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Abstract

To facilitate a wide-spread acceptance of Al systems guiding
decision making in real-world applications, trustworthiness
of deployed models is key. That is, it is crucial for predic-
tive models to be uncertainty-aware and yield well-calibrated
(and thus trustworthy) predictions for both in-domain sam-
ples as well as under domain shift. Recent efforts to account
for predictive uncertainty include post-processing steps for
trained neural networks, Bayesian neural networks as well
as alternative non-Bayesian approaches such as ensemble ap-
proaches and evidential deep learning. Here, we propose an
efficient yet general modelling approach for obtaining well-
calibrated, trustworthy probabilities for samples obtained af-
ter a domain shift. We introduce a new training strategy com-
bining an entropy-encouraging loss term with an adversar-
ial calibration loss term and demonstrate that this results in
well-calibrated and technically trustworthy predictions for
a wide range of domain drifts. We comprehensively evalu-
ate previously proposed approaches on different data modal-
ities, a large range of data sets including sequence data, net-
work architectures and perturbation strategies. We observe
that our modelling approach substantially outperforms exist-
ing state-of-the-art approaches, yielding well-calibrated pre-
dictions under domain drift.

Introduction

To facilitate a wide-spread acceptance of Al systems guiding
decision making in real-world applications, trustworthiness
of deployed models is key. Not only in safety-critical ap-
plications such as autonomous driving or medicine (Helldin
et al. 2013; Caruana et al. 2015; Leibig et al. 2017), but
also in dynamic open world systems in industry it is cru-
cial for predictive models to be uncertainty-aware. Only if
predictions are calibrated in the case of any gradual domain
shift, covering the entire spectrum from in-domain ("known
unknowns”) to truly out-of-domain samples ("unknown un-
knowns”), they can be trusted. In particular in industrial and
IoT settings, deployed models may encounter erroneous and
inconsistent inputs far away from the input domain through-
out the life-cycle. In addition, the distribution of the input
data may gradually move away from the distribution of the
training data (e.g. due to wear and tear of the assets, mainte-
nance procedures or change in customer behavior.
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In recent years, a variety of different approaches to capture
predictive uncertainty have been proposed. This includes
intrinsically uncertainty-aware networks such as Bayesian
neural networks and Deep Ensembles (Papernot and Mc-
Daniel 2018; Wen et al. 2018). Alternative approaches for
obtaining meaningful predictive uncertainties rely on post-
processing approaches such as Temperature Scaling (Guo
et al. 2017; Platt 1999)

Efforts to evaluate the quality of predictive uncertainty have
until recently been focused on in-domain calibration.Guo
et al. (2017) indicate that simple post-processing methods
are sufficient to yield calibrated predictions when samples
are drawn from the same distribution as the training data.
More recently, Ovadia et al. (2019) have presented a com-
prehensive evaluation of calibration under domain drift for
the most popular implementations of uncertainty-aware neu-
ral networks. They demonstrate that the quality of predictive
uncertainties, i.e. model calibration, decreases with increas-
ing domain shift, regardless of method and conclude that
there remains significant room for improvement.

In this work, we propose an efficient yet general mod-
elling approach for obtaining well-calibrated, trustworthy
probabilities under domain shift as well as for truly out-of-
distribution (OOD) samples. Our approach can readily be
applied to a wide range of data modalities and model ar-
chitectures. More specifically, we introduce a simple loss
function to encourage high entropy on wrong predictions.
We combine this with a novel adversarial calibration loss
term that directly minimizes the calibration error using ad-
versarial samples. We demonstrate that actively encouraging
calibration at training time results in an uncertainty-aware
neural network yielding well-calibrated predictions in the
case of any gradual domain shift, from in-domain samples
to truly out-of-domain samples. In contrast to the previously
proposed approaches assessed in (Ovadia et al. 2019), our
model maintains good calibration with increasing domain
shift. We illustrate this using 32 different types of dataset
shift and OOD scenarios not seen during training, includ-
ing the recently proposed ObjectNet benchmark dataset. Our
codes are available at https://github.com/tochris/falcon.



Towards Technically Trustworthy Predictions

Quantifying Calibration Under Domain Shift:
Problem Setup and Definitions

Let X € RP and Y € {1,...,C} be random variables that
denote the D-dimensional input and labels in a classification
task with C' classes, respectively. Let h(X) = (Y, P) be the
output of a neural network classifier h predicting a class Y
and associated confidence P based on X.

We are interested in the quality of the predictive uncertainty
of h (i.e. confidence scores P) and quantify this quality us-
ing the notion of calibration . In particular, we are interested
in the calibration of neural networks under dataset shift. That
is, we assess calibration of neural networks for test data,
where the distribution of samples seen by a model gradually
moves away from the training distribution (in an unknown
fashion) until it reaches truly OOD levels.

We follow Guo et al. (2017) and formally define perfect cali-
bration such that confidence and accuracy match for all con-
fidence levels:

P(Y =Y|P=p)=p, ¥pel0,1]

This directly leads to a definition of miss-calibration as the
difference in expectation between confidence and accuracy,
that is E 5 “ PY =Y|P=p) — p” Miss-calibration can
be estimated from finite samples by partitioning predictions
into M equally-spaced bins and computing a weighted av-
erage of the bins’ difference between accuracy and confi-

dence. The resulting measure is the expected calibration er-
ror (ECE) (Naeini, Cooper, and Hauskrecht 2015):

M |B |
ECE = Z Tm|aCC(Bm) - COIlf(Bm)|

m=1

ey

with B,, being the set of indices of samples whose pre-

diction confidence falls into its associated interval I,,.
conf(B,,) and acc(B,,) are the average confidence and ac-
curacy associated to B,,, respectively and n the number of
samples in the dataset.

Related Work

Related work can be broadly divided in 2 groups, namely
intrinsically uncertainty-aware neural networks and post-
processing methods for a post-hoc transformation of uncali-
brated confidence scores.

Different avenues towards intrinsically uncertainty-aware
networks exist. In particular, a lot of research effort has been
put into training probabilistic models such as Bayesian neu-
ral networks. For these models, typically a prior distribution
over the weights is specified and, given the training data, a
posterior distribution over the weights is inferred. This dis-
tribution can then be used to quantify predictive uncertainty.
Since exact inference is intractable, a range of approaches
for approximate inference has been proposed. In particu-
lar approaches based on variational approximations have re-
cently received a lot of attention (Blundell et al. 2015) and
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range from the interpretation of Gaussian dropout as per-
forming approximate Bayesian inference (Gal and Ghahra-
mani 2016) to facilitating a complex posterior using nor-
malising flows (Louizos and Welling 2017) and stochastic
variational inference based on Flipout (Wen et al. 2018).
Since such Bayesian approaches often come at a high com-
putational cost, alternative non-Bayesian approaches have
been proposed, that can also account for predictive uncer-
tainty. These include ensemble approaches, where smooth
predictive estimates can be obtained by training ensembles
of neural networks using adversarial examples (Lakshmi-
narayanan, Pritzel, and Blundell 2017), and evidential deep
learning, where predictions of a neural net are modelled as
subjective opinions by placing a Dirichlet distribution on the
class probabilities (Sensoy, Kaplan, and Kandemir 2018).
More recently, Thulasidasan et al. (2019) have shown that
using MixUp training, where label- and input smoothing is
performed, yields good results for in-domain calibration.
An alternative strategy towards uncertainty-aware neural
networks is based on post-processing steps for trained neu-
ral networks. For these methods, a validation set, drawn
from the same distribution as the training data, is used to
post-process the logit vectors returned by a trained neu-
ral network such that in-domain predictions are well cal-
ibrated. The most popular approaches include parametric
methods such as Temperature Scaling and Platt Scaling as
well as non-parameteric methods such as isotonic regres-
sion and histogram binning (Platt 1999; Guo et al. 2017).
More recently, Kumar, Liang, and Ma (2019) have proposed
an alternative approach for post-processing combining his-
togram binning with a parametric postprocessing function
and demonstrated that this scaling-binning calibrator results
in better in-domain calibration than Temperature scaling.
Orthogonal approaches have been proposed where trust
scores and other measures for OOD detection are derived,
typically also based on trained networks (Liang, Li, and
Srikant 2018; Jiang et al. 2018; Papernot and McDaniel
2018); however these latter approaches differ substantially
in their modeling assumptions from the models described
above. While intrinsically uncertainty-aware neural net-
works primarily differ from each other in how they quan-
tify predictive uncertainty P(Y'|X'), many OOD methods in-
troduce an additional component to P(Y|X) such as trust
scores, which are inherently different from probabilities
P(Y|X), and cannot readily be compared to predictive en-
tropy. Other methods need access to known OOD datasets
during training or train GANs in addition to a classifier (Lee
et al. 2017; Hendrycks, Mazeika, and Dietterich 2018). Ova-
dia et al. (2019) argue that it is difficult to perform a mean-
ingful comparison between such OOD methods and intrinsi-
cally uncertainty-aware networks. We follow their setup and
focus on intrinsically uncertainty-aware networks and post-
processing approaches, which make the same assumptions
about data, in this study.

Finally, intrinsically uncertainty-aware neural networks is a
very active research field and independent and concurrent
studies include new takes on Bayesian neural networks (Joo,
Chung, and Seo 2020; Chan et al. 2020) and an extension of
MixUp (Zhang, Kailkhura, and Han 2020).



Algorithm 1 FALCON with set of perturbation levels

£ =1{0,0.05,0.1,0.15,0.2,0.25,0.3,0.35,0.4,0.45} , mini batch size b, and training set (X,Y").

repeat
: Read minibatch M B = ({ X1, ..
Randomly sample €, 5 from £

1:
2 LX) Y
3
4
5:
6.
7
8
9:

until training converged

LY

Generate FGSM minibatch M B, of size b from samples in M B using ej/p

Compute Locog and Lg and do one training step using mini batch M B

Compute predictions for all samples in M B, 4,, and partition into M equally spaced bins
Compute binned accuracy acc(B,,,) for all samples i in M B4,

Compute L4, based on M B, 4, and do one training step using M B4,

Fast Adversarial Calibration

Predictive Entropy Loss Here, we propose a new, simple
approach based on fast adversarial calibration to obtain well-
calibrated uncertainty estimates for predictions under do-
main shift. To mitigate overconfident predictions displayed
by conventional deep neural networks (Guo et al. 2017; Ova-
dia et al. 2019), we first introduce a cross-entropy loss term
encouraging a uniform distribution of the scores in case the
model ’does not know”. That is, for each sample we remove
the confidence score corresponding to the correct label and
compute the cross-entropy between a uniform distribution
and the remaining false confidence scores in order to dis-
tribute the probability mass of these false predictions uni-
formly over C' classes:

n C 1
Ls = Z Z 0 log(pis (1 — viz) + yij), 2

i=1 j=1

p;; denotes the confidence associated to the jth class of sam-
ple 4, y;; its one-hot encoded label.

This simple loss term increases uncertainty-awareness by
encouraging an increased entropy (.5) in the presence of high
predictive uncertainty without directly affecting reconstruc-
tion loss (categorical cross-entropy). This has the advantage
that our approach - in contrast to state-of-the-art Bayesian
neural networks such as those based on multiplicative nor-
malizing flows or evidential deep learning - can be readily
applied to complex architectures based on LSTMs or GRUs.

Adversarial Calibration Loss While the entropy-based
loss term does encourage uncertainty-awareness, we found
that it is beneficial to introduce an additional loss term ad-
dressing model calibration directly. Explicitly encouraging
calibration for out-of-domain samples, however - e.g. via
an ECE-based measure - requires knowledge on the type
of perturbed or erroneous samples the model is expected
to encounter. In many real-world applications it is not clear
from which distribution these samples will be drawn and,
for model predictions to be truly trustworthy requires ro-
bustness against all such potential out-of-domain samples.
That is, we would like our model to be technically robust for
inputs around an e-neighbourhood of the in-domain train-
ing samples, for a wide range of € and for all 27 direc-
tions in {—1,1}”. While inputs from a random direction
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are unlikely to be representative examples for generic out-
of-domain samples, by definition adversarial examples are
generated along a dimension where the loss is high. Laksh-
minarayanan, Pritzel, and Blundell (2017) show that adver-
sarial training can improve the smoothness of predictions,
in particular when training an ensemble of 5 neural net-
works in an adversarial fashion. Here, we demonstrate that
using adversarial samples to directly optimise model cali-
bration (rather than the squared error of one-hot encoded
labels (Lakshminarayanan, Pritzel, and Blundell 2017)) re-
sults in substantially more trustworthy predictions for out-
of-domain samples from a large number of unrelated direc-
tions.

We implement an ECE-inspired calibration loss by min-
imizing miss-calibration for samples generated using the
fast gradient sign method (FGSM) (Goodfellow, Shlens, and
Szegedy 2014), with € ranging from 0 to 0.5 (sampled at 10
equally spaced bins at random). To this end we minimise the
L2 norm of the difference between the predicted confidence
of a sample i, which we denote as conf(4), and its corre-
sponding binned accuracy acc(By,), for all samples. This
is directly motivated by the definition of ECE (eq. 1), except
that we re-write eq. 1 by explicitly summing over all sam-
ples and replace the L1 norm with the L2 norm. As for the
computation of ECE, we partition the predictions of the net-
work into M equally-spaced bins, with m; € {1,..., M}
being the bin into which sample i falls. As for ECE, B,,, is
the set of indices of samples falling in bin m; and acc(By,;)
the average accuracy of samples B,,,. We set M = 10 for
all experiments.

n

Z (ace(By,,) — conf(i))2

i=1

Ladv (3)

The final loss balancing a standard reconstruction loss (cate-
gorical cross entropy (CCE)) against the entropy and adver-
sarial calibration loss can then be written as L = Lccg +
AadvLagy + AsLg. The choice of hyperparameters \,qy and
Ag is described in the supplement. Note that we do not use
the FGSM samples for adversarial training in the sense that
we do not try to minimize the reconstruction error (cross en-
tropy) for those samples. The algorithm is summarized in
Algorithm 1. We refer to our method based on Fast Adver-
sarialL CalibratiON as FALCON.
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Figure 1: Calibration of the predictive uncertainty under domain shift MNIST data. (a) Left: ECE at 10 increasingly large levels
of y-zoom. Only EDL and FALCON maintain a low ECE across all levels of y-zoom. Middle: Entropy increases with larger
y-zoom for all methods. While EDL starts at the highest entropy, this reflects under-confident predictions for low levels of
perturbation. (b) FALCON results in consistently well calibrated and robust predictions across all perturbation strategies.
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Figure 2: Distribution of confidence scores for in-domain and truly OOD scenarios. (a) Confidence scores of L2 and FALCON
match accuracy (dashed yellow line) on MNIST, whereas EDL is significantly more underconfident than FALCON (p < 10719,
Wilcoxon signed rank test). (b) Confidence scores of all truly OOD scenarios (perturbations with close-to-random accuracy
(< .2) at epsilon 90) for MNIST. (c) Average confidence per predicted class for Fashion MNIST data should be close to random

for all classes; this is only the case for FALCON.

Experiments and Results

We quantify calibration under domain shift for 29 distinct
perturbation types not seen during training, including affine
transformations, image corruptions and word swaps as well
as a dedicated bias-controlled dataset (Barbu et al. 2019).
Each perturbation strategy mimics a scenario where the
data a deployed model encounters stems from a distribution
that gradually shifts away from the training distribution in
a different manner. For each model and each perturbation,
we compute the micro-averaged ECE by first perturbing
each sample in the test set at 10 different levels and then
calculating the overall ECE across all samples; we denote
relative perturbation strength as epsilon (see Appendix for
mapping to absolute values).

In addition, we quantify the quality of predictive uncertainty
for truly OOD scenarios by computing the predictive
entropy and distribution of confidence scores. We use
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complete OOD datasets as well as data perturbed at the
highest level. In these scenarios we expect entropy to reach
maximum levels, since the model should transparently
communicate it “does not know” via low and unbiased
confidence scores.

We show that our modelling approach substantially out-
performs existing approaches for sequence models and il-
lustrate improved performance for image data.

We compared the following modelling approaches: (i) L2-
Dropout, referring to a standard neural net with L2 regu-
larisation and dropout as baseline, (ii) MC-Dropout corre-
sponding to the modelling approach presented by (Gal and
Ghahramani 2016), (iii) Deep Ensembles referring to an
approach based on an ensemble of neural nets (Lakshmi-
narayanan, Pritzel, and Blundell 2017), (iv) EDL referring to
Evidential Deep Learning (Sensoy, Kaplan, and Kandemir
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Figure 3: Calibration of image classification models, quantified by computing the micro-averaged expected calibration error
(lower is better). FALCON results in consistently well calibrated and robust predictions across all perturbation strategies.
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2018), (v) MNF referring to a Bayesian neural network
trained using multiplicative normalising flows (Louizos and
Welling 2017), (vi) SVI, referring to stochastic variational
inference based on Flipout (Wen et al. 2018), (vii) FALCON,
which is our proposed method. We also compare the addi-
tional baselines verified uncertainty calibration (VUC) (Ku-
mar, Liang, and Ma 2019), and MixUp (Thulasidasan et al.
2019); to illustrate that the different modeling assumptions
of OOD detection methods do not translate into calibrated
predicted uncertainty under domain drift, we also jointly
trained a classifier and a GAN (Lee et al. 2017). Since Ova-
dia et al. (2019) have comprehensively shown that Temper-
ature Scaling results in substantially higher overconfidence
than other baselines, we only report results on this baseline
in the Appendix and refer to (Ovadia et al. 2019) for a more
detailed analysis. Additional information on model training,
parameter and hyperparameter settings for all methods (in-
cluding ablation studies and sensitivity analyses for FAL-
CON) as well as perturbation strategies is given in the Ap-
pendix.

Predictive Uncertainty for Image Classification

MNIST We first trained the existing baseline approaches
and evaluated them on 9 different perturbation strategies
(not used during training) on MNIST. While with increas-
ingly strong perturbations the predictive entropy increased
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MNIST CIFAR10
Acc. ECE Acc. ECE
L2-Drp 0.99 0243 0.872 0.329
MC-Drp 0992 0.179 0.865 0.163
MNF 0.993 0.197 NA NA
DeepEns  0.98 0242 0.868 0.178
SVI 0989 0.184 0.867 0.147
EDL 0989 0.102 0.87 0.137
MixUp 0991 0.20 0.871 0.23
vucC 0.99 0.45 0.872 0.26
FALCON 0.991 0.082 0.866 0.127

Table 1: Test accuracy and mean ECE across all 9 perturba-
tion strategies for MNIST and CIFAR10.

for all models, this was not necessarily matched by a good
calibration across the range of the perturbation. At the typ-
ical example of the perturbation y-zoom, it becomes clear
that for most methods entropy did not increase sufficiently
fast to match the decrease in accuracy, resulting in increas-
ingly overconfident predictions and an increasing ECE for
stronger perturbations (Fig. 1 (a)).

We observed a similar behaviour across all other 8 pertur-
bation strategies, which was reflected in the lowest micro-
averaged ECE for FALCON, followed by EDL (Figure 1 (b);
Table 1).

In-domain and truly OOD calibration While FALCON and
EDL yielded well-calibrated predictions that were robust
across all perturbation levels, it is worth noting that EDL
has a substantially higher ECE for in-domain predictions,
reflecting under-confident predictions on the test set (Fig. 2
().

We further assessed the quality of the predictive uncer-
tainties for truly OOD samples using the complete OOD
dataset Fashion MNIST (Xiao, Rasul, and Vollgraf 2017).
For such OOD samples, models are not able to make mean-
ingful predictions, which should be reflected in consistently
low confidence scores for all predicted classes. Figure 2 (b)
shows the mean confidence scores per predicted class. This
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illustrates the highly overconfident OOD predictions made
by baseline methods and their undesired bias towards a sub-
set of classes. Note that detailed results for the additional
baselines, including OOD performance, are reported in the
Appendix.

CIFAR10 Next, we trained a VGG19 model on the CI-
FAR10 dataset. We again observed a similar trend as for the
MNIST data, with FALCON yielding well calibrated predic-
tions across all perturbation strategies (Fig. 3). The consider-
able overconfidence of most baseline methods when making
predictions on OOD samples is also reflected by the distribu-
tion of OOD confidence scores (Fig. 3). Considering pertur-
bations at maximum strength (epsilon 90), FALCON is the
only model yielding uncertainty-aware confidence scores at
a median of less than 0.5 (for VUC and MixUp see Fig. 4).

We omitted MNF due to the large memory requirements
stemming from the use of multiplicative normalising flows.

ImageNet To evaluate the technical robustness and cali-
bration of FALCON on large-scale data and a more com-
plex architecture, we quantified the expected calibration er-
ror for Resnet50 models trained on ImageNet. Ovadia et al.
(2019) have shown that Deep Ensembles clearly outperform
all other baselines on ImageNet in terms of calibration. We
therefore use the trained Deep Ensemble consisting of 10
neural networks provided as part of (Ovadia et al. 2019) and
compare FALCON to this strongest baseline.

A common manifestation of dataset shift in real-world ap-
plications is a change in object backgrounds, rotations, and
imaging viewpoints. In order to quantify the expected cal-
ibration error under those scenarios, we use ObjectNet, a
recently proposed large-scale bias-controlled dataset (Barbu
etal. 2019). In addition, we compute the ECE on various un-
seen test perturbations by investigating a set of 19 recently
introduced corruptions (Hendrycks and Dietterich 2019).
The ObjectNet dataset contains 50,000 test images with a to-
tal of 313 classes, of which 113 overlap with ImageNet. We
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Figure 6: Micro-averaged ECE for 19 ImageNet corruptions.

first compute accuracy and ECE for the overlapping classes
and use the non-overlapping classes as OOD test set. While
accuracy is comparable between FALCON and Deep En-
sembles with 0.754 and 0.783 respectively, Deep Ensem-
bles benefit the ensemble effect, which typically results in
improved model fits. FALCON is also able to benefit from
this effect and an ensemble of FALCON results in the same
accuracy as deep ensembles (0.782); this effect also holds
for the negative log likelihood and under domain shift (see
Appendix for in-depth analysis). As previously reported, re-
moving typical biases (e.g. correlation between background
and object class) results in an approximately 40% decrease
in accuracy for all models ((Barbu et al. 2019)). While ulti-
mately generalization of models to such de-biased datasets
is desirable, for many real world applications it is critical
that models are transparent in settings where such gener-
alization is not achieved. Computing the expected calibra-
tion error reveals that FALCON is substantially more trans-
parent about this drop in accuracy, with considerably lower
ECE than Deep Ensembles (Fig. 5 a). Similarly, we find that
FALCON outperforms Deep Ensembles also for 19 image
corruptions, with the mean ECE across all perturbations be-
ing 35% lower than for the Deep Ensemble (0.056 vs. 0.036;
Fig. 6).
To investigate OOD calibration of ImageNet models, we use
the 200 classes in Objectnet that do not overlap with Ima-
geNet classes as completely OOD dataset. FALCON had the
most uncertainty-aware predictions, with predictive entropy
being higher than for the Deep Ensemble and confidence
scores being significantly lower (p < 107!°, Wilcoxon
signed rank test; Fig. 5 b and c).

Predictive Uncertainty for Sequence Modeling

To evaluate our modeling approach for sequence data, we fit
models on the Sequential MNIST dataset, where images are
converted to pixel-wise sequences of length 28x28. In ad-
dition, we fit models on the 20 Newsgroups dataset, where
news articles are modelled as sequences of words.

We trained recurrent networks with LSTM and GRU cells.
We were not able to train MNF and SVI for the LSTM/GRU
models and therefore do not report results for these tasks for
SVI and MNF. Ovadia et al. (2019) report a similar issue for
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Figure 7: Calibration of sequence models for classifying
sequential MNIST and 20 Newsgroups data, quantified by
computing the micro-averaged expected calibration error
(lower is better).

SVI and present results for LL-SVI, where Flipout is only
used in the last layer; we omit this comparison here since
they report that for LSTMs, LL-SVI performs worse than
the vanilla method.

Sequential MNIST Fitting LSTM models on sequential
MNIST is a challenging task (Bai, Kolter, and Koltun 2018),
and it was only possible to achieve state-of-the-art predictive
power with EDL for shorter sequences (downsampling of
images before conversion to sequence). While performance
of GRUs was better for all modelling approaches, EDL also
did not achieve a competitive accuracy (0.39 for LSTM and
0.838 for GRU). We found that our approach achieved com-
petitive predictive power for LSTM and GRU models (Ta-
ble 3) and substantially improved calibration of the predic-
tive uncertainty for both models (Fig. 7; results for GRU are
reported in Table 3). This illustrates that in contrast to ex-
isting approaches FALCON is able to yield well-calibrated
and trustworthy predictions without compromising on accu-
racy, even for challenging tasks such as classifying long se-
quences with LSTMs.

20 Newsgroups To further evaluate the ability of FALCON
to model sequence data, we compared the performance of
FALCON to existing approaches for an NLP task. To this
end, we trained LSTMs to classify news articles into one
of 20 classes. We generated vector representations of words
using the pre-trained GLOVE embedding (length 100). We
trained LSTMs and evaluated trained models on a pertur-
bation strategy based on random word swaps. To establish
a perturbation strategy with gradually increasing perturba-
tions, we varied the fraction of words drawn from each sam-
ple between 0% and 45% in 5% steps (gradually decreasing
accuracy to random levels).

Similar to the LSTM model trained on sequential MNIST,
we found that EDL did not achieve competitive predictive
power, with an accuracy of 49.3% only. In contrast, FAL-
CON resulted in well-calibrated predictions while maintain-
ing a competitive accuracy of 75.7%, compared to 75.9%,
72.8% and 77.3% for L2-Dropout, MC-Dropout and Deep
Ensemble respectively. As before, the model confidence of
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LSTM-sM  GRU-sM 20 ng

L2-Drp 0.82 0.36 0.64
MC-Drp  0.63 0.47 0.91
DeepEns  0.86 1.06 1.82
FALCON 1.71 1.61 2.23

Table 2: Predictive entropy for truly OOD predictions in se-
quence modelling tasks. sM stands for sequential MNIST.

FALCON was substantially better calibrated than existing
methods (Figure 7 (b)).

Predictive uncertainty for truly OOD For all sequence
modelling tasks, we also investigated predictive uncertainty
for truly OOD samples. To this end, we computed the mean
entropy for truly OOD predictions by considering perturba-
tions at maximum strength (epsilon 90), with model accu-
racy close to random. In this scenario, the predictive entropy
of FALCON was at least 22% higher compared to baselines,
indicating that FALCON is able to make uncertainty-aware
predictions even for truly OOD samples (Table 2).

Discussion and Conclusion

We present a fast and generalizable approach for encour-
aging well-calibrated uncertainty-awareness of deep neural
networks. To this end, we combine an entropy encourag-
ing loss-term with an adversarial calibration loss. We show
on diverse data modalities and model architectures that our
approach yields well-calibrated predictions both for dataset
shift and for OOD samples generated based on 32 dis-
tinct perturbations and datasets. While SVI and EDL are
promising on simple LeNet (trained on MNIST) and VGG19
(trained on CIFARI10) architectures, they are challenging
to fit on more complex architectures such as LSTMs and
ResNet. Deep Ensembles yield substantial improvements
over the L2-dropout baseline, in particular for complex mod-
els such as recurrent networks and ResNet. However, train-
ing an ensemble of neural networks increases training time
linearly with the number of networks in the ensemble. This
can be a substantial drawback for applications where train-
ing of a single deep network on a large dataset can take
several days or even weeks and results in a substantial car-
bon footprint. Ovadia et al. (2019) have recently evaluated
calibration under domain drift for a range of existing algo-
rithms and datasets based on ECE. Our findings for baseline
methods confirm their results, in particular for deep ensem-
bles and SVI (they did not consider EDL, MNF, VUC and
MixUp). Thus, while they also report promising results for
SVI on MNIST/CIFAR, they also note that it is difficult to
get it to work on larger datasets and other architectures. In
addition, they also find that for all baseline methods cali-
bration decreases with increasing dataset shift, resulting in
largely overconfident predictions for truly OOD data. In con-
trast, FALCON outperforms both SVI and EDL on simple
architectures (LeNet/VGG19), as well as deep ensembles on
complex architectures (LSTM/GRU/ResNet).



LSTM MNIST GRU MNIST LSTM 20 Newsgroups
Testacc. Avg. ECE Testacc. Avg. ECE Testacc. ECE
L2-Dropout 0.986 0.327 0.991 0.334 0.759 0.449
MC-Dropout 0.986 0.334 0.98 0.296 0.728 0.375
Deep-Ensemble  0.99 0.222 0.99 0.168 0.773 0.218
FALCON 0.978 0.118 0.988 0.108 0.757 0.158

Table 3: Test accuracy and average ECE (lower is better) across all perturbation strategies for LSTM and GRU models. For 20
Newsgroups micro-averaged ECE for character swap is reported. For all models test accuracy is computed on the unperturbed

test set.

Additional Technical Details

Parameter and Hyperparameter Settings

Deep Ensembles, MNF, and EDL were trained with de-
fault values for method-specific hyperparameters (e.g. num-
ber of neural networks in a Deep Ensemble). In addi-
tion, the following hyperparameters were picked using
hyperparameter searches. For all methods, the learning
rate was chosen from {le — 5,5e¢ — 5,le — 4,5e —
4,1e — 3,5¢ — 3}. In addition, for the baseline method
(L2), our method (FALCON), Deep Ensembles and EDL,
dropout was chosen from {0,0.5} and L2-regularisation
from {0.0,0.001,0.005,0.01,0.05}. For EDL we chose the
KL regularisation from {0.5, 1., 5.,15.,10., 30., 50.,100.} .
For a fair comparison with this state-of-the art model, we
chose Ag from this same set of values for FALCON and
Aady from {0.25,1e — 1,1e — 2,1e — 3,1e — 4, 1e — 6}.

For the 20 Newsgroups dataset we used the keras to-
kenizer to format text samples, converting words into
lower case, removing punctuation and special characters
I"ESSE () *+,—./;<=>2Q@[\\]"_{}"\t\n’. We
used the first 2500 words of an article as input. We trained
LSTM models with one hidden layer of 130 hidden units
using the RMSPROP optimizer. GRU models were trained
with one hidden layer of 250 hidden units to reflect the re-
duced complexity of GRU cells compared to LSTM cells.

Deep Ensembles For deep ensembles of LSTMs trained
on sequential MNIST we found that models did not converge
when training the networks with standard adversarial exam-
ples; we therefore also trained ensembles with a reduced e
of 0.005 and report performance for this modified Deep En-
semble approach. For all other settings, including the deep
ensemble of GRUs on sequential MNIST and the deep en-
semble of LSTMs on the 20 Newsgroups data, we report
performance with standard adversarial training (e = 0.01).
For all settings except Imagenet we trained a standard en-
semble of 5 neural networks. For Imagenet, we used the
trained ensemble of 10 neural networks provided as part of
(Ovadia et al. 2019) (which were trained without using ad-
versarial training', € = 0).

"https://github.com/google-research/google-research/tree/
master/uq_benchmark _2019/imagenet
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FALCON - Imagenet For the Imagenet data, we initial-
ized FALCON with the weights of a pretrained model (Ova-
dia et al. 2019) to facilitate faster convergence. We therefore
chose a smaller learning rate of 0.000001. For all other ex-
periments we used random initializations.

Ablation Study and Sensitivity Analysis

In order to investigate the influence of the individual loss
terms on calibration, we performed an ablation study, omit-
ting one of the two loss terms, Lg and L4, respectively.
While either loss term results in an improved calibration
compared to the L2-dropout baseline, combining both terms
yields consistently better results (Figure 8).

L2-Dropout

FALCON without Entropy Loss (ours)
FALCON without Adversarial Loss (ours)
FALCON (ours)

I'o{./ef[ 4
roh"gh{ 7
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‘U"Sh/f, J
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Figure 8: Micro-averaged ECE for FALCON with only one
loss term (MNIST).

In addition, we performed a sensitivity analysis, in order
to quantify the dependence of model performance on hy-
perparameter choice. To this end, we trained LeNet models
on MNIST varying both hyperparameters over wide ranges.
We first fixed Ag at the optimal value of 50 and varied A, g4,
between 0.0005 and 0.03 and computed the micro-averaged
ECE for perturbation yzoom for all hyperparameter combi-
nations. Next, we fixed \,4, at the optimal value of 0.02 and
varied \g between 10 and 100. We found that even when
varying both hyperparameters over a wide range, ECE re-
mained robust and varied by less than 0.04 for A, 4, and less
than 0.06 for A\g (Fig. 9). Accuracy was not affected by the
choice of either A and remained between 0.985 and 0.991.
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Figure 9: Robustness of hyperparameters, evaluated for the
perturbation yzoom on the test set. Even when varying
both hyperparameters, micro-averaged ECE for perturbation
yzoom was robust.

Supplementary Analyses Image Data

MNIST

OOD perfromance To further analyse the OOD perfor-
mance of MNIST models on Fashion-MNIST, we assess the
distribution of confidence scores when making predictions
on this completely OOD dataset (Fig. 10). FALCON has
lowest confidence scores, indicating that it is significantly
better calibrated and more uncertainty aware than all base-
lines (p < 10~1°, Wilcoxon signed rank test, FACLON vs
EDL).

1.04 0.5 L2-Dropout
" EDL
9.8 0.4 EDL recalibrated
S FALCON
o w 0.3 FALCON recalibrated
3 0.6 O
g “o.2
o .
% 0.4
S 0.1
“o0.2
0.0
T 2 o & - = 0 20 40 60 80
IQ‘ IQ‘ ‘QE (% Pl S Epsilon
NoO & N
~ S 9 g . . . .
Q “ (b) Calibration under increasing

levels of y-zoom. EDL recalibrated
and FALCON recalibrated refer to
models where temperature scaling
was applied after training.

(a) Confidence scores for
predictions of Fashion-
MNIST.

Figure 10: Additional analyses of MNIST

Effect of temperature scaling Since we observed that
FALCON and EDL displayed some underconfidence for
in-domain predictions, we investigated whether postpro-
cessing the trained models using temperature scaling would
be beneficial. However, we found that for FALCON this
resulted in overconfident predictions for samples far away
from the training distribution and had little effect on EDL
as shown in Fig. 10 (b).

ImageNet

Model accuracy and NLL ImageNet corruptions We
found that accuracy of both models degraded with increas-
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Figure 11: Accuracy for FALCON and Deep Ensembles for
(a) ObjectNet (overlapping classes) and (b) corrupted Ima-
geNet for increasing levels of corruption.
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Figure 12: NLL Imagenet

ing corruptions (Fig. 11). We further observed that levels
of accuracy were slightly but consistently higher for Deep
Ensembles compared to FALCON. To confirm that this
is mainly due to the ensemble effect, we also trained an
ensemble of FALCON models as described above. Figures
11 and 12 illustrate that when we train such ensemble of
FALCON models accuracy becomes comparable to levels
seen in Deep Ensembles and NLL improves over Deep
Ensembles due to improvements in OOD calibration.

Ethics Statement

FALCON could be applied in a wide range of use cases
where domain shifts after model deployment are expected.
This includes a multitude of classification tasks in the phys-
ical world, such as predictive maintenance tasks where wear
and tear or changing operator behaviour can result in do-
main shifts. Other relevant machine learning tasks include
the analysis of customer data, where changing customer be-
haviour (e.g. during a recession or health crisis) can lead to
a domain shift. Especially safety critical applications where
no human supervision is carried out (e.g. autonomous driv-
ing cars) would profit substantially from a machine learning
model that is aware of its own uncertainty.

In this case, our research leads to more transparent pre-
dictions. Users know when to trust a model prediction,
since calibrated outputs mean that confidence scores broadly
match model accuracy for a (set of) prediction(s). In other
words, FALCON transparently communicates “how well it
knows” via these calibrated confidence scores, for all sam-



ples the model may encounter throughout its lifecycle. In
case of a low confidence score the user can, depending on
the use-case, decide to use fall-back methods or involve a
human in the loop. In case of consistently low confidence
scores, a retraining of the model can be triggered.
Transparent predictions can also help increase fairness. For
example, when used in a decision-support context, well cal-
ibrated predictions can be used to identify types of input
samples that were under-represented during training and for
which model accuracy is lower. In this case, low confidence
scores would make the inability of the model to make a reli-
able prediction transparent and wrong decision due to a false
trust in the model can be avoided. While we have not ex-
plicitly investigated the ability of our modeling approach to
identify such biases in the training data and their implica-
tions on predictions, we hope that our contribution inspires
future research in this direction.

Transparent predictions, however, also mean that it is pos-
sible to identify OOD samples (or outliers) effectively via
their associated low confidence score. This may not always
be desired since in certain applications it is a risk to privacy.
For example, it may be possible to reveal OOD samples that
are related to a protected class such as age, race, or gender
and underrepresented in the training data.

While our modeling approach yields better calibrated inputs
compared to the state-of-the-art, calibration is not perfect
and there are therefore still risks related to undue trust in
models.

Currently, the best performing model for large data and
complex architectures is deep ensembles (section 4 and
(Ovadia et al. 2019)). Our modeling approach is not only
better calibrated in domain shift and OOD settings, but also
5-10 times more carbon efficient?. This better sustainability
may be an important factor when choosing a modeling ap-
proach, especially when networks need to be trained on large
data.
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