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Abstract

The contextual combinatorial semi-bandit problem with lin-
ear payoff functions is a decision-making problem in which
a learner chooses a set of arms with the feature vectors in
each round under given constraints so as to maximize the sum
of rewards of arms. Several existing algorithms have regret
bounds that are optimal with respect to the number of rounds
T . However, there is a gap of Õ(max(

√
d,
√
k)) between the

current best upper and lower bounds, where d is the dimen-
sion of the feature vectors, k is the number of the chosen arms
in a round, and Õ(·) ignores the logarithmic factors. The de-
pendence of k and d is of practical importance because k may
be larger than T in real-world applications such as recom-
mender systems. In this paper, we fill the gap by improving
the upper and lower bounds. More precisely, we show that the
C2UCB algorithm proposed by Qin, Chen, and Zhu (2014)
has the optimal regret bound Õ(d

√
kT + dk) for the parti-

tion matroid constraints. For general constraints, we propose
an algorithm that modifies the reward estimates of arms in the
C2UCB algorithm and demonstrate that it enjoys the optimal
regret bound for a more general problem that can take into
account other objectives simultaneously. We also show that
our technique would be applicable to related problems. Nu-
merical experiments support our theoretical results and con-
siderations.

Introduction
This paper investigates the contextual combinatorial semi-
bandit problem with linear payoff functions, which we call
CCS problem (Qin, Chen, and Zhu 2014; Takemura and Ito
2019; Wen, Kveton, and Ashkan 2015). In this problem,
a learner iterates the following process T times. First, the
learner observes d-dimensional vectors, called arms, and a
set of feasible combinations of arms, where the size of each

∗We omit most of our proofs due to the page limit. The full
version is available at https://arxiv.org/abs/2101.07957.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

combination is k. Each arm offers a reward defined by a
common linear function over the arms, but the reward is not
revealed to the learner at this point. Next, the learner chooses
a feasible combination of arms. At the end, the learner ob-
serves the rewards of the chosen arms. The objective of the
learner is to maximize the sum of rewards.

The CCS problem includes the linear bandit (LB) prob-
lem (Abbasi-Yadkori, Pál, and Szepesvári 2011; Agrawal
and Goyal 2013; Auer 2002; Chu et al. 2011; Dani, Hayes,
and Kakade 2008) and the combinatorial semi-bandit (CS)
problem1 (Chen et al. 2016a,b; Combes et al. 2015; Gai, Kr-
ishnamachari, and Jain 2012; Kveton et al. 2015; Wang et al.
2017; Wen, Kveton, and Ashkan 2015) as special cases. The
difference from the LB problem is that, in the CCS problem,
the learner chooses multiple arms at once. Moreover, while
the given arms are fixed over the rounds and orthogonal to
each other in the CS problem, they may be changed in each
round and correlated in the CCS problem.

These differences enable the CCS problem to model more
realistic situations of applications such as routing networks
(Kveton et al. 2014), shortest paths (Gai, Krishnamachari,
and Jain 2012; Wen, Kveton, and Ashkan 2015), and recom-
mender systems (Li et al. 2010; Qin, Chen, and Zhu 2014;
Wang et al. 2017). For example, when a recommender sys-
tem is modeled with the LB problem, it is assumed that once
a recommendation result is obtained, the internal predictive
model is updated before the next recommendation. However,
in a real recommender system, it is more common to update
the predictive model after multiple recommendations, e.g.,
periodic updates (Chapelle and Li 2011). Such a situation
can be modeled with the CCS problem, where the number
of recommendations between the updates is k and the num-
ber of the updates is T (Takemura and Ito 2019)2.

1Here, the CS problem denotes the problem of maximizing the
sum of rewards (Combes et al. 2015; Kveton et al. 2014, 2015),
while Chen et al. (2016a,b) deal with a more general objective.

2Strictly speaking, the LB problem with periodic updates is a
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Upper bound Lower bound

The best known Õ(max(
√
d,
√
k)
√
dkT )

(Qin, Chen, and Zhu 2014; Takemura and Ito 2019) Ω(min(
√
dkT , kT )) (Kveton et al. 2015)

This work Õ(d
√
kT + dk) Ω(min(d

√
kT + dk, kT ))

Table 1: Regret bounds for CCS problem (Õ(·) ignores the logarithmic factors).

As in numerous previous studies on bandit algorithms, we
measure the performance of an algorithm by its regret, which
is the difference between the sum of the rewards of the opti-
mal choices and that of the algorithm’s choices. The existing
regret bounds are summarized in Table 1, where Õ(·) means
that the logarithmic factors are ignored. The best known up-
per bound on the regret is achieved by C2UCB algorithm,
which is given by Qin, Chen, and Zhu (2014). Takemura and
Ito (2019) refined their analysis to improve the dependence
on other parameters in the regret bound. The best lower
bound is given for the CS problem by Kveton et al. (2015).
Note that any lower bound for the CS problem is also a lower
bound for the CCS problem, as the CCS problem covers the
CS problem.

Although these regret upper and lower bounds match with
respect to T , there is a gap of Õ(max(

√
d,
√
k)) between

them. In the literature on regret analysis, the degree of de-
pendence on T in the regret bound usually draws much at-
tention. However, for the CCS problem, the degree of de-
pendence on k is also important because there are real-world
applications of the CCS problem such that k is large. In rec-
ommender systems with periodic updates, for example, the
number of recommendations between the updates could be
large. An alternative example is the sending promotion prob-
lem, in which the number of users to send a promotion at
once is much larger than the number of times to send the
promotion, i.e., k � T (Takemura and Ito 2019).

Our contribution is two-fold. First, we improve depen-
dence on d and k in both the regret upper and lower bounds.
Our upper and lower bounds match up to logarithmic factors.
Second, we clarify a drawback of the UCB-type algorithms
for other related problems and propose general techniques
to overcome the drawback.

To improve the upper bound of the CCS problem, we first
revisit the C2UCB algorithm. This algorithm optimistically
estimates rewards of arms using confidence intervals of es-
timates and then chooses a set of arms based on the opti-
mistic estimates. Existing upper bounds have k

√
T factor,

which leads to the gap from the lower bound. In our anal-
ysis, however, we reveal that the linear dependence on k in
the regret comes from the arms of large confidence intervals
and obtain Õ(d

√
kT + dk2) regret by handling such arms

separately. For further improvement, we focus on the case
where the feasible combinations of arms are given by par-
tition matroids. We show that the algorithm has the optimal

little more restrictive than the CCS problem. However, most algo-
rithms for the CCS problem, including the ones proposed in this
paper, are applicable to the problem.

regret bound in this case. Unfortunately, this analysis can-
not apply to the general constraints, and we do not know
whether the C2UCB algorithm achieves the optimal regret
upper bound. Instead, based on these analyses, we propose
another algorithm that estimates the rewards of arms of large
confidence intervals more rigorously; the algorithm divides
the given arms into two groups based on their confidence
intervals and underestimates the rewards of the arms with
large confidence intervals. We show that the proposed algo-
rithm enjoys the optimal regret bound for the CCS problem
with any feasible combinations of arms, and is also optimal
for a more general problem that can take into account both
the sum of rewards and other objectives. For example, rec-
ommender systems often require diversity of recommended
items (Qin and Zhu 2013; Qin, Chen, and Zhu 2014).

We support our theoretical analysis through numerical ex-
periments. We first evaluate the performance of the algo-
rithms on instances in which constraints are not represented
by the partition matroid. We observe that the proposed algo-
rithm is superior to the C2UCB algorithm on these instances,
which confirms our theoretical analysis that the C2UCB al-
gorithm may not achieve the optimal regret bound while our
proposed algorithm does. We also evaluate the algorithms
on instances with partition matroid constraints. For these in-
stances, we observe that the C2UCB and our proposed algo-
rithms perform similarly.

Our theoretical and numerical analyses indicate that the
sub-optimality of the C2UCB algorithm arises from the
combinatorial structure of the CCS problem, i.e., choosing a
set of arms in each round. More precisely, the existence of an
arm with a confidence interval that is too large makes the al-
gorithm choose a bad set of arms. This is an interesting phe-
nomenon that does not occur in the LB problem (the CCS
problem when k = 1) or the case of partition matroid con-
straints. Since the technique we propose for the CCS prob-
lem is so general that it is independent of the linearity of the
linear payoff functions, we believe it could be generalized to
overcome the same issue for other semi-bandit problems.

Problem Setting
In this section, we present the formal definition of the CCS
problem and the required assumptions. The CCS problem
consists of T rounds. Let N denote the number of arms, and
each arm is indexed by an integer in [N ] := {1, 2, . . . , N}.
We denote by St a set of combinations of arms we can
choose in the t-th round. We assume that each combination
is of size k. Thus, St ⊆ {I ⊆ [N ] | |I| = k}.

The learner progresses through each round as follows. At
the beginning of the t-th round, the learner observes the set
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Algorithm 1 C2UCB (Qin, Chen, and Zhu 2014)

Input: λ > 0 and {αt}t∈[T ] s.t. αt > 0 for all t ∈ [T ].
1: V0 ← λI and b0 ← 0.
2: for t = 1, 2, . . . , T do
3: Observe {xt(i)}i∈[N ] and St.
4: θ̂t ← V −1t−1bt−1.
5: for i ∈ [N ] do
6: r̂t(i)← θ̂>t xt(i) + αt

√
xt(i)>V

−1
t−1xt(i).

7: end for
8: Play a set of arms It = argmaxI∈St

∑
i∈I r̂t(i) and

observe rewards {rt(i)}i∈It .
9: Vt ← Vt−1 +

∑
i∈It xt(i)xt(i)

> and bt ← bt−1 +∑
i∈It rt(i)xt(i).

10: end for

of arms with the associated feature vectors {xt(i)}i∈[N ] ⊆
Rd and the set of combinations of arms St. Then, the learner
chooses It ∈ St. At the end of the round, the learner ob-
tains the rewards {rt(i)}i∈It , where for all i ∈ It, rt(i) =

θ∗>xt(i) + ηt(i) for some θ∗ ∈ Rd and ηt(i) ∈ R is a
random noise with zero mean.

We evaluate the performance of an algorithm by the ex-
pected regret R(T ), which is defined as

R(T ) =
T∑
t=1

∑
i∈I∗t

θ∗>xt(i)−
∑
i∈It

θ∗>xt(i)

 ,

where I∗t = argmaxI∈St

∑
i∈I θ

∗>xt(i).
As in previous work (Qin, Chen, and Zhu 2014; Takemura

and Ito 2019), we assume the following:
Assumption 1. ∀t ∈ [T ] and ∀i ∈ It, the random noise
ηt(i) is conditionally R-sub-Gaussian, i.e.,

∀λ ∈ R,E [exp(ληt(i)) | Ft] ≤ exp
(
λ2R2/2

)
,

where Ft = σ
(
{{xs(j)}j∈Is}s∈[t], {{ηs(j)}j∈Is}s∈[t−1]

)
.

In addition, we define the following parameters of the
CCS problem: (i) L > 0 such that ∀i ∈ [N ] and ∀t ∈ [T ],
‖xt(i)‖2 ≤ L, (ii) S > 0 such that ‖θ∗‖2 ≤ S, and (iii)
B > 0 such that ∀i ∈ [N ] and ∀t ∈ [T ], |θ∗>xt(i)| ≤ B.
Note that LS is an obvious upper bound of B.

Regret Analysis of the C2UCB Algorithm
Existing Analyses
Qin, Chen, and Zhu (2014) proposed the C2UCB algorithm
(Algorithm 1), which chooses a set of arms based on opti-
mistically estimated rewards in a similar way to other UCB-
type algorithms (Auer 2002; Chen et al. 2016b; Chu et al.
2011; Li et al. 2010).

The C2UCB algorithm works as follows. At the begin-
ning of each round, it constructs an estimator of θ∗ using
the arms chosen so far and its rewards (line 3). It then com-
putes an optimistic reward estimator r̂t(i) for each observed

arm i (line 6), where αt
√
xt(i)>V

−1
t−1xt(i) represents the

size of the confidence interval of the estimated reward of
arm i. Then, it chooses arms It obtained by solving the op-
timization problem based on {r̂t(i)}i∈[N ] (line 8). Finally,
it observes the reward of the chosen arms and updates the
internal parameters bt and Vt (line 9).

Qin, Chen, and Zhu (2014) showed that the algorithm ad-
mits a sublinear regret bound with respect to T . Takemura
and Ito (2019) refined their analysis to improve the depen-
dence on R, S, and L as follows. Here, for δ ∈ (0, 1), we

define βt(δ) = R

√
d log

(
1+L2kt/λ

δ

)
+ S
√
λ.

Theorem 1 (Theorem 4 of Takemura and Ito (2019)). If
αt = βt(δ) and λ = R2S−2d, the C2UCB algorithm has
the following regret bound with probability 1− δ:

R(T ) =


Õ
(
Rd
√
kT
)

if λ ≥ L2k

Õ
(
LSk
√
dT
)

otherwise.

To prove Theorem 1, it suffices to bound the cumula-
tive estimating error of rewards, i.e.,

∑
t∈[T ]

∑
i∈It(θ

∗ −

θ̂t)
>xt(i). Let ‖xt(i)‖V −1

t−1
denote

√
xt(i)>V

−1
t−1xt(i) for

all i ∈ [N ] and t ∈ [T ]. To bound the error, Takemura and
Ito (2019) showed that∑
t∈[T ]

∑
i∈It

(θ∗ − θ̂t)>xt(i) ≤ βT (δ)
∑
t∈[T ]

∑
i∈It

‖xt(i)‖V −1
t−1
.

(1)

The right-hand side is then bounded by the following
lemma:
Lemma 1 (Lemma 5 of Takemura and Ito (2019)). Let λ >
0. Let {{xt(i)}i∈[k]}t∈[T ] be any sequence such that xt(i) ∈
Rd and ‖xt(i)‖2 ≤ L for all i ∈ [k] and t ∈ [T ]. Let Vt =
λI +

∑
t′∈[t]

∑
i∈[k] xt′(i)xt′(i)

> for all t ∈ [T ]. Then, we
have ∑

t∈[T ]

∑
i∈[k]

‖xt(i)‖V −1
t−1

= Õ
(
L
√
dk2T/λ

)
.

This bound is tight up to logarithmic factors because we
have

∑
t∈[T ]

∑
i∈[k] ‖xt(i)‖V −1

t−1
= Ldk/

√
λ when T = d

and xt(i) = Let for all i ∈ [k] and t ∈ [T ], where for all
l ∈ [d], el ∈ Rd is a vector in which the l-th element is 1
and the other elements are 0.

Improved Regret Bound
In this subsection, we improve the regret bound of the
C2UCB algorithm. A key observation of our analysis is that
Lemma 1 is not tight for sufficiently large T . To improve
Lemma 1, we divide {{xt(i)}i∈[k]}t∈[T ] into two groups:
the family of xt(i) such that ‖xt(i)‖V −1

t−1
≤ 1/

√
k, and the

others. As shown in Lemma 2 below, the sum of ‖xt(i)‖V −1
t−1

in the former group is Õ(
√
dkT ), which is smaller than

Lemma 1. Moreover, the number of arms in the latter group
is shown to be Õ(dk), which means that not so many arms
xt(i) have large ‖xt(i)‖V −1

t−1
.
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Lemma 2. Let λ > 0. Let {{xt(i)}i∈[k]}t∈[T ] be any se-
quence such that xt(i) ∈ Rd and ‖xt(i)‖2 ≤ L for all i ∈ [k]
and t ∈ [T ]. Let Vt = λI +

∑
t′∈[t]

∑
i∈[k] xt′(i)xt′(i)

> for
all t ∈ [T ]. Then, we have∑

t∈[T ]

∑
i∈[k]

min

(
1√
k
, ‖xt(i)‖V −1

t−1

)
= Õ

(√
dkT

)
(2)

and ∑
t∈[T ]

∑
i∈[k]

1
(
‖xt(i)‖V −1

t−1
> 1/

√
k
)

= Õ(dk). (3)

Based on Lemma 2, we can bound the right-hand side of
(1) to obtain a better regret upper bound. The regret bound
given by this theorem is optimal when LS = B.
Theorem 2. If αt = βt(δ) and λ = R2S−2d, the C2UCB
algorithm has the following regret bound with probability
1− δ:

R(T ) = Õ
(
Rd
√
kT + min (LS,Bk) dk

)
.

Proof sketch. Let Jt = {i ∈ [N ] | ‖xt(i)‖V −1
t−1

> 1/
√
k}

and J ′t = It∩Jt. We separate chosen arms into two groups3:
{J ′t}t∈[T ] and the remaining arms. For {J ′t}t∈[T ], replacing
Lemma 1 with Lemma 2 in the proof of Theorem 1 gives the
first term of the regret bound. There are two ways to bound
the regret caused by the other group. In one way, we use the
same proof as the former group, which obtains Õ(LSdk). In
the other way, by Lemma 2, we bound the number of rounds
in which the arms of this group are chosen. Then, we have an
upper bound of the regret in a round that is 2Bk. Thus, we
obtain Õ(Bdk2) in this way. The second term of the regret
bound can be obtained by combining these two ways.

Next, we show that Theorem 2 is better than Theorem 1.
We first consider the case λ ≥ L2k. From the defini-
tion of λ, we have LSk

√
dT ≤ Rd

√
kT . Since Theo-

rem 1 implies Õ(Rd
√
kT ) regret, it suffices to compare

LSk
√
dT with min(LS,Bk)dk. If T < d, the C2UCB al-

gorithm has an obvious regret upper bound 2BkT , which
satisfies Õ(LSk

√
dT ) and Õ(min(LS,Bk)dk); otherwise,

we have LSdk ≤ LSk
√
dT . In the other case, Theo-

rem 1 implies Õ(LSk
√
dT ) regret and we have Rd

√
kT ≤

LSk
√
dT . Thus, it also suffices to compare LSk

√
dT with

min(LS,Bk)dk. By the discussion in the first case, we ob-
tain the desired result.

Improved Regret Bound for the CCS Problem with
Partition Matroid Constraints
In this subsection, we show that the C2UCB algorithm ad-
mits an improved regret upper bound for the CCS problem
with the partition matroid constraint, that matches the regret
lower bound shown in Table 1.

3To show the regret bound of the LinUCB algorithm (Chu et al.
2011; Li et al. 2010), i.e., the C2UCB algorithm for the case k = 1,
Lattimore and Szepesvári (2020) take a similar approach in the note
of exercise 19.3.

Now we define the partition matroid constraint. Let
{Bt(j)}j∈[M ] be a partition of [N ] into M subsets. Let
{dt(j)}j∈[M ] be a set ofM natural numbers. Then the parti-
tion matroid constraint St is defined from {Bt(j)}j∈[M ] and
{dt(j)}j∈[M ] as

St = {I ⊆ [N ] | |I ∩Bt(j)| = dt(j), ∀j ∈ [M ]} . (4)

Such St is known as the set of the bases of a partition ma-
troid. It is also known that linear optimization problems on
a partition matroid constraint can be solved by the greedy
algorithm. The class of St is so large that many funda-
mental classes are included. Indeed, the CCS problem with
these constraints leads to the CCS problem with the uniform
matroid constraints (i.e., the cardinality constraint) when
M = 1 and dt(1) = k for all t ∈ [T ], and the LB prob-
lem with periodic updates when M = k and dt(j) = 1 for
all j ∈ [M ] and t ∈ [T ].

We show that the C2UCB algorithm achieves the optimal
regret bound for the CCS problem with constraints satisfy-
ing (4):
Theorem 3. Assume that St is defined by (4) for all t ∈
[T ]. Then, if αt = βt(δ) and λ = R2S−2d, the C2UCB
algorithm has the following regret bound with probability
1− δ:

R(T ) = Õ
(
Rd
√
kT +Bdk

)
.

Proof sketch. Recall that It is the set of arms chosen by the
C2UCB algorithm in the t-th round. Let Jt = {i ∈ [N ] |
‖xt(i)‖2V −1

t−1

> 1/k} and J ′t = It ∩ Jt. As in the proof

of Theorem 2, we separate chosen arms into two groups:
It \ J ′t and J ′t. From the definition of It and J ′t , we obtain
It \ J ′t = argmaxI∈S′t

∑
i∈I r̂t(i) for all t ∈ [T ], where

S′t = {I ⊆ [N ] \ J ′t | ∀j ∈ [M ], |I ∩Bt(j)| =
dt(j)− |Bt(j) ∩ J ′t|} .

Let J∗t be a subset of I∗t that consists of the arms in I∗t ∩J ′t,
and |Bt(j)∩ J ′t| − |I∗t ∩ J ′t ∩Bt(j)| arms chosen arbitrarily
from I∗t ∩ Bt(j) for each j ∈ [M ]. Then, I∗t \ J∗t ∈ S′t and
|J∗t | = |J ′t| for all t ∈ [T ]. Similar to It, we divide I∗t into
I∗t \ J∗t and J∗t . This gives

R(T ) =
∑
t∈[T ]

 ∑
i∈I∗t \J∗t

θ∗>xt(i)−
∑

i∈It\J ′t

θ∗>xt(i)


+
∑
t∈[T ]

∑
i∈J∗t

θ∗>xt(i)−
∑
i∈J′t

θ∗>xt(i)

 .

The former term in the right-hand side of this equation is
Õ(Rd

√
kT ) by the optimality of It \ J ′t and the discussion

in the proof of Theorem 2. The latter term is Õ(Bdk) by the
definition of B and Lemma 2.

Note that for the LB problem with periodic updates, the
C2UCB algorithm reduces to the LinUCB algorithm (Chu
et al. 2011; Li et al. 2010) with periodic updates, and has the
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optimal regret bound. Note also that we can show a similar
result for related problems if we have a UCB-type algorithm
and an upper bound of the number of chosen arms that have
large confidence bounds.

Proposed Algorithm
In this section, we propose an algorithm for a more general
problem than the CCS problem. We will show the optimal
regret bound of the proposed algorithm for the general prob-
lem.

First, let us define the general CCS problem. Let Xt =
{xt(i)}i∈[N ] and r∗t = {θ∗>xt(i)}i∈[N ] for all t ∈ [T ]. In
this problem, the learner aims to maximize the sum of val-
ues

∑
t∈[T ] fr∗t ,Xt

(It) instead of the sum of rewards, where
fr∗t ,Xt(It) measures the quality of the chosen arms. As in
Qin, Chen, and Zhu (2014), we assume that the learner has
access to an α-approximation oracle OS(r,X), which pro-
vides I ∈ S such that fr,X(I) ≥ αmaxI′∈S fr,X(I ′) for
some α ∈ (0, 1]. Thus, we evaluate the performance of an
algorithm by the α-regret Rα(T ), which is defined as

Rα(T ) =
T∑
t=1

(
αfr∗t ,Xt

(I∗t )− fr∗t ,Xt(It)
)
,

where I∗t =
∑
i∈I fr∗t ,Xt(I). Note that the regret of the CCS

problem is recovered if α = 1 and fr,X(I) is the sum of
rewards. We make the following assumptions that are almost
identical to those in Qin, Chen, and Zhu (2014).

Assumption 2. For all t ∈ [T ] and I ∈ St, if a pair of
rewards r and r′ satisfies r(i) ≤ r′(i) for all i ∈ [N ], we
have fr,Xt(I) ≤ fr′,Xt(I).

Assumption 3. There exists a constant C > 0 such that for
all t ∈ [T ], all I ∈ St, and any pair of rewards r and r′, we
have |fr,X(I)− fr′,X(I)| ≤ C

∑
i∈I |r(i)− r′(i)|.

The class of functions that satisfies the assumptions in-
cludes practically useful functions. For example, the sum
of rewards with the entropy regularizer (Qin and Zhu 2013;
Qin, Chen, and Zhu 2014), which has been applied to recom-
mender systems in order to take into account both the sum
of rewards and the diversity of the chosen arms, satisfies the
assumptions with C = 1.

The proposed algorithm is described in Algorithm 2.
When fr,X(I) is the sum of rewards, the difference between
the C2UCB and the proposed algorithms is the definition of
r̂t(i). We show the effectiveness of this difference. In the
analysis of the C2UCB algorithm, the regret can be decom-
posed as

R(T ) =
∑
t∈[T ]

∑
i∈I∗t

θ∗>xt(i)−
∑
i∈It

r̂t(i)


+
∑
t∈[T ]

∑
i∈It

(
r̂t(i)− θ∗>xt(i)

)
,

and the first term can be bounded by 0 since It is an opti-
mal solution to the problem maxI∈St

∑
i∈I r̂t(i). Then, the

Algorithm 2 Proposed algorithm

Input: λ > 0 and {αt}t∈[T ] s.t. αt > 0 for all t ∈ [T ].
1: V0 ← λI and b0 ← 0.
2: for t = 1, 2, . . . , T do
3: Observe Xt = {xt(i)}i∈[N ] and St, and let Jt =

{i ∈ [N ] | xt(i)>V −1t−1xt(i) > 1/k}.
4: θ̂t ← V −1t−1bt−1.
5: for i ∈ [N ] do
6: If i ∈ Jt then r̂t(i) ← B; otherwise r̂t(i) ←
θ̂>t xt(i) + αt

√
xt(i)>V

−1
t−1xt(i).

7: end for
8: Play a set of arms It = OSt

({r̂t(i)}i∈[N ], Xt) and
observe rewards {rt(i)}i∈It .

9: Vt ← Vt−1 +
∑
i∈It xt(i)xt(i)

> and bt ← bt−1 +∑
i∈It rt(i)xt(i).

10: end for

right-hand side is bounded by

R(T ) ≤
∑
t∈[T ]

∑
i∈It\J ′t

(r̂t(i)− θ∗>xt(i))

+
∑
t∈[T ]

∑
i∈J′t

(r̂t(i)− θ∗>xt(i)),

where we recall that J ′t ⊆ It is the set of arms such
that ‖xt(i)‖V −1

t−1
> 1/

√
k. In the proof of Theorem 2,

the first term of the right-hand side is shown to be
Õ(Rd

√
kT ), which is optimal, while the second term can

be Õ(max(LS,Bk)dk). The reason the second term is so
large is that each arm i ∈ J ′t may have an overly optimistic
reward estimate (i.e., r̂t(i) may be large). To overcome this
issue, we reduce r̂t(i) when arm i has an overly optimistic
reward estimate, keeping that the reduced value is an op-
timistic estimate required by UCB-type algorithms. As de-
scribed in Algorithm 2, we adopt the maximum value of the
average reward B as r̂t(i) when i ∈ Jt.

Similar to the above, we can show that the proposed algo-
rithm (Algorithm 2) has the following regret bound:
Theorem 4. If αt = βt(δ) and λ = R2S−2d, the proposed
algorithm has the following regret bound with probability
1− δ:

Rα(T ) = Õ
(
C
(
Rd
√
kT +Bdk

))
.

We show that this regret bound is optimal. We can define
an instance of the general problem with any C > 0 from any
instance of the CCS problem. Indeed, for anyC > 0, we can
define fr,X(I) = C

∑
i∈I r(i). Thus, the optimal degree of

dependence onC in the regret is linear. For other parameters,
we will show the lower bound in the next section.

Lower Bounds
In this section, we show the regret lower bound that matches
the regret upper bound shown in Theorems 3 and 4 up to
logarithmic factors. To achieve the lower bound, we mix two
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types of instances, which provide Ω(Rd
√
kT ) and Ω(Bdk)

regret, respectively. While the first type of instance repre-
sents the difficulty of learning due to the noise added to the
rewards, the second represents the minimum sample size re-
quired to learn the d-dimensional vector θ∗ in the CCS prob-
lem.

We first consider instances that achieve Ω(Rd
√
kT ) and

are analogous to the instances for the LB problem. Since the
lower bound of the LB problem is known to be Ω(d

√
T )

with R = 1, the CCS problem in which the number of arms
to select is kT would yield Ω(Rd

√
kT ). In these instances,

the learner chooses k vertices from a d-dimensional hyper
cube. Note that the duplication of vertices is allowed.

Theorem 5. Let {xt(i)}s2
d

i=(s−1)2d+1 = {−1, 1}d and St =

{I ⊆ [k2d] | |I| = k} for any s ∈ [k] and t ∈ [T ]. Let Θ =

{−R/
√
kT ,R/

√
kT}d. Assume that ηt(i) ∼ N (0, R2) in-

dependently. Then, for any algorithm, there exists θ∗ ∈ Θ
such that R(T ) = Ω(Rd

√
kT ).

Proof. We first consider instances that achieve the lower
bound of the LB problem. Using the discussion of Theo-
rem 24.1 of Lattimore and Szepesvári (2020), we obtain the
lower bound of Ω(Rd

√
T ) for a certain θ ∈ Θ when k = 1.

Note that this lower bound holds even if the algorithm knows
in advance the given set of arms of all rounds.

Then, we observe that the set of algorithms for the above
instances with kT rounds includes any algorithm for the
CCS problem, which proves the theorem.

We next introduce the instances of Ω(dk), based on the
fact that no feedback can be received until k arms are se-
lected in the CCS problem. More specifically, these in-
stances consist of Θ(d) independent 2-armed bandit prob-
lems with delayed feedback. In each problem, the learner
suffers Ω(Bk) regret due to the delayed feedback.
Theorem 6. Let d = 2d′ and St = {I ⊆ [2k] | |I| = k}.
Assume that ηt(i) = 0. Define min(d′, T ) groups by di-
viding rounds. For each group j ∈ [min(d′, T )], the given
arms are defined as xt(i) = B

√
de2j−1 for i ≤ k and

xt(i) = B
√
de2j for i > k, where {el}l∈[d] is the nor-

malized standard basis. Let Θ = {−1/
√
d, 1/
√
d}d. Then,

for any algorithm, there exists θ∗ ∈ Θ such that R(T ) =
Ω(min(Bdk,BkT )).

Proof. As in Appendix A of Auer et al. (2002), it is suffi-
cient to consider only the deterministic algorithms. In the
first round of each group, any algorithm selects k/2 or more
from one of the two types of arms. Therefore, we can choose
θ∗ ∈ Θ so that for each group, the majority type of cho-
sen arms is not optimal, in which case the algorithm suffers
Θ(Bk) regret.

Finally, by combining the two types of instance above, we
have instances achieving the matching regret lower bound:
Theorem 7. Suppose that kT = Ω((Rd/B)2) and d = 2d′.
Then, for any given algorithm, if we use instances of Theo-
rem 5 and Theorem 6 constructed using different d′ dimen-
sions in the first and second halves of the round, respectively,

that instance achieves the following:

R(T ) = Ω(min(Rd
√
kT +Bdk,BkT )).

Proof. From kT = Ω((Rd/B)2), we have |θ∗>xt(i)| < B
for all i ∈ [N ] and t ∈ [T ]. Hence, we obtain R(T ) =
O(BkT ). Alternatively, from Theorem 5 and Theorem 6,
we have Ω(Rd

√
kT + min(Bdk,BkT )).

Note that we can set R > 0 and B > 0 arbitrarily in
the instances of Theorem 7, but L and S are automatically
determined as L = O(max(1, B

√
d)) and S = O(1).

Numerical Experiments
Setup
In this section, we evaluate the performance of the C2UCB
and the proposed algorithms through numerical experi-
ments. Two types of instance are prepared: one in which the
constraints are not represented by the partition matroid and
one in thich they are. We call these types grouped type and
uniform matroid type, respectively. Our analysis suggests
that the C2UCB algorithm performs well on the uniform ma-
troid type only and that our proposed algorithm does well on
both types. The aim of our experiments is to verify this.

Let us explain the details of the instances. The grouped
type is given by combining the instances of Theorem 5 with
d = 4 and R = 1 and an instance defined as follows. Sup-
pose that d = 3, N = 2k, and θ∗ = (0, 0.1, 0.9)>. Let f(t)
be t− kbt/kc. The feature vectors are defined as

xt(i) =


2f(t)e1 if i = 1

e2 if 1 < i ≤ k
e3 if i > k

for all t ∈ [T ]. The random noise ηt(i) follows N (0, 1) in-
dependently for all t ∈ [T ] and i ∈ [N ]. The feasible com-
binations are defined as St = {{1, 2, . . . , k}, {k + 1, k +
2, . . . , 2k}} for all t ∈ [T ]. Note that this is not represented
by the partition matroid. As for the uniform matroid type,
the feasible combinations are defined as St = {I ⊆ [N ] |
|I| = k} for all t ∈ [T ]. This is one of the uniform matroid
constraints, which forms a subclass of partition matroid con-
straints. The other parameters are the same as the grouped
type.

We start with k = 2 and T = 40, and increase k and
T so that they satisfy k = Θ(T ). We run 100 simulations to
obtain the means of the regrets. We evaluate the performance
of an algorithm by the means of the regrets for the worst
θ∗: We compare the means for all θ∗ for the largest kT and
choose the θ∗ with the largest mean.

We compare the proposed algorithm with five existing al-
gorithms as baselines using the parameters described in Ta-
ble 2. The ε-greedy algorithm has two ways of estimating
the rewards of given arms: one is to use the values sampled
from N (0, 1) independently, and the other is to estimate the
rewards as in line 6 of Algorithm 1 with αt = 0. This al-
gorithm chooses the former way with probability ε and the
latter way otherwise. Then, it plays a set of arms as in line 8
of Algorithm 1.
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Algorithm Parameters

ε-greedy ε = 0.05 and λ = 1

C2UCB (Algorithm 1) (Qin, Chen, and Zhu 2014) λ = d and ∀t, αt =
√
d

Thompson sampling (Takemura and Ito 2019) λ = d and ∀t, vt =
√
d

CombLinUCB (Wen, Kveton, and Ashkan 2015) λ = 1, σ = 1, and c =
√
d

CombLinTS (Wen, Kveton, and Ashkan 2015) λ = 1 and σ = 1

Proposed (Algorithm 2) λ = d and ∀t, αt =
√
d

Table 2: Algorithms in the numerical experiments.

ε-greedy C2UCB Thompson sampling CombLinUCB CombLinTS Proposed

102 103 104

102

103

No. of pulled arms

R
eg
re
t

(a) Grouped type

102 103 104

102

103

No. of pulled arms

R
eg
re
t

(b) Uniform matroid type

Figure 1: Experimental results.

Results

Figure 1(a) and (b) show the relation between the number of
pulled arms (i.e., kT ) and the regret for the grouped type and
the uniform matroid type, respectively. Error bars represent
the standard error.

As we can see in Figure 1(a), the regret of the proposed
algorithm increased most slowly, which indicates that the
regrets of the existing and proposed algorithms have differ-
ent degrees of dependence on the number of pulled arms.
We can explain this phenomenon from the viewpoint of the
overly optimistic estimates of rewards. Since ‖xt(1)‖2 in-
creased exponentially until the k-th round, the C2UCB algo-
rithm often gave the arm an overly optimistic reward in these
rounds. It follows from this optimistic estimate that the sum
of optimistic rewards in the first group {1, 2, . . . , k} was of-
ten greater than that in the other group. Hence, the C2UCB
algorithm often chose the sub-optimal group and suffered
Θ(Bk) regret in a round. Note that this phenomenon is al-
most completely independent of the linearity of the linear
payoff function, which implies that the negative effect of the
overly optimistic estimates could appear in UCB-type algo-
rithms for related problems with semi-bandit feedback.

On the other hand, as shown in Figure 1(b), the regrets
of all the algorithms except the ε-greedy algorithm were al-
most the same. This is because the constraints of the uniform
matroid type satisfy the condition (4), and then the C2UCB
algorithm has the optimal regret bound described in The-

orem 3. More precisely, as opposed to the grouped type,
the regret suffered from the overly optimistic estimates is
at most Θ(B) in a round.

Conclusion
We have discussed the CCS problem and shown matching
upper and lower bounds of the regret. Our analysis has im-
proved the existing regret bound of the C2UCB algorithm
and clarified the negative effect of the overly optimistic esti-
mates of rewards in bandit problems with semi-bandit feed-
back. We have solved this issue in two ways: introducing
partition matroid constraints and providing other optimistic
rewards to arms with large confidence intervals. Our theoret-
ical and numerical analyses have demonstrated the impact of
the overly optimistic estimation and the effectiveness of our
approaches.

As we discussed, the negative effect of the overly opti-
mistic estimation could appear in related problems as well.
Since the ideas of our approaches do not depend on the lin-
earity of the linear payoff functions, we believe they are ap-
plicable to overly optimistic estimation in related problems.

Although the proposed algorithm achieves the optimal re-
gret bound, it uses B explicitly as opposed to the C2UCB
algorithm. It is an open question whether there exists some
algorithm that achieves the optimal regret bound for general
constraints without knowledge of the tight upper bound of
B.
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