
fγ∈Fγ

1

m

m∑
i=1

ξi(`(fγ(x̄′i;G), ȳ′i)− `(fγ(x̄i;G), ȳi))

]
≤ 2Rn(Θ)

where the second line and the last line use the subadditiv-
ity of supremum, the third line uses the Jensen’s inequal-
ity and the convexity of the supremum, the fourth line fol-
lows that for each ξi ∈ {−1,+1}, the distribution of each
term ξi(`(fγ(x̄′i;G), ȳ′i) − `(fγ(x̄i;G), ȳi)) is the distribu-
tion of (`(fγ(x̄′i;G), ȳ′i)− `(fγ(x̄i;G), ȳi)) since S̄ and S̄′
are drawn iid with the same distribution.

Therefore, for any δ > 0, with probability at least 1−δ/|Γ|,
all fγ ∈ Fγ ,

Ex,y∼D[`(fγ(x;G), y)]− LGraphMix(S, fγ)

≤ R`m(Fγ) + c

√
ln(|Γ|/δ)

2m
− λV.

by taking union bounds over all γ ∈ Γ, we obtain the state-
ment of this theorem.

4 Experiments
We present results for GraphMix algorithm using standard
benchmark datasets and the standard architecture in Section
4.1 and 4.3. We also conduct an ablation study on Graph-
Mix in Section A.5 to understand the contribution of various
components to its performance. Refer to Appendix A.4 for
dataset details and A.8 for implementation and hyperparame-
ter details.

4.1 Semi-supervised Node Classification
For baselines, we choose GCN (Kipf and Welling 2017),
and the recent state-of-the-art graph neural networks GAT
(Veličković et al. 2018), GMNN (Qu, Bengio, and Tang
2019) and Graph U-Net (Gao and Ji 2019), as well as the
recently proposed regularizers for graph neural networks.
GraphMix(GCN) , GraphMix(GAT) and GraphMix(Graph

10028

Algorithm Cora Citeseer Pubmed
GCN 81.30±0.66 70.61±0.22 79.86±0.34
GAT 82.70±0.21 70.40±0.35 79.05±0.64

Graph U-Net 81.74±0.54 67.69±1.10 77.73 ±0.98

BVAT* 83.6±0.5 74.0±0.6 79.9±0.4
DropEdge* 82.8 72.3 79.6

GraphSGAN* 83.0±1.3 73.1±1.8 -
GraphAT* 82.5 73.4 -

GraphVAT* 82.6 73.7 -

GraphMix (GCN) 83.94±0.57 74.72±0.59 80.98±0.55
GraphMix (GAT) 83.32±0.18 73.08±0.23 81.10±0.78

GraphMix
(Graph U-Net) 82.47±0.76 69.31±1.52 78.91±1.25

Table 1: Results of node classification (% test accuracy) on
the standard split of datasets. [*] means the results are taken
from the corresponding papers. We conduct 100 trials and
report mean and standard deviation over the trials (refer to
Table 8 in the Appendix for comparison with other methods
on standard Train/Validation/Test split).

Algorithm Cora Citeseer Pubmed
GCN 77.84±1.45 72.56±2.46 78.74±0.99
GAT 77.74±1.86 70.41±1.81 78.48±0.96

Graph U-Net 77.59±1.60 67.55±0.69 76.79±2.45

GraphMix (GCN) 82.07±1.17 76.45±1.57 80.72±1.08
GraphMix (GAT) 80.63±1.31 74.08±1.26 80.14±1.51

GraphMix
(Graph-U-Net) 80.18±1.62 72.85±1.71 78.47±0.64

Table 2: Results of node classification (% test accuracy) using
10 random Train/Validation/Test split of datasets. We conduct
100 trials and report mean and standard deviation over the
trials.

U-Net) refer to the methods where underlying GNNs are
GCN, GAT and Graph U-Net respectively. Refer to Appendix
A.8 for implementation and hyperparameter details. (Shchur
et al. 2018) demonstrated that the performance of the cur-
rent state-of-the-art Graph Neural Networks on the standard
train/validation/test split of the popular benchmark datasets
(such as Cora, Citeseer, Pubmed, etc) is significantly different
from their performance on the random splits. For fair evalu-
ation, they recommend using multiple random partitions of
the datasets. Along these lines, we created 10 random splits
of the Cora, Citeseer and Pubmed with the same train/ valida-
tion/test number of samples as in the standard split. We also
provide the results for the standard train/validation/test split.
The results are presented in Table 2. We observe that Graph-
Mix always improves the accuracy of the underlying GNNs
such as GCN, GAT and Graph-U-Net across all the dataset,
with GraphMix(GCN) achieving the best results. We further
present results with fewer labeled samples in Appendix A.7.
We observer that the relative increase in test accuracy us-
ing GraphMix over the baseline GNN is more pronounced
when the labeled samples are fewer. This makes GraphMix
particularly appealing for very few labeled data problems.

Algorithm Cora-Full Coauthor-CS Coauthor
-Physics

GCN* 62.2±0.6 91.1±0.5 92.8±1.0
GAT* 51.9±1.5 90.5±0.6 92.5±0.9
MoNet* 59.8±0.8 90.8±0.6 92.5±0.9
GS-Mean* 58.6±1.6 91.3±2.8 93.0±0.8

GCN 60.13±0.57 91.27±0.56 92.90±0.92
Graph-U-Net 59.82±0.39 90.89±0.43 92.57±0.81

GraphMix (GCN) 61.80±0.54 91.83±0.51 94.49±0.84
GraphMix
(Graph-U-Net) 60.92 ± 0.51 91.44 ± 0.46 93.78 ± 0.79

Table 3: Comparison of GraphMix with other methods (% test
accuracy), for Cora-Full, Coauthor-CS, Coauthor-Physics. ∗
refers to the results reported in (Shchur et al. 2018).

Algorithm Bit OTC Bit Alpha
DeepWalk 63.20 62.71

GMNN 66.93 65.86
GCN 65.72±0.38 64.00±0.19

GraphMix (GCN) 66.35±0.41 65.34±0.19

Table 4: Results on Link Classification (%F1 score). ∗ means
the results are taken from the corresponding papers.

4.2 Results on Larger Datasets
We also provide results on three recently proposed datasets
which are relatively larger than standard benchmark datasets
(Cora/Citeseer/Pubmed). We use Cora-Full dataset proposed
in (Bojchevski and Günnemann 2018) and Coauthor-CS and
Coauthor-Physics datasets proposed in (Shchur et al. 2018).
The results are presented in Table 32. We observe that Graph-
Mix(GCN) improves the results over GCN for all the three
datasets with a significant margin. We note that we did min-
imal hyperparameter search for GraphMix(GCN) as men-
tioned in Appendix A.8. The details of the datasets is given
in Appendix A.4.

4.3 Semi-supervised Link Classification
In the semi-supervised link classification problem, the task is
to predict the labels of the remaining links, given a graph and
labels of a few links. Following (Taskar et al. 2004), we can
formulate the link classification problem as a node classifica-
tion problem, i.e., given an original graph G, we construct a
dual Graph G′, the node set V ′ of the dual graph corresponds
to the link set E′ of the original graph. The nodes in the
dual graph G′ are connected if their corresponding links in
the graph G share a node. The attributes of a node in the
dual graph are defined as the index of the nodes of the corre-
sponding link in the original graph. Using this formulation,
we present results on link classification on Bit OTC and Bit
Alpha benchmark datasets in the Table 4. As the numbers of
the positive and negative edges are strongly imbalanced, we
report the F1 score. Our results show that GraphMix(GCN)

2We do not provide results for GAT based experiments in Table
3 and Table 4 because we ran out of GPU memory required to run
these experiments with larger (higher number of nodes) datasets.

10029

(a) GCN (b) GCN(self-training) (c) GraphMix(GCN) (d) Class-specific Soft-Rank

Figure 2: Two-dimensional representation of the hidden states of Citeseer dataset using (a) GCN, (b) GCN(self-training), (c)
GraphMix(GCN), and Soft-Rank (d). GraphMix(GCN) learns better separated representations.

improves the performance over the baseline GCN method
and is comparable with the recently proposed state-of-the-art
method GMNN (Qu, Bengio, and Tang 2019) for both the
datasets.

4.4 Visualization of the Learned Features
In Figure 2, we present an analysis of the features learned by
GraphMix for Cora dataset using the t-SNE (van der Maaten
and Hinton 2008) based 2D visualization of the hidden states.
We observe that GraphMix learns hidden states which are
better separated and condensed than GCN and GCN(self-
training). Here, GCN(self-training) refers to training a GCN
in a normal way but with additional self-prediction based
targets for the unlabeled samples. We further evaluate the
Soft-rank (refer to Appendix A.10) of the class-specific hid-
den states to demonstrate that GraphMix(GCN) makes the
class-specific hidden states more concentrated than GCN
and GCN(self-training), as shown in Figure 2d. Refer to Ap-
pendix A.11 for 2D representation of other datasets.

5 Related Work
• Semi-supervised Learning over Graph Data: There ex-

ists a long line of work for semi-supervised learning over
graph data (Zhu and Ghahramani 2002; Zhu, Ghahramani,
and Lafferty 2003). Contrary to previous methods, the
recent GNN based approaches define the convolutional op-
erators using the neighbourhood information of the nodes
(Kipf and Welling 2017; Veličković et al. 2018).These con-
volution operator based method exhibit state-of-the-results
for semi-supervised learning over graph data, hence much
of the recent attention is dedicated to proposing architec-
tural changes to these methods (Qu, Bengio, and Tang
2019; Gao and Ji 2019; Ma et al. 2019). Unlike these meth-
ods, we propose a regularization technique that can be
applied to any of these GNNs which uses a parameterized
transformation on the node features.

• Data Augmentation: It is well known that the generaliza-
tion of a learning algorithm can be improved by enlarg-
ing the training data size. Since labeling more samples
is labour-intensive and costly, data-augmentation has be-
come a popular technique for enlarging the training data
size. Mixing based algorithms are a particular class of
data-augmentation methods in which additional training

samples are generated by interpolating the samples (either
in the input or hidden space) and/or their corresponding tar-
gets. Mixup (Zhang et al. 2018), Manifold Mixup (Verma
et al. 2019a), AMR (Beckham et al. 2019), ISD (Jeong
et al. 2021) are notable examples of this class of algorithms.
Unlike these methods which have been proposed for the
fixed topology datasets such as images, we propose in-
terpolation based data-augmentation for graph-structured
data.

• Regularizing Graph Neural Networks: Regularizing
Graph Neural Networks has drawn some attention recently.
GraphSGAN (Ding, Tang, and Zhang 2018) first uses an
embedding method such as DeepWalk (Perozzi, Al-Rfou,
and Skiena 2014) and then trains generator-classifier net-
works in the adversarial learning setting to generate fake
samples in the low-density region between sub-graphs.
BVAT (Deng, Dong, and Zhu 2019) and (Feng et al. 2019)
generate adversarial perturbations to the features of the
nodes while taking graph structure into account. These
methods require significant additional computation: Graph-
Scan requires computing node embedding as a preprocess-
ing step, BVAT and (Feng et al. 2019) require additional
gradient computation for computing adversarial perturba-
tions. Unlike these methods, GraphMix does not introduce
any significant additional computation since it is based on
interpolation-based techniques and self-generated targets.

6 Discussion
GraphMix is a simple and efficient regularizer for semi-
supervised node classification using graph neural networks.
Our extensive experiments demonstrate state-of-the-art per-
formance using GraphMix on benchmark datasets. Our theo-
retical analysis compares generalization bounds of GraphMix
vs the underlying GNNs. Further, we conduct a systematic ab-
lation study to understand the effect of different components
in the performance of GraphMix. The strong empirical results
of GraphMix suggest that in parallel to designing new archi-
tectures, exploring better regularization for graph-structured
data is a promising avenue for research. A future research
direction is to jointly model the node features and edges
of the graph such that they can be further used for generat-
ing the synthetic interpolated nodes and their corresponding
connectivity to the other nodes in the graph.

10030

References
Bartlett, P. L.; and Mendelson, S. 2002. Rademacher and
Gaussian complexities: Risk bounds and structural results.
Journal of Machine Learning Research 3(Nov): 463–482.

Beckham, C.; Honari, S.; Verma, V.; Lamb, A.; Ghadiri, F.;
Devon Hjelm, R.; Bengio, Y.; and Pal, C. 2019. On Adver-
sarial Mixup Resynthesis. arXiv e-prints arXiv:1903.02709.

Belkin, M.; Niyogi, P.; and Sindhwani, V. 2006. Manifold
Regularization: A Geometric Framework for Learning from
Labeled and Unlabeled Examples. J. Mach. Learn. Res. 7:
2399–2434. ISSN 1532-4435. URL http://dl.acm.org/citation.
cfm?id=1248547.1248632.

Berthelot, D.; Carlini, N.; Goodfellow, I.; Papernot, N.;
Oliver, A.; and Raffel, C. 2019. MixMatch: A Holistic
Approach to Semi-Supervised Learning. arXiv e-prints
arXiv:1905.02249.

Blum, A.; and Mitchell, T. 1998. Combining Labeled and
Unlabeled Data with Co-training. In Proceedings of the
Eleventh Annual Conference on Computational Learning
Theory, COLT’ 98, 92–100. New York, NY, USA: ACM.
ISBN 1-58113-057-0. doi:10.1145/279943.279962. URL
http://doi.acm.org/10.1145/279943.279962.

Bojchevski, A.; and Günnemann, S. 2018. Deep Gaussian
Embedding of Graphs: Unsupervised Inductive Learning via
Ranking. In International Conference on Learning Represen-
tations. URL https://openreview.net/forum?id=r1ZdKJ-0W.

Bruna, J.; Zaremba, W.; Szlam, A.; and LeCun, Y. 2013. Spec-
tral Networks and Locally Connected Networks on Graphs.
CoRR abs/1312.6203.

Chapelle, O.; Schlkopf, B.; and Zien, A. 2010. Semi-
Supervised Learning. The MIT Press, 1st edition. ISBN
0262514125, 9780262514125.

Defferrard, M.; Bresson, X.; and Vandergheynst, P. 2016.
Convolutional Neural Networks on Graphs with Fast Lo-
calized Spectral Filtering. In Lee, D. D.; Sugiyama, M.;
Luxburg, U. V.; Guyon, I.; and Garnett, R., eds., Advances in
Neural Information Processing Systems 29, 3844–3852.

Deng, Z.; Dong, Y.; and Zhu, J. 2019. Batch Virtual Adver-
sarial Training for Graph Convolutional Networks. CoRR
abs/1902.09192. URL http://arxiv.org/abs/1902.09192.

Devries, T.; and Taylor, G. W. 2017. Improved Regulariza-
tion of Convolutional Neural Networks with Cutout. CoRR
abs/1708.04552. URL http://arxiv.org/abs/1708.04552.

Ding, M.; Tang, J.; and Zhang, J. 2018. Semi-supervised
Learning on Graphs with Generative Adversarial Nets. In
Proceedings of the 27th ACM International Conference on
Information and Knowledge Management, CIKM ’18, 913–
922. New York, NY, USA: ACM. ISBN 978-1-4503-6014-2.
doi:10.1145/3269206.3271768. URL http://doi.acm.org/10.
1145/3269206.3271768.

Feng, F.; He, X.; Tang, J.; and Chua, T. 2019. Graph Adver-
sarial Training: Dynamically Regularizing Based on Graph
Structure. CoRR abs/1902.08226. URL http://arxiv.org/abs/
1902.08226.

Gao, H.; and Ji, S. 2019. Graph U-Nets. In Chaud-
huri, K.; and Salakhutdinov, R., eds., Proceedings of the
36th International Conference on Machine Learning, vol-
ume 97 of Proceedings of Machine Learning Research,
2083–2092. Long Beach, California, USA: PMLR. URL
http://proceedings.mlr.press/v97/gao19a.html.
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; and
Dahl, G. E. 2017. Neural Message Passing for Quantum
Chemistry. In ICML.
Gori, M.; Monfardini, G.; and Scarselli, F. 2005. A new
model for learning in graph domains. In Proceedings. 2005
IEEE International Joint Conference on Neural Networks,
2005., volume 2, 729–734. IEEE.
Grandvalet, Y.; and Bengio, Y. 2005. Semi-supervised Learn-
ing by Entropy Minimization. In Saul, L. K.; Weiss, Y.; and
Bottou, L., eds., Advances in Neural Information Processing
Systems 17, 529–536.
Hamilton, W.; Ying, Z.; and Leskovec, J. 2017. Inductive
representation learning on large graphs. In NIPS.
Henaff, M.; Bruna, J.; and LeCun, Y. 2015. Deep Con-
volutional Networks on Graph-Structured Data. ArXiv
abs/1506.05163.
Hjelm, R. D.; Fedorov, A.; Lavoie-Marchildon, S.; Grewal,
K.; Bachman, P.; Trischler, A.; and Bengio, Y. 2019. Learn-
ing deep representations by mutual information estimation
and maximization. In International Conference on Learn-
ing Representations. URL https://openreview.net/forum?id=
Bklr3j0cKX.
Jeong, J.; Verma, V.; Hyun, M.; Kannala, J.; and Kwak, N.
2021. Interpolation-based semi-supervised learning for object
detection. 2021 IEEE/CVF Conference on Computer Vision
and Pattern Recognition .
Kipf, T. N.; and Welling, M. 2016. Variational graph auto-
encoders. arXiv preprint arXiv:1611.07308 .
Kipf, T. N.; and Welling, M. 2017. Semi-supervised classifi-
cation with graph convolutional networks. In ICLR.
Ko, T.; Peddinti, V.; Povey, D.; and Khudanpur, S. 2015. Au-
dio augmentation for speech recognition. In INTERSPEECH.
Kumar, S.; Hooi, B.; Makhija, D.; Kumar, M.; Faloutsos, C.;
and Subrahmanian, V. 2018. Rev2: Fraudulent user prediction
in rating platforms. In WSDM.
Kumar, S.; Spezzano, F.; Subrahmanian, V.; and Faloutsos, C.
2016. Edge weight prediction in weighted signed networks.
In ICDM.
Laine, S.; and Aila, T. 2016. Temporal Ensembling for Semi-
Supervised Learning. CoRR abs/1610.02242. URL http:
//arxiv.org/abs/1610.02242.
Lee, D.-H. 2013. Pseudo-Label : The Simple and Efficient
Semi-Supervised Learning Method for Deep Neural Net-
works URL http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.664.3543. Accessed on 25 October 2019.
Li, Q.; Han, Z.; and Wu, X.-M. 2018. Deeper Insights into
Graph Convolutional Networks for Semi-Supervised Learn-
ing. In AAAI.

10031

Lu, Q.; and Getoor, L. 2003. Link-based Classification. In
Proceedings of the Twentieth International Conference on
International Conference on Machine Learning, ICML’03,
496–503. AAAI Press. ISBN 1-57735-189-4. URL http:
//dl.acm.org/citation.cfm?id=3041838.3041901.

Ma, J.; Cui, P.; Kuang, K.; Wang, X.; and Zhu, W. 2019.
Disentangled Graph Convolutional Networks. In ICML.

Miyato, T.; ichi Maeda, S.; Koyama, M.; and Ishii, S. 2018.
Virtual Adversarial Training: a Regularization Method for Su-
pervised and Semi-supervised Learning. IEEE transactions
on pattern analysis and machine intelligence .

Monti, F.; Boscaini, D.; Masci, J.; Rodola, E.; Svoboda, J.;
and Bronstein, M. M. 2016. Geometric deep learning on
graphs and manifolds using mixture model CNNs. CoRR
abs/1611.08402. URL http://arxiv.org/abs/1611.08402.

Park, D. S.; Chan, W.; Zhang, Y.; Chiu, C.-C.; Zoph, B.;
Cubuk, E. D.; and Le, Q. V. 2019. SpecAugment: A Simple
Data Augmentation Method for Automatic Speech Recogni-
tion. arXiv e-prints arXiv:1904.08779.

Perozzi, B.; Al-Rfou, R.; and Skiena, S. 2014. Deepwalk:
Online learning of social representations. In KDD.

Qu, M.; Bengio, Y.; and Tang, J. 2019. GMNN: Graph
Markov Neural Networks. In Chaudhuri, K.; and Salakhut-
dinov, R., eds., Proceedings of the 36th International Con-
ference on Machine Learning, volume 97 of Proceedings
of Machine Learning Research, 5241–5250. Long Beach,
California, USA: PMLR.

Scarselli, F.; Gori, M.; Tsoi, A. C.; Hagenbuchner, M.; and
Monfardini, G. 2009. The Graph Neural Network Model.
Trans. Neur. Netw. 20(1): 61–80. ISSN 1045-9227. doi:
10.1109/TNN.2008.2005605. URL http://dx.doi.org/10.1109/
TNN.2008.2005605.

Shchur, O.; Mumme, M.; Bojchevski, A.; and Günnemann, S.
2018. Pitfalls of Graph Neural Network Evaluation. CoRR
abs/1811.05868. URL http://arxiv.org/abs/1811.05868.

Sun, F.-Y.; Hoffman, J.; Verma, V.; and Tang, J. 2020. Info-
Graph: Unsupervised and Semi-supervised Graph-Level Rep-
resentation Learning via Mutual Information Maximization.
In International Conference on Learning Representations.
URL https://openreview.net/forum?id=r1lfF2NYvH.

Tarvainen, A.; and Valpola, H. 2017. Mean teachers are better
role models: Weight-averaged consistency targets improve
semi-supervised deep learning results. In Advances in Neural
Information Processing Systems 30, 1195–1204.

Taskar, B.; Wong, M.-F.; Abbeel, P.; and Koller, D. 2004.
Link prediction in relational data. In NIPS.

van der Maaten, L.; and Hinton, G. 2008. Visualizing Data
using t-SNE. Journal of Machine Learning Research 9: 2579–
2605. URL http://www.jmlr.org/papers/v9/vandermaaten08a.
html.

Veličković, P.; Cucurull, G.; Casanova, A.; Romero, A.; Liò,
P.; and Bengio, Y. 2018. Graph Attention Networks. In ICLR.

Veličković, P.; Fedus, W.; Hamilton, W. L.; Liò, P.; Bengio,
Y.; and Hjelm, R. D. 2019. Deep graph infomax. In ICLR.

Verma, S.; and Zhang, Z.-L. 2019. Stability and generaliza-
tion of graph convolutional neural networks. In Proceed-
ings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 1539–1548.

Verma, V.; Lamb, A.; Beckham, C.; Najafi, A.; Mitliagkas,
I.; Lopez-Paz, D.; and Bengio, Y. 2019a. Manifold Mixup:
Better Representations by Interpolating Hidden States. In
Chaudhuri, K.; and Salakhutdinov, R., eds., Proceedings of
the 36th International Conference on Machine Learning,
volume 97 of Proceedings of Machine Learning Research,
6438–6447. Long Beach, California, USA: PMLR. URL
http://proceedings.mlr.press/v97/verma19a.html.

Verma, V.; Lamb, A.; Juho, K.; Bengio, Y.; and Lopez-Paz,
D. 2019b. Interpolation Consistency Training for Semi-
supervised Learning. In Kraus, S., ed., Proceedings of
the Twenty-Eighth International Joint Conference on Arti-
ficial Intelligence, IJCAI 2019, Macao, China, August 10-
16, 2019. ijcai.org. doi:10.24963/ijcai.2019. URL https:
//doi.org/10.24963/ijcai.2019.

Weston, J.; Ratle, F.; Mobahi, H.; and Collobert, R. 2012.
Deep Learning via Semi-Supervised Embedding. In Mon-
tavon, G.; Orr, G.; and Müller, K. R., eds., In Neural Net-
works: Tricks of the Trade. Springer, second edition.

Xie, Z.; Wang, S. I.; Li, J.; Lévy, D.; Nie, A.; Jurafsky, D.;
and Ng, A. Y. 2017. Data Noising as Smoothing in Neural
Network Language Models. ArXiv abs/1703.02573.

Xu, K.; Li, C.; Tian, Y.; Sonobe, T.; Kawarabayashi, K.-i.;
and Jegelka, S. 2018. Representation Learning on Graphs
with Jumping Knowledge Networks. In Dy, J.; and Krause,
A., eds., Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine
Learning Research, 5453–5462. Stockholmsmässan, Stock-
holm Sweden: PMLR. URL http://proceedings.mlr.press/
v80/xu18c.html.

Yang, Z.; Cohen, W.; and Salakhudinov, R. 2016. Revisit-
ing Semi-Supervised Learning with Graph Embeddings. In
ICML.

Zhang, H.; Cisse, M.; Dauphin, Y. N.; and Lopez-Paz, D.
2018. mixup: Beyond Empirical Risk Minimization. In-
ternational Conference on Learning Representations URL
https://openreview.net/forum?id=r1Ddp1-Rb.

Zhou, J.; Cui, G.; Zhang, Z.; Yang, C.; Liu, Z.; and Sun, M.
2018. Graph Neural Networks: A Review of Methods and
Applications. CoRR abs/1812.08434. URL http://arxiv.org/
abs/1812.08434.

Zhu, X.; and Ghahramani, Z. 2002. Learning from
Labeled and Unlabeled Data with Label Propagation.
URL http://www.scholar.google.com/url?sa=U\&q=http:
//www.cs.cmu.edu/~zhuxj/pub/propagate.ps.gz. Accessed on
25 October 2019.

Zhu, X.; Ghahramani, Z.; and Lafferty, J. D. 2003. Semi-
supervised learning using gaussian fields and harmonic func-
tions. In ICML.

10032

