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Abstract

A critical concern in data-driven decision making is to build
models whose outcomes do not discriminate against some de-
mographic groups, including gender, ethnicity, or age. To en-
sure non-discrimination in learning tasks, knowledge of the
sensitive attributes is essential, while, in practice, these at-
tributes may not be available due to legal and ethical require-
ments. To address this challenge, this paper studies a model
that protects the privacy of the individuals’ sensitive informa-
tion while also allowing it to learn non-discriminatory predic-
tors. The method relies on the notion of differential privacy
and the use of Lagrangian duality to design neural networks
that can accommodate fairness constraints while guarantee-
ing the privacy of sensitive attributes. The paper analyses the
tension between accuracy, privacy, and fairness and the ex-
perimental evaluation illustrates the benefits of the proposed
model on several prediction tasks.

Introduction
A number of socio-technical decisions, such as criminal as-
sessment, landing, and hiring, are increasingly being aided
by machine learning systems. A critical concern is that
the learned models are prone to report outcomes that are
discriminatory against some demographic group, including
gender, ethnicity, or age. These concerns have spurred the re-
cent development of fairness definitions and algorithms for
decision-making, focusing attention on the tradeoff between
the model accuracy and fairness.

To ensure non-discrimination in learning tasks, knowl-
edge of the sensitive attributes is essential. At the same
time, legal and ethical requirements often prevent the use
of this sensitive data. For example, U.S. law prevents us-
ing racial identifiers in the development of models for con-
sumer lending or credit scoring. Other requirements may
be even more stringent, and prevent the collection of pro-
tected user attributes, such as for the case of racial attributes
in the E.U. General Data Protection Regulation (GDPR), or
require protection of the consumer data privacy. In this sce-
nario, an important tension arise between (1) the demand
for models to be non-discriminatory, (2) the requirement for
such model to use the protected attribute during training, and
(3) the restriction on the data or protected attributes that can
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be used. There is thus a need to provide learning models that
can both guarantee non discriminatory decisions and protect
the privacy of the individuals’ sensitive attributes.

To this end, this paper introduces a differential privacy
framework to train deep learning models that satisfy several
group fairness notions, including equalized odds, accuracy
parity, and demographic parity (Zafar et al. 2017a; Hardt
et al. 2016; Agarwal et al. 2018), while providing privacy
of the protected attributes. The key elements of the frame-
work can be summarized as follows: (1) The fairness re-
quirement is captured by casting the learning task as a con-
strained optimization problem. A Lagrangian dual approach
is then applied to the learning task, dualizing the fairness
constraints using augmented Lagrangian terms (Hestenes
1969). (2) The privacy requirement is enforced by using a
clipping approach on the primal and dual steps and adding
noise calibrated by the sensitivities of the constraint terms
and their gradients. The primal step only applies clipping on
constraint gradients involving sensitive attributes, and thus,
does not have a major effect on the model accuracy. (3) The
framework addresses the bias-variance trade-off of clipping
by providing bounds on the expected errors of constraint
gradients and constraint violations. The clipping bounds can
then be calibrated by minimizing these upper bounds.

The rest of the paper presents the proposed Private and
Fair Lagrangian Dual (PF-LD) framework, its theoretical
results, and its empirical evaluation on several prediction
tasks. The empirical results show that, on selected bench-
marks, PF-LD achieves an excellent trade-off among accu-
racy, privacy, and fairness. It may represent a promising step
towards a practical tool for privacy-preserving and fair deci-
sion making. An extended version of this work, that includes
proofs of all theorems, can be found in (Tran, Fioretto, and
Van Hentenryck 2020).

Related Work
The topics of privacy and fairness have been study mostly
in isolation. A few exceptions are represented by the work
of Dwork et al. (2012), which is one of the earliest contri-
bution linking fairness and differential privacy, showing that
individual fairness is a generalization of differential privacy.
More recently, Cummings et al. (2019) study the tradeoff
between differential privacy and equal opportunity, a notion
of fairness that restricts a classifier to produce equal true
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positive rates across different groups. The work shows that
there is no classifier that achieves (ε, 0)-differential privacy,
satisfies equal opportunity, and has accuracy better than a
constant classifier. Ekstrand, Joshaghani, and Mehrpouyan
(2018) raise questions about the tradeoff between privacy
and fairness and, Jagielski et al. (2019) and Mozannar,
Ohannessian, and Srebro (2020) propose two simple, yet
effective algorithms that satisfy (ε, δ)-differential privacy
and equalized odds. Xu, Yuan, and Wu (2019) proposes a
privacy-preserving and fair logistic regression model mak-
ing use of the functional mechanism (Chaudhuri, Mon-
teleoni, and Sarwate 2011). Finally, a recent line of work has
also observed that private models may have a negative im-
pact towards fairness (Pujol et al. 2020; Bagdasaryan, Pour-
saeed, and Shmatikov 2019). In contrast to the work dis-
cussed above, this paper, presents a Lagrangian dual method
to enforce several fairness constraints directly into the train-
ing cycle of a deep neural network and proposes a differen-
tially private and fair version of the learning algorithm.

Problem Settings and Goals
The paper considers datasets D consisting of n individual
data points (Xi, Ai, Yi), with i ∈ [n] drawn i.i.d. from an
unknown distribution. Therein, Xi ∈ X is a non-sensitive
feature vector, Ai∈A, with A = [m] (for some finite m) is
a protected attribute1, and Yi∈Y = {0, 1} is a binary label.
The goal is to learn a classifier Mθ : X → Y , where θ is
a vector of real-valued parameters, that ensures a specified
non-discriminatory notion with respect to A while guaran-
teeing the privacy of the sensitive attribute A. The model
quality is measured in terms of a nonnegative, and assumed
differentiable, loss function L : Y ×Y → R+, and the prob-
lem is that of minimizing the empirical risk minimization
(ERM) function:

min
θ
J(Mθ, D) =

1

n

n∑
i=1

L(Mθ(Xi), Yi). (L)

The paper focuses on learning general classifiers, such as
neural networks, that satisfy group fairness (as defined next)
and protect the disclosure of the sensitive attributes using the
notion of differential privacy. Importantly, the paper assumes
that the attribute A is not part of the model input during in-
ference. This is crucial in the application of interest to this
work as the protected attributes cannot be disclosed.

Preliminaries: Fairness
The paper consider a classifier M satisfying some group
fairness notion under a distribution over (X,A, Y ) for the
protected attribute A and focuses on three fairness notions:
• Demographic Parity:M’s predictions are statistically in-

dependent of the protected attribute A. That is,

Pr[M(X)= ŷ | A=a]=Pr[M(X)= ŷ] ∀a ∈ A, ŷ ∈ Y,
which, since ŷ ∈ {0, 1}, can be expressed as

E[M(X) | A = a] = E[M(X)], ∀a ∈ A.
1While this notation simplifies exposition, the method proposed

is not limited to the case where there is a single protected attribute.

• Equalized odds: M’s predictions are conditionally inde-
pendent of the protected attribute A given the label Y .
That is, for all a ∈ A, ŷ ∈ Y , and y ∈ Y:

Pr[M(X)= ŷ | A=a, Y =y]=Pr[M(X)= ŷ | Y =y].

or, equivalently, for all a ∈ A, y ∈ Y ,

E[M(X) | A=a, Y =y]=E[M(X) | Y =y].

• Accuracy parity: M’s miss-classification rate is condi-
tionally independent of the protected attribute:

Pr[M(X) 6= Y | A = a] = Pr[M(X) 6= Y ], ∀a ∈ A,
or equivalently,

E[L(M(X), Y ) | A=a]=E[L(M(X), Y )], ∀a ∈ A,
where L is the loss function to minimize in problem (L).
As noted by Agarwal et al. (2018) and Fioretto et al.

(2020), several fairness notions, including those above, can
be viewed as equality constraints between the properties of
each group with respect to the population. These constraints
can be expressed as:

Ez∼DPi [h(z)]− Ez∼DGi [h(z)] = 0 (1)

where, for i in some index set I, DPi is a subset of the
datasetD, indicating the population term,DGi is a subset of
DPi , indicating the group term, and is obtained by accessing
the protected attributes A, the function h characterizes the
model output under some fairness definition.

Since the joint data distribution over (X,A, Y ) is un-
known, the above uses its empirical mean ÊD, which can
be estimated from the training data D.
Example 1 (Demographic parity). Demographic parity can
be expressed as a set of |A| constraints, with h(z)=Mθ(z)
and, for each i∈A, the subsets indicating population terms
are defined as:

DPi ={(X,Y ) | (X,A, Y )∈D},
and the subsets indicating the group terms as:

DGi ={(X,Y ) | (X,A, Y )∈D ∧A= i}.

Preliminaries: Differential Privacy
Differential privacy (DP) (Dwork et al. 2006) is a strong
privacy notion used to quantify and bound the privacy loss
of an individual participation to a computation. While tra-
ditional DP protects the participation of an individual to a
dataset used in a computation, similarly to (Jagielski et al.
2019; Mozannar, Ohannessian, and Srebro 2020), this work
focuses on the instance where the protection is restricted to
the sensitive attributes only. A dataset D∈D=(X×A×Y)
of size n can be described as a pair (DP , DS) where DP ∈
(X ×Y)n describes the public attributes and DS ∈ An de-
scribes the sensitive attributes. The privacy goal is to guar-
antee that the output of the learning model does not differ
much when a single individual sensitive attribute is changed.

The action of changing a single attribute from a dataset
DS , resulting in a new dataset D′S , defines the notion of
dataset adjacency. Two dataset DS and D′S ∈ An are said
adjacent, denotedDS ∼ D′S , if they differ in at most a single
entry (e.g., in one individual’s group membership).
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Definition 1 (Differential Privacy). A randomized mecha-
nism M : D → R with domain D and range R is (ε, δ)-
differentially private w.r.t. attribute A, if, for any dataset
DP ∈ (X × Y)n, any two adjacent inputs DS , D

′
S ∈ An,

and any subset of output responses R ⊆ R:

Pr[M(DP , DS) ∈ R] ≤ eε Pr[M(DP , D
′
S) ∈ R] + δ.

When δ=0 the algorithm is said to satisfy ε-differential pri-
vacy. Parameter ε > 0 describes the privacy loss of the algo-
rithm, with values close to 0 denoting strong privacy, while
parameter δ ∈ [0, 1] captures the probability of failure of the
algorithm to satisfy ε-differential privacy. The global sensi-
tivity ∆f of a real-valued function f : D → Rk is defined
as the maximum amount by which f changes in two adja-
cent inputs D and D′: ∆f = maxD∼D′ ‖f(D) − f(D′)‖.
In particular, the Gaussian mechanism, defined by

M(D) = f(D) +N (0,∆2
f σ

2),

where N (0,∆f σ
2) is the Gaussian distribution with 0

mean and standard deviation ∆f σ
2, satisfies (ε, δ)-DP for

δ> 4
5 exp(−(σε)2/2) and ε<1 (Dwork, Roth et al. 2014).

Constrained Learning with Lagrange Duality
When interpreted as constraints of the form (1), fairness
properties can be explicitly imposed to problem (L), result-
ing in a constrained ERM problem. Solving this new prob-
lem, however, becomes challenging due to the presence of
constraints. To address this challenge, this work uses con-
cepts borrowed from Lagrangian duality.

Consider a set of |I| constraints of the form (1), and ex-
pressed succinctly as:

µ(DP )− µ(DG) = 0> (2)

where µ(DP ) and µ(DG) are vectors containing elements
µ(DPi) = Êz∼DPi [h(z)] and µ(DGi) = Êz∼DGi [h(z)], re-
spectively, for each i∈I .

Notice that the constraints in µ(DP ) access public data
only, while the constraints in µ(DG) access also the sensi-
tive data. Notice also that the paper does not restrict the set-
ting to the case where only demographic attributes are sen-
sitive and, in particular, it does not assume that DS = DG.
The resulting learning task is defined by the following opti-
mization problem

argmin
θ

J(Mθ, DP ) =
1

n

n∑
i=1

L(Mθ(Xi), Yi) (3a)

subject to µ(DP )− µ(DG) = 0>. (3b)

In Lagrangian relaxation, the problem constraints are re-
laxed into the objective function using Lagrangian multipli-
ers λi ≥ 0 associated to each of the |I| constraints and ex-
pressing the penalty induced by violating them. When all the
constraints are relaxed, the Lagrangian function becomes

Lλ(θ) = J(Mθ, DP ) + λ> |µ(DP )− µ(DG)| , (4)

where λ = (λ1, . . . , λ|I|) and the function | · |, used here to
denote the element-wise operator (i.e, |µ(DPi) − µ(DGi)|

Algorithm 1: Fair-Lagrangian Dual (F-LD)
input : D = (Xi, Ai, Yi)

n
i=1 : Training data;

α, s = (s1, s2, . . .) : step sizes.
λmax: Max multipliers value.

1 λ1,i ← 0 ∀i ∈ I
2 for epoch k = 1, 2, . . . T do
3 foreach Mini-batch B ⊆ D do
4 θ←θ − α∇θ

[
J(Mθ, BP )+λ>

k |µ(BP ) -µ(BG)|
]

5 λk+1 ← λk + sk |µ(DP )− µ(DG)|
6 λk+1,i ← min(λmax, λk+1,i) ∀i ∈ I

for i ∈ I), captures a quantification of the constraint viola-
tions, often used in constraint programming (Fontaine, Lau-
rent, and Van Hentenryck 2014).

Using a Lagrangian function, the optimization becomes
?

θ (λ) = argmin
θ
Lλ(θ), (5)

that produces an approximation M ?
θ(λ)

of M ?
θ
. The La-

grangian dual finds the best Lagrangian multipliers, i.e.,
?

λ= argmaxλ≥0 J(M ?
θ(λ)

, DP ) (6)

to obtainM ?
θ(

?
λ)

, i.e., the strongest Lagrangian relaxation of
M. Learning this relaxation relies on an iterative scheme
that interleaves the learning of a number of Lagrangian re-
laxations (for various multipliers) with a subgradient method
to learn the best multipliers. The resulting method, called
Fair-Lagrangian Dual (F-LD) is sketched in Algorithm 1.
Given the input dataset D, the optimizer step size α > 0,
and the vector of step sizes s, the Lagrangian multipliers are
initialized in line 1. The training is performed for a fixed
number of T epochs. At each epoch k, the primal update
step (lines 3 and 4) optimizes the model parameters θ us-
ing stochastic gradient descent over different mini-batches
B ⊆ D. The optimization step uses the current Lagrangian
multipliers λk. Therein, BP and BG indicate the popula-
tion and group terms over a minibatch. After each epoch,
the dual update step (line 5), updates the value of the La-
grangian multipliers following to a dual ascent rule (Boyd
et al. 2011; Fioretto, Mak, and Van Hentenryck 2020). The
multipliers values are thus restricted to a predefined upper
bound λmax (line 6).

A Private and Fair LD Model
To ensure fairness, the primal (line 4) and dual (line 5) up-
dates of Algorithm 1 involve terms to compute the viola-
tions associated to constraints (3b). These terms rely on the
attributesA, and therefore, the resulting model leaks the sen-
sitive information. To contrast this issue, this section intro-
duces an extension to F-LD, called Private and Fair La-
grangian Dual (PF-LD) method, that guarantees both fair-
ness and privacy. The idea is to render the computations of
the primal and dual update steps differentially private with
respect to the sensitive attributes.
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Private Primal Update At each epoch k, the primal up-
date (line 4 of Algorithm 1) computes the gradients over the
loss function Lλk(θ), which is composed of two terms (see
Equation (4)). The first term, J(Mθ, DP ), uses exclusively
public information, while the second term, λ>|µ(DP ) −
µ(DG)| requires both the public and sensitive group infor-
mation. The computation of these gradients can be made
differentially private by the introduction of carefully cali-
brated Gaussian noise. The general concept, relies on per-
forming a differentially private Stochastic Gradient Descent
(DP-SGD) step (Abadi et al. 2016). In a nutshell, DP-SDG
computes the gradients for each data sample in a random
mini-batch, clips their L2-norm, computes the average, and
adds noise to ensure privacy.

The result below bounds the global sensitivity ∆p of the
sensitive term in the primal update, which is needed to cali-
brate the noise necessary to guarantee privacy.

Theorem 1. Let ‖∇θh(z)‖≤Cp, for all z∈BGi , i∈I , and
some Cp > 0. The global sensitivity ∆p of the gradients of
the constraints violation∇θλ>|µ(BP )− µ(BG)| is

∆p ≤
2Cpλ

max

mini∈I |BGi | − 1
. (7)

The above uses a clipping term, Cp, to control the maxi-
mal change of the gradients. Crucially, this is non-limiting,
as it can be enforced by clipping the gradient contribu-
tion ‖∇θh(z)‖ to Cp, similarly to what is done in DP-
SGD (Abadi et al. 2016). Using Theorem 1, the privacy-
preserving primal update step for a mini-batch B ⊆D can
be executed by clipping exclusively the gradients of the
functions h(z) associated with the group terms in BG. It is
not necessary to perform gradient clipping for the functions
h(z) associated with the population terms inBP . While this
may induce propagating population and group terms gra-
dients of different magnitudes, the authors observed often
improved performance in the adopted setting. Thus, PF-LD
substitutes line 4 of Algorithm 1 with the following

θ ← θ−α
(
∇θ [J(Mθ, BP )] + (8)

λ>
∣∣∣∇θµ(BP )− ∇̄Cpθ µ(BG)

∣∣∣+N (0, σ2
p ∆2

pI)
)
,

with I ∈ {0, 1}|I|×|I|, σp > 0, and ∇̄Cpθ is applied to
each element µ(BGi) of vector µ(BG), where ∇̄Cpθ (x) =
∇x/max(1,

‖∇x‖
Cp

) denotes the gradients of a given scalar loss
x clipped in a Cp-ball, for Cp > 0.

Private Dual Update Similar to the primal step, the dual
update requires access to the sensitive group information
(see line 5 of Algorithm 1). It updates the multipliers based
on amount of constraint violation |µ(DP )− µ(DG)| com-
puted over the entire dataset D. Privacy can be attained by
injecting Gaussian noise to the computation of the multipli-
ers, but computing the global sensitivity ∆d of the constraint
violations is non-trivial since the range of the violations is
unbounded. Once again, the paper recurs to the adoption of
a clipping term, Cd, that controls the maximal contribution
of the constraint violation to the associated multiplier value.

Theorem 2. Let |h(z)|≤Cd, for all samples z ∈ DGi , i∈I ,
and some Cd>0. The global sensitivity ∆d of the constraint
violation |µ(DP )− µ(DG)| is

∆d ≤
√

2Cd
mini∈I |DGi | − 1

. (9)

The privacy-preserving dual update step, used in lieu of
line 5 of Algorithm 1, is given by the following

λk+1 ← λk + sk
(
|µ(DP )− µ̄Cd(DG)|+N (0, σ2

d∆2
dI)
)

(10)

with I ∈ {0, 1}|I|×|I|, σd > 0, and where, for every i ∈ I,

µ̄Cd(DGi) = Êz∼DGi

[
h(z)

max(1, |h(z)|Cd
)

]
.

While Theorem 1 bounds the individual gradient norms of
each function h(z) for samples z ∈ BGi and i ∈ I, The-
orem 2 bounds their maximum absolute values. The terms
Cp and Cd play a special role in limiting the impact of an
individual change in the protected attributes. They controls,
indirectly, the privacy loss, as it impacts the sensitivities ∆p

and ∆d. However, these terms also affect the model accu-
racy and fairness. In particular, larger Cp values will prop-
agate more precise gradients, ensuring better accuracy and
fairness. On the other hand, larger clipping values will in-
troduce more noise, and thus degrade the information prop-
agated. The converse is true for smaller clipping values. A
theoretical and experimental analysis of the impact of these
terms to the model accuracy and fairness is provided next.

Privacy Analysis
The privacy analysis of PF-LD relies on the moment accoun-
tant for the Sampled Gaussian (SG) mechanism (Mironov,
Talwar, and Zhang 2019), whose privacy is analyzed using
Rényi Differential Privacy (RDP) (Mironov 2017). In syn-
thesis, a function f satisfies (α, ε)-RDP, if the Rényi diver-
gence Dα of order α between any adjacent inputs of f is
upper bounded by ε. Additionally, the SG mechanism with
sampling ratio q (that is, uses a fraction q of the n data
points) and standard deviation σ satisfies (α, ε)-RDP with:

ε ≤ Dα
(
N (0, σ2) ‖ (1− q)N (0, σ2) + qN (1, σ2)

)
(11a)

ε ≤ Dα
(
(1− q)N (0, σ2) + qN (1, σ2) ‖ N (0, σ2)

)
. (11b)

The following results consider a PF-LD algorithm that
trains a model over T epochs using a datasetD containing n
training samples, uses mini-batches B at each iteration, and
standard deviation parameters σp and σd, associated to the
primal and dual steps, respectively. Note that, Equations (8)
and (10), correspond to instances of the SG mechanism.

Lemma 1. PF-LD primal step is (α, εp)-RDP, where εp sat-
isfies Eq. (11) with q= |B|/n and σ = σp∆p are, respectively,
the SG sampling ratio q and standard deviation parameters.

Lemma 2. PF-LD dual step is (α, εd)-RDP, where εd satis-
fies Eq. (11) with q= 1 and σ=σd∆d are, respectively, the
SG sampling ratio and standard deviation parameters.
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PF-LD uses a predefined amount of noise (specified by
parameters σp and σd) at each iteration, so that each itera-
tion has roughly the same privacy loss, and uses the moment
accountant (Abadi et al. 2016) to track detailed information
of the cumulative privacy loss.

Theorem 3. PF-LD satisfies (α,
Tnεp
|B| + Tεd)-RDP.

The results above follow directly from Equations (11) and
RDP composability results (Mironov 2017), since the pri-
mal and dual steps of PF-LD uses Gaussian noise with pa-
rameter σp and σd, respectively. The final privacy loss in
the (ε, δ)-differential privacy model is obtained by observ-
ing that a mechanism satisfying (α, ε)-RDP also satisfies
(ε+ log 1/δ

α−1 , δ)-DP, for any 0<δ<1 (Mironov 2017).

Bias-Variance Analysis
A key aspect of PF-LD is the choice of values Cd and Cp
used to bound the functions h(z), and their gradients, re-
spectively, for every sample z ∈ DGi and i ∈ I. The choice
of these clipping terms affects the global sensitivity of the
functions of interest, which, in turn, impacts the amount of
noise used by the differentially private mechanisms. As a
result, the clipping terms are associated to a bias-variance
trade-off: Small values can discard significant amounts of
constraints information, thus introduce bias; large values
retain more information but force the differential privacy
mechanism to introduce larger noise, inducing more vari-
ance. Note that, at every iteration, PF-LD induces some pri-
vacy loss, thus, for a fixed privacy budget, the use of small
values cannot be compensated by longer runs. This section
formulates a bias-variance analysis that is helpful to select
clipping values for gradient norms under the SG mechanism.

Let G = ∇θλ>|µ(BP ) − µ(BG)| be the gradient com-
puted over a minibatch B during the primal update of F-LD
(Algorithm 1 line 4) and G̃=λ>|∇θµ(BP )−∇̄Cpθ µ(BG)|+
N (0, σ2

p∆2
pI) be its privacy-preserving counterpart, as com-

puted by PF-LD (Equation (8)).
Theorem 4. The expected error between the real and noisy
gradients,G and G̃, incurred during the primal step can be
upper bounded as:

E
[∥∥G− G̃∥∥] ≤2

√
SG̃σpλ

maxCp

mini∈I |BGi | − 1
+ (12)∑

i∈I
λiÊz∼BGi

[
max

(
0, ‖∇θh(z)‖ − Cp

)]
,

where SG̃ is the shape (i.e., the number of entries) of G̃.
The proof relies on isolating and bounding the variance and
bias terms of the expected error).

Note that the bound above is a convex function of Cp. Its
unique minimizer satisfies:

2
√
SG̃σpλ

max

mini∈I |BGi | − 1
=
∑
i∈I

λiÊz∼BGi
[
1
[
‖∇θh(z)‖ ≥ Cp

]]
.

While beyond the scope of this work, the above illustrates
that a procedure to find the optimal Cp privately can be con-
structed effectively.

Next, the paper shows how to bound the expected er-
ror incurred in using the noisy constraint violations during
the dual step. Let Vi = |µ(DPi) − µ(DGi)| be the value
corresponding to the i-th constraint violation (i ∈ I), and
Ṽi = |µ(DPi) − µ̄Cd(DGi)| + N (0, σ2

d∆2
d) be its privacy-

preserving version (see Equation (10)).
Theorem 5. The expected absolute error between the real
and noisy constraint violations Vi and Ṽi, for i ∈ I , is
bounded by the following

E
[
|Vi − Ṽi|

]
≤

√
2Cd σd

mini∈I |DGi | − 1
(13)

+ Êz∼DGi [max(0, |h(z)| − Cd)] .
The proof uses similar arguments as those in the proof of
Theorem 4 (see (Tran, Fioretto, and Van Hentenryck 2020)
for details).

Experimental Analysis
Datasets, Models, and Metrics This section studies the
behavior of the proposed algorithm on several datasets, in-
cluding Income, Bank, and Compas (Zafar et al. 2017a)
datasets. Since the trends are similar, the following discus-
sion focuses on the Bank datasets, whose task is to detect
client subscriptions to the term deposit, and the protected
attributes define two age groups.

The experiments consider a baseline classifier (CLF), im-
plemented as a neural network with two hidden layers, that
maximize accuracy only, without considerations for fairness
or privacy, and compare the proposed PF-LD model against
the following state-of-the-art algorithms: Z, it implements a
fair logistic regression models that achieves group fairness.
These models were presented in (Zafar et al. 2017b) for de-
mographic parity and in (Zafar et al. 2017a) for accuracy
parity and equalized odds. A, it implements the fair logistic
regression model based on reduction approaches, introduced
in (Agarwal et al. 2018). Note that the models above pre-
serves group fairness but do not guarantee privacy. They are
used to highlight the effectiveness of the proposed approach
based on the Lagrangian dual to ensure fairness. Finally, M,
proposed in (Mozannar, Ohannessian, and Srebro 2020), the
model most related to the proposed work, ensures both fair-
ness and ε-differential privacy with respect to the sensitive
attributes. The algorithm uses the fair model A on perturbed
noisy data generated according to a randomized response
mechanism (Kairouz, Oh, and Viswanath 2014). While these
models where studied in the context of equalized odds, this
work extends them to satisfy all fairness definitions consid-
ered in this work. Compared to the proposed model M has
the disadvantage of introducing large amounts of noise to
the sensitive attribute, especially when the domain of these
attributes is large and/or when A is high-dimensional. 2

2The authors note there is an additional work which addresses
learning a fair and private classifier (Jagielski et al. 2019). While
an important contribution, it has been shown to induce significant
privacy losses (see Figure 1 of (Jagielski et al. 2019)). Model Mwas
shown to outperform these algorithms presented in (Jagielski et al.
2019) in terms of classification error bounds. Therefore, this paper
adopts M, as the state-of-the-art.
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Figure 1: Accuracy and fairness comparison.

The experiments analyze the accuracy, fairness violations,
and privacy losses (when applicable) of the models above.
The fairness violations are measured as the maximal differ-
ence in fairness constraint violations between any two pro-
tected groups. The privacy losses are set to ε = 1.0 and
δ = 10−5, unless otherwise specified. PF-LD uses clipping
bound values Cp = 10.0 and Cd = 5.0 and each experiment
and configuration is repeated 10 times and presents average
and standard deviation results.
Accuracy and Fairness This section analyzes the impact
on accuracy and fairness of the privacy-preserving mod-
els introduced above. The results are summarized in Figure
1. Note that the plots have different scales. First, observe
that the prediction accuracy of the proposed model is in
line with that of the baseline non-private, non-fair classifier.
This is true for all the group fairness constraints adopted.
Next, observe that the fairness violations reported by PF-
LD are competitive with those reported by the fair, non-
private models A and Z. Finally, notice that PF-LD reports
considerably lower fairness violations when compared to M,
the only other private and fair model analyzed, and the re-
sults are consistent across all fairness metrics and bench-
marks. This is remarkable as the privacy budget adopted is
very modest when compared to what typically adopted in
the privacy-preserving machine learning literature (Xie et al.
2018; Jagielski et al. 2019).
Privacy, Fairness, and Accuracy Tradeoff This section il-
lustrates the tradeoff between privacy, fairness, and accuracy
attained by PF-LD and compares them with algorithm M.
The results are summarized in Figure 2, that depicts the aver-
age and standard deviation of 100 model runs. The statistical
difference between the performance PF-LD and M was veri-
fied using a paired t-test, which reported a p-value < 0.001
in each setting.

Firstly, observe that the fairness violation score decreases
as the privacy budget ε increases (note that the scale dif-
fers across the plots). Large privacy losses allow PF-LD to
either run more iterations, given fixed noise values used at
each iteration, or reduce the level of noise applied to a given
number of iterations. These cases imply propagating more
(former case) or more accurate (latter case) noisy constraint
violations that results in better capturing the fairness con-
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Figure 2: Privacy, fairness, and accuracy tradeoff.

straints violations during the primal and dual update steps.
This aspect is not obvious for M.

Next, notice that the model accuracy slightly decreases
as ε increases. While this may seem surprising, our anal-
ysis shows that the fairness constraints, having their viola-
tions being propagated more exactly when ε increases, have
a negative impact on the model accuracy.

Finally, notice that, in most cases, PF-LD is more accu-
rate and produce models that have smaller fairness viola-
tions, and, importantly, it produces models that are more ro-
bust than those produced by M. This is noticeable by com-
paring the standard deviations on accuracy and fairness vio-
lations of the two models. These observations demonstrates
the practical benefits of the proposed model.
PF-LD: Analysis of the Clipping Values This sections
analyses the factors affecting the privacy, accuracy, and fair-
ness tradeoff outlined above. The analysis focuses on the pri-
mal clipping bound Cp as trends for the dual bound Cd are
similar. Figure 3 illustrates the effects of Cp on the model
accuracy and fairness, at varying of the privacy parameter ε.
Observe that, for different fairness definitions, the best accu-
racy/fairness tradeoff is obtained when Cp ∈ [10, 20] (green
and yellow curves). The use of small clipping values (blue
curve) slows the drop in fairness violations at the increasing
of the privacy budget ε. This is because smallCp values limit
the impact of the constraints violations to the model. On the
other extreme, for high Cp values (e.g., brown curve), not
only it is observed a degradation in fairness violations, but
also in the model accuracy. This is because large Cp val-
ues imply larger amount of noise to be added to the gra-
dient of the constraint violations, resulting in less accurate
information to be back-propagated at each step. Addition-
ally, the noisy constraints gradients can negatively impact
the classifier loss function. Thus, the resulting models tend
to have worse accuracy/fairness tradeoff than those trained
with intermediate Cp values. These observations support the
theoretical analysis which showed that the expected error
between the true and private gradients of the fairness con-
straints is upper bounded by a convex function of the primal
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Figure 3: Effects of Cp on fairness and accuracy.

L |B| N F-LD P PF-LD

2 16 0.53 (0.01) 0.60 (0.01) 0.9 (0.04) 1.0 (0.02)
2 64 0.19 (0.01) 0.25 (0.01) 3.2 (0.09) 3.3 (0.08)
2 256 0.11 (0.01) 0.16 (0.01) 5.7 (0.05) 5.7 (0.10)

10 16 1.20 (0.02) 1.30 (0.01) 2.0 (0.08) 2.1 (0.07)
10 64 0.41 (0.02) 0.47 (0.01) 6.9 (0.09) 7.0 (0.12)
10 256 0.17 (0.01) 0.20 (0.01) 11.8 (0.15) 11.8 (0.23)

Table 1: Training time (sec) comparison.

and the dual clipping bounds.
To further shed lights on the impacts of Cp to the model

fairness and accuracy, Figure 4 illustrates the model accu-
racy (left column) the fairness violations (middle column)
and the percentage of times the norm of the gradients associ-
ated to the constraint violations of a protected group exceeds
the clipping value Cp: ‖G̃‖ > Cp% (right column). The last
column indicates the frequency of propagating the correct or
the clipped information. The figure uses demographic parity,
but the results are consistent across the other fairness metrics
studied. Observe that, the percentage of individual constraint
gradients exceeding Cp is very high when Cp is small. Thus,
a significant amount of information is lost due to clipping.
Conversely, at large Cp regimes most individual gradients
(for both protected groups) are smaller than Cp. This choice
reduces bias, but it introduces large variances due to noise
necessary to preserve privacy. Therefore, both cases result
in models that have large fairness violations. Conversely, at
intermediate Cp regimes, the produced models have lower
constraint violations while retaining high accuracy.
Performance Finally, this section analyses the performance
of the proposed Lagrangian dual framework. Table 1 reports
the average training time and standard deviations (in paren-
thesis) required to execute one epoch at the varying of the
number of hidden layers (L) and mini-batch size |B| for a
model enforcing no privacy nor fairness (N), one enforcing
privacy only (P), one enforcing fairness only (F-LD), and
the proposed one enforcing both privacy and fairness (PF-
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Figure 4: Individual gradient norms associated to a protected
group and their relation to the clipping values Cp.

LD). The tests use a common laptop (MacBook Air 2013,
1.7GHz, 8GB RAM) on the Bank dataset and are consistent
for all the fairness notions adopted.

Note that imposing the fairness constraints comes at al-
most no-overhead on top of the non-fair counterpart models.
It has been observed that clipping (used to preserve privacy)
is computationally expensive. However, this drawback has
been recently mitigated by the work of Subramani, Vadivelu,
and Kamath (2020), which uses JAX to speed up these oper-
ations and can achieve up to an order magnitude speedups.

Conclusions
This paper was motivated by the discrepancy between con-
cerns in building models whose outcomes do not discrimi-
nate against some demographic groups and the requirements
that the sensitive attributes, which are essential to build these
models, may not be available due to legal and ethical re-
quirements. It proposed a framework to train deep learning
models that satisfy several notions of group fairness, includ-
ing equalized odds, accuracy parity, and demographic par-
ity, while ensuring that the model satisfies differential pri-
vacy for the protected attributes. The framework relies on
the use of Lagrangian duality to accommodate the fairness
constraints and the paper showed how to inject carefully cal-
ibrated noise to the primal and dual steps of the Lagrangian
dual process to guarantee privacy of the sensitive attributes.
The paper further analyses the tension between accuracy,
privacy, and fairness and an extensive experimental eval-
uation illustrates the benefits of the proposed framework
showing that it may be come a practical tool for privacy-
preserving and fair decision making.
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