
Gradient Descent Averaging and Primal-dual Averaging
for Strongly Convex Optimization

Wei Tao1,2, Wei Li2, Zhisong Pan2,∗, Qing Tao3,4,∗

1Institute of Evaluation and Assessment Research, Academy of Military Science, Beijing 100091, China
2Command and Control Engineering College, Army Engineering University, Nanjing 210007, China

3Department of Information Engineering, Army Academy of Artillery and Air Defense, Hefei 230031, China
4Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

wtao plaust@163.com, liwei public@qq.com, hotpzs@hotmail.com, qing.tao@ia.ac.cn

Abstract

Averaging scheme has attracted extensive attention in deep
learning as well as traditional machine learning. It achieves
theoretically optimal convergence and also improves the em-
pirical model performance. However, there is still a lack of
sufficient convergence analysis for strongly convex optimiza-
tion. Typically, the convergence about the last iterate of gra-
dient descent methods, which is referred to as individual con-
vergence, fails to attain its optimality due to the existence
of logarithmic factor. In order to remove this factor, we first
develop gradient descent averaging (GDA), which is a gen-
eral projection-based dual averaging algorithm in the strongly
convex setting. We further present primal-dual averaging for
strongly convex cases (SC-PDA), where primal and dual av-
eraging schemes are simultaneously utilized. We prove that
GDA yields the optimal convergence rate in terms of output
averaging, while SC-PDA derives the optimal individual con-
vergence. Several experiments on SVMs and deep learning
models validate the correctness of theoretical analysis and ef-
fectiveness of algorithms.

Introduction
Averaging scheme has been widely adopted from differ-
ent angles. It always helps to reduce variance and improve
generalization of learning algorithms. In fact, there exist
various averaging techniques, such as dual averaging (DA)
(Nesterov 2009), weight averaging (WA) (Izmailov et al.
2018), output averaging (OA) (Nemirovsky and Yudin 1983;
Polyak and Juditsky 1992), primal averaging (PA) (Nesterov
and Shikhman 2015; Tao et al. 2020), etc.

DA has its origin in the work of (Nesterov 2009), which
averages all past gradient information at each iteration. In
comparison with gradient descent (GD) and mirror descent
(MD) (Beck and Teboulle 2003), it avoids new gradients to
be considered with less weight than previous ones (Flam-
marion and Bach 2017). DA has been successfully extended
to the stochastic composite scenario and it’s well-suited
for large-scale learning problems (Xiao 2009; Dekel et al.
2012). The superiority of regularized dual averaging (RDA)
in efficiently promoting regularizer structure (e.g., sparsity)
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has been elaborated by Xiao and also earned test of time
award at NeurIPS (Xiao 2009).

Recently, averaging has also been frequently employed
in training deep neural networks. WA averages weights
of the networks based on training epochs (Izmailov et al.
2018). Since then, a series of contribution: SWALP (Yang
et al. 2019), Fast-SWA (Athiwaratkun et al. 2018), SWA-
Gaussian (Maddox et al. 2019) have been successfully ap-
plied to a wide range of applications. Besides, exponential
moving average (EMA), which has been used to exponen-
tially decay the weights for previous iterate, can be regarded
as a particular example of WA (Kingma and Ba 2014; Reddi,
Kale, and Kumar 2019; Ma and Yarats 2018).

OA is a classical way about how to output the final solu-
tion of iterative algorithms. Existing convergence analyses
mostly center on it due to some superior theoretical guar-
antees (Dimitri P., Angelia., and Asuman E. 2003). Run-
ning algorithms for t iterations, and returning the last it-
erate, is a very intuitive idea in practice. Therefore, there
are still some gaps about individual output between theoret-
ical analyses and practical implementations. Several works
on stochastic gradient descent (SGD) develop different OA
techniques to achieve the optimal convergence rate, espe-
cially for strongly convex optimization, such as suffix aver-
aging (Rakhlin, Shamir, and Sridharan 2011), non-uniform
averaging (Lacoste-Julien, Schmidt, and Bach 2012; Harvey,
Liaw, and Randhawa 2019), increasing weighted averaging
(Guo et al. 2020), etc.

The optimal convergence for strongly convex problems
has become a challenging problem after the well-known
work (Hazan et al. 2006). This is because conventional
SGD cannot attain the optimal convergence even when we
take the uniform average of all past iterates. An open ques-
tion early posed by Shamir (Shamir 2012) is whether OA
is needed at all to attain optimal convergence rate. Par-
tially addressing this question, Shamir et al. (Shamir and
Zhang 2013) showed that SGD with polynomial-decay av-
eraging has an O(log t/

√
t) individual convergence rate in

the general strongly convex cases and an O(log t/t) rate in
strongly convex cases, respectively. Recent works (Harvey
et al. 2019; Jain, Nagaraj, and Netrapalli 2019) provide the
affirmative answer that the logarithmic term in the conver-
gence bound is necessary for any plain SGD in both gen-
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eral convex and strongly convex cases. However, they leave
us a new challenging problem. Can we achieve the opti-
mal rate of O(1/t) by slightly modifying any classical algo-
rithms? From these observations, there are mainly two ways
to achieve the optimal rate without the logarithmic factor.
One is to modify the original steps of the algorithms. The
other is to employ the averaging strategy.

PA is an interesting gradient operation step, in which
the gradient evaluation is imposed on the weighted aver-
age of all past iterative solutions (Tao et al. 2020). In fact,
this averaging scheme was first used in PDA (Nesterov and
Shikhman 2015), which exploits simultaneously in both pri-
mal and dual space per-iteration, and succeeds in deriving
the optimal individual rate for minimizing non-smooth gen-
eral convex objectives. Later, (Tao et al. 2020) formally
named it as PA, and they focus on projected subgradient
(PSG) method. Its individual convergence rate doesn’t suffer
from the extra logarithmic factor. Overall, PDA is the clos-
est solution to eliminate the log t factor about DA. Unfor-
tunately, (Nesterov and Shikhman 2015) partially addressed
the optimal convergence problem only in the general convex
scenario. Optimal-RDA (Chen, Lin, and Pena 2012) pro-
posed earlier than PDA, requires two gradient operations
per-iteration, which is different from conventional DA with
only one operation. Similarly, (Cutkosky 2019) and (Joulani
et al. 2020) incorporated an auxiliary PA scheme into their
algorithms, which are able to achieve the optimal regret
bound in the online setting.

This paper is motivated by the breakthrough work of
(Nesterov and Shikhman 2015). Our original intention is to
derive the optimal individual convergence of DA with minor
changes in gradient operations. The main contributions can
be summarized as follows:

• We present a general GDA algorithm, which includes the
strongly convex algorithm in (Cutkosky 2019) as one spe-
cial case of our method. Our GDA gains a deeper insight
into the connection between DA and GD. Moreover, we
prove that this algorithm no longer suffers from the log-
arithmic factor and attains the optimal convergence rate
O(1/t) coupled with OA.

• We incorporate PA into GDA, and develop a novel SC-
PDA algorithm so as to achieve optimal individual con-
vergence rate O(1/t). Moreover, our convergence anal-
ysis of SC-PDA is obviously different from Nesterov’s
PDA. Thus, our work theoretically completes the task
about individual convergence of DA under different con-
vexity situations.

Preliminaries and Notations
Many convex optimization algorithms in machine learning
can be formulated as a constrained black-box problem:

min f(w), s.t. w ∈ Q. (1)

where Q is a bounded convex domain, and f (·) is a convex
function on Q. Denote that w∗ is an optimal solution. We
use∇f(w) to denote the (sub)gradient of f at w and ĝ is an
unbiased estimate of (sub)gradient of f at w.

Following (Shamir and Zhang 2013), we first provide the
definitions of strong convexity, individual convergence, and
averaged convergence.

Definition 1. A function f is called µ-strongly convex
with respect to the norm ‖ · ‖ if there is a constant µ > 0
such that

f(w) ≥ f(u) + 〈∇f(u),w − u〉+
µ

2
‖w − u‖2, (2)

for all u,w.
Note that the strong convexity parameter µ is a measure

of the curvature of f , 〈·, ·〉 stands for the Euclidean inner
product, and the quadratic lower bound in (2) can be also
satisfied with µ = 0 for a convex function.

Generally, the convergence about the last iterate is of-
ten referred to as individual convergence for simplicity (Tao
et al. 2020).

Definition 2. Given a convex function f , let {wt}t>0 be
generated by optimization algorithms, the individual conver-
gence is defined as

f(wt)− f(w∗) ≤ ε(t). (3)

Definition 3. Given a convex function f with uniform av-
eraged output w̄t = 1

t

∑t
i=1 wi, let {wt}t>0 be generated

by optimization algorithms, we can define averaged conver-
gence as

f(w̄t)− f(w∗) ≤ ε(t). (4)
The convergence bound ε is related to t. In particular, the
optimal bounds is O(1/

√
t) in the non-smooth convex cases

and O(1/t) in the strongly convex cases, respectively (Nes-
terov 1983; Nemirovsky and Yudin 1983).

Related Work
In this section, we briefly review some related algorithms
and their convergence rates. PSG is one of the most funda-
mental algorithms for solving (1), and the iteration of which
is,

wt+1 = P [wt − at∇f(wt)], (5)
where P is the projection operator on Q, at > 0 is the step-
size parameter. More generally, mirror descent (MD) is a
direct extension of the PSG by using a mirror map, and it
iterates as follows,

wt+1 = arg min
w∈Q
{at〈∇f(wt),w〉+B(w,wt)}, (6)

where t > 0, B is the Bregman divergence. MD recovers
PSG by taking 1

2‖w −wt‖2.
Based on MD, DA is also a powerful first-order gradient

algorithm (Nesterov 2009). The standard DA updates the so-
lution according to

wt+1 = arg min
w∈Q
{

t∑
k=0

〈ak∇f(wk),w〉+ γtd(w)}, (7)

where at is the weight parameter, γt > 0 is the stepsize, d(·)
is a strongly convex function such that

d(w) ≥ d(u)+〈∇d(u),w−u〉+ 1

2
‖w − u‖2, ∀u,w ∈ Rn.
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It has been shown in (Nesterov and Shikhman 2015) that,

1

At

t∑
k=0

akf(wk)− f(w∗)

≤ 1

At

[
γtd(w∗) +

t∑
k=0

a2
k

2γk
‖∇f(wk)‖2

]
.

(8)

where At =
∑t
k=0 ak.

RDA is a proximal variant of DA that dramatically cap-
tures the geometry structure of the regularizer for stochastic
composite learning problems. The key iteration is as follows,

wt+1 = arg min
w∈Q
{1

t
〈
t∑

k=0

∇f(wk),w〉+ r(w) +
βt
t
d(w)},

(9)
where r(w) is the regularization function, d(w) is a strongly
convex regularization term, {βt}t>0 is a non-negative and
non-decreasing sequence. RDA (9) accumulates the weight
of a sparse regularizer such as l1-norm to produce more
sparse solutions. By averaging all past gradients instead
of using current gradient information, DA always exhibits
more stable convergence behaviour. Besides, it uses a global
proximal function d(w) as opposed to local Bregman diver-
gence B(w,wt) in (6).

In order to obtain the optimal individual convergence rate,
(Nesterov and Shikhman 2015) developed PDA where the
primal and dual averaging schemes are simultaneously em-
ployed. It can be viewed as an alternative answer to Shamir’s
open problem by slightly modifying DA. The key steps can
be described as follows,

w+
t = arg min

w∈Q
{

t∑
k=0

〈ak∇f(wk),w〉+ γtd(w)}, (10a)

wt+1 =
At
At+1

wt +
at+1

At+1
w+
t . (10b)

Obviously, the only difference between standard DA (7) and
PDA (10) lies in the additional weighted averaging step
(10b), also called PA (Tao et al. 2020; Taylor and Bach
2019). Only considering the general convex case, it was
proved to derived the optimal individual convergence,

f(wt)− f(w∗) ≤
1

At
[γtd(w∗) +

t∑
k=0

a2
k

2γk
‖∇f(wk)‖2].

(11)
Based on the PDA, (Tao et al. 2020) presented PA-PSG

for both general convex (12) and strongly convex scenarios
(13), such that

w+
t = P [w+

t−1 − at∇f(wt)], (12a)

wt+1 =
At
At+1

wt +
at+1

At+1
w+
t , (12b)

and

w+
t = P [δtw

+
t−1 − atδt(∇f(wt)− µwt)], (13a)

wt+1 =
At
At+1

wt +
at+1

At+1
w+
t , (13b)

where δt = 1/(1 + atµ).
Note that the gradient operations are imposed on f(wt),

and now wt becomes a weighted average of all past itera-
tive primal sequences. PA-PSG also achieves the following
convergence rate,

f(wt)− f(w∗) ≤
1

At
[B(w0,w∗) +

t∑
k=0

a2
k

2
‖∇f(wk)‖2].

(14)
It reveals that PA-PSG in the convex setting converges to the
optimum at O(1/

√
t) (Tao et al. 2020). Besides, (Defazio

and Gower 2020) also established connections between PA
and momentum methods.

Online-to-batch conversion is a standard way to obtain
convergence guarantees from online learning algorithms to
stochastic convex optimization (Shalev-Shwartz, Singer, and
Srebro 2007; Hazan and Kale 2011). Recently, (Cutkosky
2019) developed anytime online learning algorithms whose
last iterate converges to the optimum in the stochastic cases.
(Cutkosky 2019) focused on DA, and the strongly convex
algorithm can be described as follows,

wt+1 = arg min
w∈Q
{〈

t∑
k=0

∇f(wk),w〉+ µ

2

t∑
k=0

‖w−wk‖2}.

(15)
It has also been proved that

E[f(wt)− f(w)] ≤ O
(

log t

2µt

)
. (16)

Obviously, this convergence bound (16) for stochastic opti-
mization is suboptimal.

Based on the above observations, we can find that the op-
timal individual convergence rate of DA for strongly convex
optimization problems is still missing, which is one of our
main motivations in this paper.

Proposed GDA and SC-PDA Algorithms
In this section, we focus on the case where f satisfies
µ-strongly convex, and present two modified projection-
based DA algorithms for solving (1), then we will analyse
their performance in terms of optimal convergence rate. The
proofs of theoretical results in this section are exhibited in
the supplementary material.

GDA and Averaged Convergence
Following the work of RDA for strongly convex functions
(Xiao 2009), we replace the term γtd(w) in standard DA (7)
with another µ-strongly convex term µ

2

∑t
k=0 γk‖w−wk‖2,

then we have

wt+1 = arg min
w∈Q
{

t∑
k=0

〈ak∇f(wk),w〉

+
µ

2

t∑
k=0

γk‖w −wk‖2}.

(17)

We can find that the strongly convex algorithm (15) is one
special case of our GDA algorithm (17) when we let ak = 1
and γk = 1.
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Algorithm 1 GDA

Input: strongly convex parameter µ, non-negative stepsize
sequence at and γt.

1: Initialize w0 = 0, a0 = 0, γ0 = Γ0 = 0.
2: repeat
3: Calculate Γt+1 = Γt + γt+1,
4: Compute subgradient of∇f(wt),
5: Update (sub)gradient descent step:

wt1 = wt − at
γtµ
∇f(wt),

6: Update weighted averaging step:
wt2 = 1

Γt

∑t
k=0 γk(wk1),

7: Update projection step:
wt+1 = P (wt2),

8: until convergence
Averaged Output: w̄t+1

The detailed steps of GDA are shown in Algorithm 1. Ac-
cording to the following lemmas, we can also get the projec-
tion version of DA. We first provide the property of projec-
tion operator,

Lemma 1. (projection property, (Dimitri P., Angelia., and
Asuman E. 2003)) For w ∈ Rn,w0 ∈ Q,

〈w −w0,u−w0〉 ≤ 0,

for all u ∈ Q if w0 = P (w).
In the following lemma, we can get the equivalent form

between the projection method and the proximal method.
Lemma 2. For w ∈ Rn, standard DA algorithm (7) is

equivalent to

wt+1 = P
[
−
∑t
k=0 ak∇f(wk)

γt

]
, (18)

where P is the projection operator on Q.
Based on Lemma 1, we can get the following projection-

based DA for strongly convex objectives, which is also
equivalent to (17), i.e.,

wt+1 = P
{ 1

Γt

t∑
k=0

γk[wk −
ak
µγk
∇f(wk)]

}
, (19)

where t > 0, Γt =
∑t
k=0 γk. The stepsize is ak/(µγk). No-

tably, this algorithm (19) can be viewed as a weighted aver-
aging GD, which we name GDA in the paper. In contrast to
PIWA (Guo et al. 2020), our original intention is to slightly
modify DA, and then we build the connection between DA
and GD. Besides, PA is different from the weighted averag-
ing scheme employed in PIWA.

To conduct convergence analysis, we also need the fol-
lowing assumptions about the gradient oracle.

Assumption 1. The (sub)gradient oracle is M -bounded
with M >0, i.e.,

‖∇f(w)‖ ≤M. (20)
Assumption 2. Let ĝt be an unbiased estimate of subgra-

dient of f at w. For any w,

‖ĝt −∇f(w)‖ ≤ σ2. (21)

Then, we can get the following theorem.
Theorem 1. Let {wt}∞t=1 be generated by algorithm (19).

For any w ∈ Q, we have

1

At

t∑
k=0

akf(wk)− f(w∗)

≤ 1

2At

t∑
k=0

[ a2k
µΓk
‖∇f(wk)‖2 + µ(γk − ak)‖wk −w∗‖2

]
,

where At =
∑t
k=0 ak, Γt =

∑t
k=0 γk.

Corollary 1. Let w0 ∈ Q be the initial point and {wt}∞t=1
be generated by GDA (19). There exists a positive number
M0 > 0 such that

‖wt −w∗‖ ≤M0.

Specifically, let at = γt = t. For any w ∈ Q, it holds that

f(w̄t)− f(w∗) ≤ O
(

1

t

)
.

Remark 1. For problem (1), Corollary 1 indicates that
GDA achieves the optimal rate O(1/t) as opposed to the
suboptimal rate with the multiplicative log t factor in (16).
With suitably chosen stepsize and strongly convex param-
eters, we get the optimal averaged convergence of GDA.
However, it remains unclear the optimal individual conver-
gence rate of DA for strongly convex optimization problems.

SC-PDA and Individual Convergence
Based on GDA, we then discuss these steps of our second
approach SC-PDA (Algorithm 2) in detail and illustrate how
to achieve the optimal individual convergence rate without
the extra logarithmic factor.

Motivated by the significant work of (Nesterov and
Shikhman 2015; Tao et al. 2020), we incorporate PA into
GDA for strongly convex objective functions. The key itera-
tions are given by

w+
t = arg min

w∈Q
{

t∑
k=0

〈ak∇f(wk),w〉+
µ

2

t∑
k=0

γk‖w −wk‖2},

(22a)

wt+1 =
At

At+1
wt +

at+1

At+1
w+

t , (22b)

where t > 0, and At =
∑t
k=0 ak. Also, there is the equiva-

lent projection-type algorithm,

w+
t = P

{ 1

Γt

t∑
k=0

γk[wk −
ak
µγk
∇f(wk)]

}
, (23a)

wt+1 =
At
At+1

wt +
at+1

At+1
w+
t . (23b)

We can find that (23a) and (23b) are both averaging steps in
the strongly convex setting, which is called SC-PDA in this
paper.

The individual convergence rates are based on the follow-
ing lemma and theories. Lemma 3 bridges the connection
between variable w and its corresponding objective function
f(w).
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Algorithm 2 SC-PDA

Input: strongly convex parameter µ. stepsize parameter at
and γt,

1: Initialize w0 = w+
0 = 0, a0 = A0 = 0, γ0 = Γ0 = 0.

2: repeat
3: Calculate At+1 = At + at+1, Γt+1 = Γt + γt+1,
4: Compute subgradient of∇f(wt)
5: Update (sub)gradient descent step:

w+
t1 = wt − ak

µγk
∇f(wt),

6: Update weighted averaging step:
w+
t2 = 1

Γt

∑t
k=0 γk(w+

k1),
7: Update projection step:

w+
t = P (w+

t2),
8: Update primal averaging step:

wt+1 = At

At+1
wt + at+1

At+1
w+
t .

9: until convergence
Individual Output: wt+1

Lemma 3. Assume f(w) is a strongly convex function.
Then let {wt}∞t=1 be generated by algorithm (23). For any
w ∈ Q, we have

at〈∇f(wt),wt −w+
t 〉

≤ At−1[f(wt−1)− f(wt)] + at〈∇f(wt),w
+
t−1 −w+

t 〉.

Remark 2. Lemma 3 bridges the connection between w
and f(w). In other words, Lemma 3 is the most impor-
tant point in deriving individual convergence rate. Based on
Lemma 1-3, we can obtain the following theorem.

Theorem 2. Let {wt}∞t=1 be generated by algorithm (23).
For any w ∈ Q, we have

f(wt)− f(w∗)

≤ 1

2At

t∑
k=0

[ a2k
µΓk
‖∇f(wk)‖2 + µ(γk − ak)‖wk −w∗‖2

]
.

Further, we also can get the following Corollaries.
Corollary 2. Let {wt}∞t=1 be generated by our pro-

posed algorithm (23). According to Assumption 1 about
(sub)gradient bound.

(1) Let at = γt = t. For any w ∈ Q, it holds that

f(wt)− f(w∗) ≤ O
(

1

t

)
. (24)

(2) Let at = γt = 1. For any w ∈ Q, we can get

f(wt)− f(w∗) ≤ O
(

log t

t

)
. (25)

Remark 3. Obviously, (24) in Corollary 2 indicates that
the optimal rate of individual convergence for strongly con-
vex problems can be achieved by our proposed SC-PDA
(23). With suitably chosen the stepsize parameters, (25) is
same as the bound (16). It should be noticed that the con-
vergence analysis in our paper is quite different from that in
(Cutkosky 2019).

It has been indicated in (Harvey et al. 2019) and (Jain,
Nagaraj, and Netrapalli 2019), the suboptimalO(log t/t) in-
dividual convergence for standard GD is tight under strong
convexity condition. As we have established the connection
between these two first-order gradient algorithms, DA also
exhibits the same individual convergence behaviour. (24) ex-
poses that if we choose the suitable parameters, GDA is able
to remove the extra logarithmic factor and accelerate the
suboptimal convergence rate of DA.

Corollary 3. According to (24), we can easily attain the
rate of averaged convergence, such that

f(w̄t)− f(w∗) ≤ O
(

log t

t

)
. (26)

Remark 4. In contrast to the convergence bound in Corol-
lary 1, we can only obtain the averaged convergence rate
with a log t factor through the optimal individual conver-
gence rate. In other words, averaged convergence can’t eas-
ily transform to the individual one. Thus, there are no tran-
sition relations between these two convergence rates for
strongly convex optimization.

Extension to the Stochastic Setting
In this section, we consider the binary SVM problems for
simplicity, and transform our deterministic approaches to
stochastic versions.

Due to the data explosion in recent years, deterministic
optimization methods that need to evaluate a large number
of full gradients are not suitable for solving very large-scale
optimization problems. Stochastic optimization methods can
alleviate this limitation by sampling one (or a small set of)
examples and computing a stochastic (sub)gradient at each
iteration based on the sampled examples. Therefore, we ex-
tend our method to the stochastic setting.

Let the training set S = {(x1, y1), (x2, y2), ..., (xn, yn)},
where xi is i.i.d (independently identically distribution).
yi ∈ Y = {−1, 1} is the label. (xi, yi)} is uniformly at
random chosen from S. For problem (1) and stochastic al-
gorithms, let f(w) =

∑n
i=1 fi(w), fi(w) = max{0, 1 −

yi〈w,xi〉} is the non-smooth loss function of (xi, yi), Q is
the closed convex set.

The key steps of the stochastic SC-PDA method are,

w+
t = P

{ 1

Γt

t∑
k=0

γk[wk −
ak
µγk

ĝk]
}
, (27a)

wt+1 =
At
At+1

wt +
at+1

At+1
w+
t , (27b)

where ĝt is an unbiased estimate of subgradient of f at wt,
µ is the strongly convex parameter.

In the following, we will analyse the convergence rate in
expectation of the stochastic SC-PDA method (27). When
demonstrating the convergence rate of stochastic optimiza-
tion algorithms from their deterministic settings, one way
is to replace the real gradient with its unbiased estimation,
which is carefully described in (Rakhlin, Shamir, and Srid-
haran 2011)1. Specifically, after adding a real gradient, we

1We follow the proof of Lemma 1.
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find that the term, developed by the gap between the real gra-
dient and the stochastic gradient, does not affect the original
convergence properties for non-smooth optimization prob-
lems. Therefore, it is easy to derive Theorem 3.

Theorem 3. f is µ-strongly convex about the Bregman di-
vergence B. Let w0 ∈ Rn be the initial point and {wt}∞t=1
be generated by the stochastic SC-PDA (27). Lemma 3 be-
comes

at〈ĝt,wt −w+
t 〉

≤ At−1[f(wt−1)− f(wt)] + at〈ĝt,w+
t−1 −w+

t 〉.

Further, we have

E[f(wt)− f(w∗)]

≤ 1

2At

t∑
k=0

[ a2
k

µΓk
‖ĝk‖2 + µ(γk − ak)‖wk −w∗‖2

]
.

Then we have the following corollary, that is
Corollary 4. Let {wt}∞t=1 be generated by our stochastic

algorithm (27). Let at = γt = t, it holds that

E[f(wt)− f(w)] ≤ O
(

1

t

)
. (28)

Remark 5. According to Theorem 3, the optimal linear
rate of individual convergence in the non-smooth setting is
achieved by the stochastic SC-PDA (27).

Based on the convergence analysis for SC-PDA, the op-
timal individual convergence rate for strongly convex op-
timization problems is achieved. Therefore, we derive the
conclusion that OA is actually unnecessary for DA whereas
we should modify the key steps of the algorithm and in-
corporate averaging schemes into it. As illustrated in (Jain,
Nagaraj, and Netrapalli 2019; Harvey et al. 2019), Shamir’s
open problem has been solved to some extent. In contrast
to their results, our contribution centers on a more com-
plex first-order algorithm DA for non-smooth strongly con-
vex optimization without prior knowledge of the performed
number of iterations T .

Experiments
In this section, we conduct several experiments to verify our
theoretical claims and demonstrate the performance of our
proposed algorithms in training deep networks.

Optimizing Strongly Convex Functions
In the first experiment, we consider classical binary strongly
convex SVM problems.

min
w

µ

2
‖w‖2 +

n∑
i=0

fi(w), (29)

where fi(w) = max{0, 1− yi〈w,xi〉}.
We choose four benchmark datasets: a9a, w8a, covtype,

ijcnn1 with different scale and dimension, which are pub-
licly available at LibSVM2 website. We choose the best step-
size parameter via a commonly used grid search technique.

2http://www.csie.ntu.edu.tw/∼cjlin/libsvmtools/datasets/

For fair comparison, we independently repeated the exper-
iments five times, and averaged the results. In stochastic
learning, at the t-the iterations,

ĝt = ∇ft(wt), (30)

where the sample (xt, yt) is uniformly at random chosen
from the training set.

Here, we compare our GDA (19) and SC-PDA (23) with
three state-of-the-art stochastic approaches for strongly con-
vex functions to validate our theoretical analysis.

• GDA: the proposed method doesn’t suffer from the extra
log t factor in the bound, and yields the optimal conver-
gence O(1/t) in terms of OA.

• SC-PDA: GDA coupled with PA attains the optimal indi-
vidual convergence rate O(1/t).

• Pegasos (Shalev-Shwartz, Singer, and Srebro 2007): PSG
outputs the individual iterate. Here, the decreasing step-
size is 1/(µt). As illustrated in (Harvey et al. 2019), stan-
dard pegasos can obtain at most a rate O(log t/t) with
high probability.

• PA-PSG (Tao et al. 2020): PSG coupled with PA achieves
the individual convergence rate O(1/t).

• SC-RDA (Xiao 2009): RDA combined with OA for
strongly convex optimization obtains the optimal rate of
convergence O(1/t).

Figure 1. exposes how the relative function values
f(wt) − f(w∗) are changed with respect to the algorithm
epoch. As expected, the convergence behaviour of our pro-
posed GDA and SC-PDA is very similar to PA-PSG and SC-
RDA with the same strong convexity parameter, and lower
than Pegasos. Intuitively, the proposed SC-PDA, Pegasos
and PA-PSG have almost the same convergence behaviour
with oscillation, which result from non-averaging schemes.
Thus, we derive conclusions that our proposed two algo-
rithms no longer suffer from the additional logarithmic fac-
tor and achieve their desired optimal rate.

Training Deep Neural Networks
The second experiment is to show that the proposed algo-
rithms improve the performance of training deep networks.
Interestingly, averaging in deep learning has been discussed
in a series work about SWA. But they have not observed the
connection between DA and GD with an averaging scheme.
Moreover, averaging scheme does good for the convergence
behaviour of the gradient-based methods in terms of indi-
vidual iterate instead of averaged output. According to the
choice of at and γt in the Corollary 2, it should be men-
tioned that we use the different weighted averaging scheme
in GDA and SC-PDA.

Following (Izmailov et al. 2018; Mukkamala and Hein
2017; Wang et al. 2020), we conduct experiments on a server
with 2 NVIDIA 2080Ti GPUs. We first design a simple 4-
layer CNN architecture that consists two convolutional lay-
ers (32 filters of size 3 × 3), one max-pooling layer (2 ×
2 window and 0.25 dropout) and one fully connected layer

9848



100 101 102 103

Epoch
10−6

10−5

10−4

10−3

10−2

10−1

100

Re
la

tiv
e 

Fu
nc

tio
n 

Va
lu

e 
Di

ffe
re

nc
e a9a

Pegasos
GDA
PA_PSG
SC_PDA
SC_RDA

(a)

100 101 102 103

Epoch
10−6

10−5

10−4

10−3

10−2

10−1

100

Re
la

tiv
e 

Fu
nc

tio
n 

Va
lu

e 
Di

ffe
re

nc
e ijcnn1

Pegasos
GDA
PA_PSG
SC_PDA
SC_RDA

(b)

100 101 102 103

Epoch
10−6

10−5

10−4

10−3

10−2

10−1

100

Re
la

tiv
e 

Fu
nc

tio
n 

Va
lu

e 
Di

ffe
re

nc
e w8a

Pegasos
GDA
PA_PSG
SC_PDA
SC_RDA

(c)

100 101 102 103

Epoch
10−6

10−5

10−4

10−3

10−2

10−1

100

Re
la

tiv
e 

Fu
nc

tio
n 

Va
lu

e 
Di

ffe
re

nc
e covtype

Pegasos
GDA
PA_PSG
SC_PDA
SC_RDA

(d)

Figure 1: Convergence on different LibSVM datasets for SVMs
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Figure 2: Training loss and test accuracy on CIFAR-10 and CIFAR-100 datasets for deep learning tasks

(128 hidden units and 0.5 dropout). We also use weight de-
cay with a regularization parameter of 5e-3. The loss func-
tion is the cross-entropy. To conduct a fair comparison, the
constant learning rate is tuned in {0.1; 0.01; 0.001; 0.0001},
and the best results are reported. The training loss and test
accuracy are shown in Figure 2.

Our SC-PDA, GDA and SWA obtain almost the same
training loss, lower than SGD (without momentum) on
CIFAR-10 and CIFAR-100 datasets3. Moreover, the im-
proved performance also translates into good results on test
accuracy. The performance of test accuracy gives our SC-
PDA and GDA a slight edge over SGD and SWA. Compared
to SGD, averaging schemes always reduce oscillation issues
and achieve improvement in better generalization. Although
our proposed GDA and SC-PDA are designed for strongly
convex functions, it could also lead to practical performance
even in some non-convex deep learning tasks.

Conclusion
In this paper, our original intention is to derive the optimal
individual convergence of DA in the strongly convex case.
We first propose a general algorithm GDA and we further
slightly modify Nesterov’s PDA into SC-PDA. We prove
that GDA yields the optimal convergence rate in terms of
OA, while SC-PDA derives the optimal individual conver-
gence.

Averaging scheme has been frequently employed in mod-
ern machine learning community for improving stability and
generalization. Unfortunately, there is still a lack of valuable
hints how various parameters should be chosen so far. Our

3http://www.cs.toronto.edu/∼kriz/cifar.html

proposed GDA and SC-PDA algorithms not only fix the op-
timal convergence issues but also lead to better performance
in deep learning tasks.
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