
PAC Learning of Causal Trees with Latent Variables

Prasad Tadepalli,1 Stuart J. Russell 2

1 School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, Oregon, 97331
2 Division of Computer Science, University of California, Berkeley, California, 94720

tadepall@oregonstate.edu, russell@cs.berkeley.edu

Abstract
Learning causal probabilistic models with latent variables
from observational and experimental data is an important
problem. In this paper we present a polynomial-time al-
gorithm that PAC-learns the structure and parameters of a
rooted, tree-structured causal network of bounded degree
where the internal nodes of the tree cannot be observed or
manipulated. Our algorithm is the first of its kind to provably
learn the structure and parameters of tree-structured causal
models with latent internal variables from random examples
and active experiments.

Introduction
Structural Causal Models (SCMs) offer a probabilistic
model of causality with intuitive semantics (Pearl and
Mackenzie 2018; Pearl 2009). They support sound infer-
ence algorithms to answer a variety of causal queries (Pearl
2019). In this paper, we study the problem of efficiently
learning a causal model by interacting with a stochastic
black-box function through interventions and observations.

It is well-known that interventional experiments are often
needed to identify the true causal structure from its Markov
equivalence class (Reichenbach 1991). There has been a lot
of empirical research on learning causal models by com-
bining observational and interventional data acquired offline
(Cooper and Yoo 1999; Peters, Bühlmann, and Meinshausen
2016; Silander and Myllymaki 2012; Eaton and Murphy
2007; He and Geng 2008). Previous work in active learn-
ing of Bayesian networks also explored the use of greedy
heuristics such as structure entropy and expected posterior
loss over the query distribution (Li and Leong 2009; Tong
and Koller 2001; He and Geng 2008). More theoretically
grounded approaches such as IC*, FCI, and RFCI are appli-
cable in the presence of latent variables (Spirtes, Glymour,
and Scheines 2000; Colombo et al. 2012) and rely on con-
ditional independence queries over sets of variables. There
are also other algorithmic approaches that actively design
optimal experiments to learn the structure and parameters of
causal network (He and Geng 2008). In recent work, opti-
mal active learning strategies for identifying causal network
structures with minimal numbers of single-node and multi-
node interventions have been studied (Hauser and Bühlmann

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2014). Other methods have explored the use of path queries
(Bello and Honorio 2017), experimental design (Kocaoglu,
Shanmugam, and Bareinboim 2017), and constraint satisfac-
tion to learn the structure (Hyttinen et al. 2013).

In contrast with most prior work, we allow the learning al-
gorithm to intervene only at the pre-specified input variables
and observe the conditional probability of the target vari-
able. The remaining variables can neither be observed nor
manipulated. More specifically, we address the problem of
learning a tree-structured causal network with bounded in-
degree k. The root of the tree represents the target or output
variable, and the leaves represent the input variables, where
the causality flows from the inputs to the target. The objec-
tive is to model the probability of the target given the inputs.

We approach the problem of learning causal trees of
bounded degree from the perspective of probably approxi-
mately correct (PAC) learning of probabilistic concepts or p-
concepts (Haussler 1992; Kearns and Schapire 1994). More
specifically, our objective is to efficiently learn, with high
probability, an approximate conditional distribution for the
target variable given the inputs drawn from an unknown
but fixed natural distribution. In the more relaxed setting of
PAC-prediction, the learner is allowed to express the target
function in any form that can be evaluated in polynomial
time. When all variables are Boolean and the model is deter-
ministic, an SCM can encode a Boolean circuit. It is known
that PAC-prediction of Boolean circuits from random exam-
ples is cryptographically hard, i.e., as hard as solving crypto-
graphic problems such as integer factoring (Pitt and Valiant
1988). Since probabilistic Boolean SCMs, where only the
inputs and the final output of the SCM are observed, gen-
eralize Boolean circuits, it follows that learning them from
random examples is as hard as factoring. As with Boolean
circuits, the hardness remains even when the SCM has a
known tree structure (Pitt and Warmuth 1990).

Despite the above negative results, it has been shown that
the functional formulas at the latent nodes of a determinis-
tic Boolean circuit with known tree structure can be learned
from random examples and membership queries (Tadepalli
1993; Tadepalli and Russell 1998). A membership query
asks the output of the target function for any input desired by
the learning algorithm (Angluin 1987). In previous work, we
showed that the deterministic algorithm of Tadepalli (1993)
can be extended to causal trees of known structure (Tade-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

9774

palli, Barrie, and Russell 2019). Here, we present a new
algorithm to learn both the structure and the parameters of
probabilistic causal trees from observational and experimen-
tal data. Our work can be viewed as extending the work of
Bshouty, Hancock, and Hellerstein (1995) to probabilistic
read-once formulas and that of Schapire (1994) to general
rather than product distributions over the input variables.

Our PAC-learning algorithm has access to a source of ran-
dom examples drawn from a fixed but unknown natural dis-
tribution as well as an experimentation oracle that reveals
the conditional probability of the target variable for any de-
sired input. To simplify the analysis, we assume that this
probability is exact. The key challenge is to infer the tree
structure and the conditional distributions at the intermedi-
ate variables, which are neither observed nor manipulated,
with only polynomial time and polynomially many queries.

Our algorithm proceeds in a bottom-up (causal) direction
testing for a set of at most k subtrees from the current set that
forms a valid next-level supertree. It then finds the “control”
and “context” inputs for the root of the new supertree. The
control inputs of a latent variable set it to a desired value.
The context input of a latent variable allows the inference of
its conditional distribution from the conditional distribution
of the target variable given the input. Together, the context
input of a latent variable and the control inputs of its causal
parents allow us to infer its conditional probability table. To
the best of our knowledge our algorithm is the first of its
kind to efficiently learn the structure and parameters of a
non-trivial class of causal models with latent variables from
random examples and active experiments.

Problem Setup
A Structural Causal Model (SCM) is a 4-tuple (V,D,G, P),
where V is a set of random variables over the domain D, G
is a directed acyclic graph over V , and P is the conditional
distribution of variables Vi ∈ V given the values of their par-
ents (causal antecedents) Pa(Vi) in G (Pearl and Macken-
zie 2018). A tree-structured causal model or causal tree is
an SCM in the form of a rooted tree, where V is partitioned
into the input variables I which are at the leaves of the tree,
the single root node R which is the target of prediction, and
the latent variables L which are internal to the tree. The di-
rection of causality is from the leaf nodes that represent the
input variables to the root. (Note that this reverses the usual
convention of parent–child relationship in trees to be consis-
tent with the terminology of causal networks.) In particular
we assume that each node (variable) has a single child and
has multiple parents which are its causal antecedents.

We often use the word ‘node’ to mean the variable rep-
resented at that node. We assume that the domain D is
Boolean and that the probability model is represented as
conditional probability tables (CPTs) at each node. The CPT
has one entry for every possible value tuple of the parents
of each latent variable Vn ∈ L. We write P (n|x) to repre-
sent the conditional probability P (Vn = 1|I = x), where
x is a Boolean vector assigned to the variables in I . We
use xn to refer to a partial assignment to the input vari-
ables that are causal ancestors of n and xn to represent

a partial assignment to the remaining input variables. Be-
cause of the tree structure and the rules of d-separation,
P (n|x) = P (n|xn). From the rules of do-calculus, it also
follows that P (n|x) = P (n|do(x)) = P (n|do(xn)) in
Pearl’s notation. The SCM induces a conditional distribution
P (R=1|do(x)) = P (r|x), which we seek to learn.

A PAC-learning model for probabilistic concepts was
introduced by Kearns and Schapire (1994) and has been
used to show that Bayesian networks with known struc-
ture and bounded degree are learnable from polynomial-
sized random samples (Dasgupta 1997; Haussler 1992; Pol-
lard 1984). Unfortunately, empirical loss minimization for
Bayesian networks even with known structure reduces to
predicting arbitrary Boolean functions, which is crypto-
graphically hard (Pitt and Valiant 1988; Pitt and Warmuth
1990). In the deterministic case, this computational barrier
is broken when the network is tree-structured and the learn-
ing algorithm has access to a membership oracle (Tadepalli
1993; Tadepalli and Russell 1998).

The goal of the current paper is to learn both the structure
and parameters of probabilistic tree-structured causal mod-
els. The algorithm has access to a source of random exam-
ples x drawn from a natural distribution, which we also de-
note by P with some abuse of notation.1 It can also make ex-
perimental queries EXP(y) on any arbitrary instance y and
receive as output the exact conditional probability P (r|y).
The goal of the learning algorithm, given parameters ε and
δ, is to output with a probability at least 1−δ an approximate
causal model that is correct with a probability at least 1 − ε
on test examples drawn from P . Note that the correctness
here means that the conditional probability P (r|x) should
be identical to that of the true model. The number of ran-
dom examples, the number of experimental queries, and the
time complexity of the algorithm are required to be polyno-
mial functions of 1

ε ,
1
δ , and the size of the target model, i.e.,

the total number of CPT entries for all its variables.

Control Normal Form of Causal Trees
In this section, we prove some important properties of causal
trees that are exploited by our algorithm.

Definition 1 Let R be the root of a tree whose leaf inputs
are partitioned into sets A and B. The causal effect on R of
changing the value of A from a to a′ while the other inputs
B remain fixed at b, denoted by, ∆(r|A = a → a′,b) =
∆(r|a→a′,b) is defined as P (r|a′,b)− P (r|a,b).

We now state and prove the Chain Rule of Causal Effects,
which says that the causal effect on a variable under a fixed
context can be decomposed into a product of causal effects.

Theorem 1 (Chain Rule of Causal Effects) Let T be a
causal tree rooted at R and n be an internal variable. Let
A be the set of input variables under n, i.e., n’s causal
ancestors, and B be the remaining input variables. Then
∆(r|a→ a′,b) = ∆(n|a→ a′)∆(r|n=0→ 1,b).

1Unlike in Bayesian networks, we do not assume that the dif-
ferent components of x are independent of each other, i.e., P need
not be a product distribution.

9775

Proof: Thanks to the tree structure, n d-separates nodes in
A from the root R. Hence,
P (r|a,b) =

∑
x∈{0,1} P (n=x|a,b)P (r|n=x, a,b)

=
∑
x∈{0,1} P (n=x|a)P (r|n=x,b) (d-separation)

= P (n|a)P (r|n=1,b) + (1− P (n|a))P (r|n=0,b)
= P (n|a)(P (r|n=1,b)−P (r|n=0,b))+P (r|n=0,b)

∆(r|a→ a′,b) = P (r|a′,b)− P (r|a,b)
= P (n|a′)(P (r|n=1,b)− P (r|n=0,b))
+P (r|n=0,b)−
(P (n|a)(P (r|n=1,b)−P (r|n=0|b))+P (r|n=0,b))
= (P (n|a′)− P (n|a))(P (r|n=1,b)− P (r|n= 0,b))
= ∆(n|a→ a′)∆(r|n = 0→ 1,b) �
The Chain Rule of Causal Effects is useful to show that

the conditional probability tables of causal trees with latent
internal nodes can be transformed into a special normal form
that preserves the conditional distribution of the output given
the inputs.

Definition 2 A causal tree is in control normal form (CNF)
if for every latent node n ∈ L there are some vectors d and
z such that P (n|Pa(n)=d)=1 and P (n|Pa(n)=z)=0.

If a causal tree is in CNF, there are inputs that can deter-
ministically set any internal variable to 0 or 1. We can find
these inputs by choosing appropriate values for each parent
of the internal node to set it to 0 or 1 and recursing over the
parents to do the same.

We now describe the algorithm Normalize, whose sole
purpose is to constructively show that any rooted causal tree
can be converted to CNF. It is not part of the learning algo-
rithm. In Algorithm 1 and elsewhere, we assume ni is the ith
parent of n, and n′i is the set of all other parents of n. Nor-
malize processes the latent nodes in the causal (topological)
order (line 2). Lines 3 and 4 compute lo and hi, the lowest
and the highest entries in the CPT of ni. Note that if lo = hi,
then ni’s value does not depend on its parents, and hence on
any of its causal ancestors. In this case, the node ni itself can
be removed from the tree and be marginalized in its child’s
CPT. Hence, w.l.o.g. we assume that lo 6= hi for any inter-
nal node. This allows us to scale the old CPT entries, where
lo maps to 0 and hi maps to 1 (lines 5-7). Lines 9–12 com-
pensate for this change at node n by adjusting its CPT with
respect to node ni. Lemma 1 shows that the compensation
preserves the distribution of n for any values of parents of ni
and the other parents of n. Lemma 1 and Theorem 2 justify
the normalization algorithm.

Lemma 1 Consider a causal tree for which Normalize has
been applied at node ni. Then for any child n of ni and
vectors x and y of suitable dimensions,
P (n|Pa(ni) = x, n′i = y) = P̂ (n|Pa(ni) = x, n′i = y),
where P represents the probabilities based on the original
CPTs and P̂ represents the probabilities based on the new
CPTs.

Proof: Consider a subtree of the causal tree which is rooted
at n and includes all causal parents of n and ni and no other
nodes. Let X = Pa(ni) and Y = Pa(n) − {ni}. Let ∆̂
represent the ∆ after normalization.

Algorithm 1 Normalizing a Causal Tree
1: Procedure Normalize(V,G, P)
2: for each latent node ni ∈ L in topological order do
3: lo← minx P (ni|Pa(ni) = x) in the CPT of ni
4: hi← maxx P (ni|Pa(ni) = x) in the CPT of ni
5: for each assignment vector z to Pa(ni) do
6: P (ni|Pa(ni) = z)← P (ni|pa(ni)=z)−lo

hi−lo
7: end for
8: n′i ← Pa(n)− ni
9: for each assignment vector y to nodes in n′i do

10: P (n|ni = 0, n′i = y) ← (1 − lo)P (n|ni = 0, n′i =
y) + loP (n|ni=1, n′i=y))

11: P (n|ni = 1, n′i =y) ← (1 − hi)P (n|ni = 0, n′i =
y) + hiP (n|ni=1, n′i=y))

12: end for
13: end for
14: end Normalize

We show that the causal effects at node n are preserved
by Normalize when lo 6= hi. From line 6, we have

∆̂(ni|x→ x′) = P̂ (ni|x′)− P̂ (ni|x)

= P (ni|x′)−P (ni|x)
hi−lo = ∆(ni|x→x′)

hi−lo .

From lines 10-11 of Normalize, we have

∆̂(n|ni = 0→ 1,y)

= P̂ (n|ni=1, n′i=y)− P̂ (n|ni=0, n′i=y)

= (hi− lo)(P (n|ni=1, n′i=y)− P (n|ni=0, n′i=y))

= (hi− lo)∆(n|ni = 0→ 1,y) .

From the Chain Rule of Causal Effects (Theorem 1),

∆̂(n|x→ x′,y) = ∆̂(ni|x→ x′)∆̂(n|ni = 0→ 1,y)

= ∆(ni|x→x′)
hi−lo (hi− lo)∆(n|ni = 0→ 1,y)

= ∆(n|x→ x′,y) .

We now set x′ = argminwP (ni|Pa(ni) = w), so that
P (ni|Pa(ni) = x′) = lo per line 3 and P̂ (ni|Pa(ni) =
x′) = 0 per line 6 of Normalize.
P̂ (n|Pa(ni) = x′, n′i = y) = P̂ (n|ni = 0, n′i = y)

= (1− lo)P (n|ni=0, n′i=y) + loP (n|ni=1, n′i=y))
= P (ni=0|Pa(ni) = x′)P (n|ni=0, n′i=y)

+P (ni=1|Pa(ni) = x′)P (n|ni=1, n′i=y))
= P (n|Pa(ni) = x′, n′i = y) .

Since the probability is preserved for x′,y and the causal
effects are preserved for all x,x′ and y, the Lemma follows.
P̂ (n|Pa(ni) = x, n′i = y)

= P̂ (n|Pa(ni) = x′, n′i = y)− ∆̂(n|x→ x′,y)
= P (n|Pa(ni) = x′, n′i = y)−∆(n|x→ x′,y)
= P (n|Pa(ni) = x, n′i = y) �

Since each transformation at ni preserves the conditional
distribution P (n|Pa(ni), n

′
i), a sequence of such transfor-

mations at each ni preserves it as well. Repeating this ar-
gument for each internal node n shows that the probability
of the outputs given any input is preserved. The following
theorem formalizes the argument.

9776

Figure 1: The CPTs show the probability that a variable =
1, given its parents. Normalization at node B linearly trans-
forms B’s CPT and changes A’s CPT to the intermediate ta-
ble at the top. Normalization at node C linearly transforms
its CPT and changes A’s CPT to its final form. After nor-
malization bothB and C have a 0 and a 1 in their CPTs. The
input 0010 sets both nodes B and C to 0 in the normalized
network, but preserves the probability of the root at 0.36.

Theorem 2 Every causal tree over binary variables can be
transformed into control normal form to preserve the condi-
tional distribution of the root given the inputs.

Proof: We show that for all input vectors z,the probability
P (r|z) is preserved by Normalize. Let n be a node which
has a directed path to the root R and ni be a parent of n.

P (r|z) =
∑
w∈{0,1} P (r|n=w, z)P (w|z)

=
∑
w∈{0,1} P (r|n=w, z)

∑
x,y P (n′i=y|z)

P (Pa(ni)=x|z)P (n=w|Pa(ni)=x, n′i=y)

Note that P (r|n=w, z) is preserved by Normalize which
only changes the CPTs of n and its parent ni. Given that the
nodes are normalized in causal order, P (Pa(ni)=x|z) and
P (n′i=y|z) do not change either. By Lemma 1, the changes
at nodes n and ni are such that P (n=w|Pa(ni)=x, n′i=y)
is preserved for w=1 or 0. Hence the value of the whole ex-
pression is preserved. �

For example, consider the 4-input tree-structured causal
network in Figure 1. We assume all variables are Boolean
valued. Only the input variablesD,E, F,G at the leaf nodes
and the target A at the root are observable. B and C are la-
tent. The figure shows how the CPTs of A, B, and C are
transformed to normalize the causal network and preserve
the distribution P (A|D,E, F,G). For example, the notation
0.3 → 0 on node B indicates that the P (B= 1|D= 0, E=
0, F = 1, G = 0) = 0.3 before normalization and 0.0 after
normalization. The conditional probability of node C simi-
larly changes from 0.1 to 0. The conditional probability of
A on the other hand remains the same as before at 0.36.

The Learning Algorithm
We now introduce the notion of distinguishability of a la-
tent node, which allows us to infer its distribution given the
inputs. We then describe our algorithm in multiple stages.

Distinguishability

Given that any target causal tree can be put in CNF, we as-
sume that the target causal tree is in CNF and seek to learn
it. Recall that for trees in CNF, every internal node n has
control inputs d(n) and z(n) to its leaves that set it to 1
and 0 respectively. In addition, if there is also an input con-
text, i.e., an assignment to the input variables other than the
leaves of n, that makes this internal node have an impact
on the distribution of the target variable, we call the node
distinguishable. Distinguishability allows us to infer the dis-
tribution of the latent internal node from the distribution of
the target variable when the node’s context is set appropri-
ately. If a node is not distinguishable by any context, it has
little impact on the target distribution for any input, and can
be dropped from the tree. Hence we will only be interested
in distinguishable internal nodes for learning.

Definition 3 A node n is distinguishable if there is an as-
signment c(n) to the inputs other than the leaves of n, called
the distinguishing context of n such that |P (r|d(n), c(n))−
P (r|z(n), c(n))| > 0.

When a node n is distinguishable, we assume
P (r|c(n), n = 1) > P (r|c(n), n = 0) so that
P (r|c(n),d(n)) > P (r|c(n), z(n)). This is w.l.o.g.
since the internal nodes are latent, which allows redefining
0 and 1 values for them arbitrarily.

Suppose n is a distinguishable node with control inputs
d(n) and z(n) and context input c(n). Let yn represent
some assignment to the leaf (input) nodes under the sub-
tree rooted at node n. The following shows how to infer the
conditional distribution of n given yn from the conditional
distribution of the root node given yn and c(n).

P (r|yn, c(n)) = P (n = 1|yn)P (r|yn, c(n), n=1)

+(P (n = 0|yn))P (r|yn, c(n), n=0)

= P (n=1|yn)P (r|d(n), c(n))

+(1− P (n = 1|yn))P (r|z(n), c(n))

The last step follows because n d-separates yn from the root,
and P (n = 1|d(n)) = P (n = 0|z(n)) = 1. The last equa-
tion can be solved for P (n = 1|yn) yielding:

P (n=1|yn) =
P (r|yn, c(n))− P (r|z(n), c(n))

P (r|d(n), c(n))− P (r|z(n), c(n))

=
EXP(yn, c(n))− EXP(z(n), c(n))

EXP(d(n), c(n))− EXP(z(n), c(n))
(1)

Equation 1 shows that the context and control inputs of
any node n would make it effectively observable via EXP
queries.

9777

Algorithm 2 The Bottom-up Tree-Building Algorithm
1: Procedure BuildTree (Sample S, Degree k, Inputs
V1, . . . Vp, Root label R)

2: Forest F = {V1 . . . Vp}
3: repeat
4: C = All possible trees over 1 < j ≤ k subtrees in F
5: while C is non-empty do
6: Select and remove largest tree T ∈ C with root n
7: if ∀x ∈ S,EXP(x) =EXP(xn,0n) then
8: Relabel its root n as R
9: FillCPT(R)

10: else y = argmaxx∈S | EXP(x)−EXP(0n,xn)|
11: if EXP(y) 6=EXP(0n,yn) then
12: c(n) = yn

13: if f(T, S) < θ then
14: FillCPT(n)
15: C ← C − {T ′|T ′ overlaps with T}
16: F ← F

⋃
{T}−Subtrees(T)

17: end while
18: until |F | = 1 or some tree in F has its root labeled R
19: if ∃ a tree T ∈ F rooted at R return T else Fail
20: end BuildTree

The Tree-Building Algorithm

Algorithm 2 describes the top level pseudocode of our ap-
proach. The algorithm BuildTree proceeds bottom-up start-
ing with a forest F initialized to the set of the input nodes
which can be viewed as trivial trees (line 2). In each iteration
of the Repeat loop (lines 3–18), the algorithm constructs a
candidate set of trees C, where each tree has a new distinct
root node and a unique subset of 2 to k trees in F as its
subtrees (line 4).

The While loop of the algorithm iterates over the candi-
dates in C and selects them to add to F (lines 5–17). It se-
lects a tree T ∈ C with the largest number of leafs and re-
moves it from C (line 6). The selection criterion is a heuris-
tic that helps move quickly towards the root and does not
affect the correctness. It checks to see if EXP(x) changes
by replacing the inputs which are not in T with 0’s for any
sample x ∈ S (line 7). If it does not, it means that the inputs
not in T are not relevant for the sample at hand, and hence
it replaces its root with the root label R and calls FillCPT to
fill its conditional probability table (lines 8–9).

Otherwise, the algorithm tries to find a distinguishing con-
text c(n) for the root n, by searching for an input x ∈ S
which changes EXP(x) the most when the leafs under node
n are replaced by the zero vector 0n (line 10). If the amount
of change is non-zero, it sets the distinguishing context c(n)
to the corresponding input yn (lines 11–12). It evaluates the
resulting tree T using the scoring function f -score (line 13).
If the score is less than a small threshold θ, it builds a CPT
for the root node of T by calling FillCPT (lines 13–14). It
removes from C all trees which overlap with the leafs of T
(line 15). It adds T to the forest F and removes the subtrees
used in creating T from F so that they will not be reused
(line 16). The While loop terminates when the candidate set
C is empty (line 5).

Algorithm 3 Filling in the CPT of a Node
1: Procedure FillCPT(n)
2: for each tuple of values x ∈ (0, 1)k for parents of n do
3: yn[x]← concatenation of yn1 , . . . ,ynk

, where, ∀i,
4: if ni is an input variable, then yni

= xi

5: elseif xi=0 then yni = z(ni)
6: else yni = d(ni)
7: P (n|Pa(n) = x) = EXP (yn[x], c(n))
8: end for
9: if n = R then return

10: d(n)← yn[argmaxx∈(0,1)kEXP(yn[x], c(n))]

11: z(n)← yn[argminx∈(0,1)kEXP(yn[x], c(n))]

12: for each tuple of values x ∈ (0, 1)k for parents of n do
13: P (n|Pa(n) = x)← P (n|Pa(n)=x)−EXP(z(n),c(n))

EXP(d(n),c(n))−EXP(z(n)),c(n))

14: end for
15: end FillCPT

The Repeat loop terminates when there is a single tree in
F or there is a tree T ∈ F which is rooted at R, in which
case, it is returned (lines 18-19). The next 2 sections describe
the components that learn the CPTs and score the tree struc-
ture in more detail.

Filling in the CPTs
If a node n and its parents are distinguishable with known
context and control inputs, it is straightforward to fill in n’s
CPT using appropriate experimental queries. This is shown
in Algorithm 3. The algorithm sets the parents of node n
to each possible assignment vector x and infers and fills in
P (n|Pa(n) = x) (lines 2–8). The parents of node n are set
to a desired bit vector x ∈ (0, 1)k by setting the input vector
yn[x] to the concatenation of yn1 , . . . ,ynk

(line 3), which
are defined in lines 4–6. If ni is a leaf node, yni is the same
as xi (line 4). Recall that we assume that the target tree is
in CNF. Assuming that the control inputs d(ni) and z(ni)
maximize P (r|d(ni)) − P (r|z(ni)), we can set any non-
leaf node ni to xi = 0 by setting its leafs yni to z(ni) (line
5), and to xi = 1 by setting yni to d(ni) (line 6). After
setting all inputs for the parent nodes, the algorithm sets the
context of n according to its context input c(n) and makes
an EXP query on the result to infer P (n|x) (line 7).

Unless the node n represents the root of the target
(checked in line 9), its CPTs should be normalized. This is
done by first finding the maximum and the minimum values
in the CPT. The assignment that yields the maximum value
is set to d(n) (line 10) and the assignment that yields the
minimum value is set to z(n) (line 11). It then scales the
distribution linearly using Equation 1 (lines 12–14).

Scoring the Tree Structures
We will now describe and justify the scoring function that
tests subtree structures. Suppose that we are considering a
candidate subtree rooted at node n, whose causal ancestors
are the inputs A, where the other inputs are B. Recall that
from the Chain Rule of Causal Effects (Theorem 1), the
causal effect on R of changing A from a to a′ in the con-
text of B = b, decomposes into the causal effect on n of

9778

changing a to a′ and the causal effect on R of changing n
from 0 to 1. Importantly, the first term does not depend on
b and the second term does not depend on a or a′. We now
consider a similar equation for a different context b′, and
divide the former by the latter, yielding:

∆(r|a→ a′,b)

∆(r|a→ a′,b′)
=

P (r|a′,b)− P (r|a,b)

P (r|a′,b′)− P (r|a,b′)

=
∆(r|n = 0→ 1,b)

∆(r|n = 0→ 1,b′)
(2)

Note that the left hand side of Equation 2 can be measured
from observations of the target node and the right hand side
suggests that it does not depend on a or a′ if P (r|a,b′) 6=
P (r|a′,b′). Such input b′ exactly corresponds to the con-
text input c(n), while a and a′ correspond to the control
inputs z(n) and d(n). If such context and control inputs are
found, then we can test if Equation 2 holds for any pairs
b,b′ by checking if the ratio is invariant under all pairs of
a,a′. In particular, we let b′ = c(n), set a according to z(n)
and vary a′ to deterministically generate all possible assign-
ments in {0, 1}≤k at the parents of node n using the con-
trol inputs for these nodes. Unfortunately it is not feasible to
generate all possible assignments to variables in B because
there could be too many of them. Hence we choose these
inputs from a random sample S chosen according to the nat-
ural distribution P . We now present the scoring function of
the candidate subtree T as a function of the sample S and
the control and context inputs d(n), z(n) and c(n):

f(T, S) = max
b∈S 6=c(n)

{
max

a′ 6=z(n)

∆(r|z(n)→ a′,b)

∆(r|z(n)→ a′, c(n))

− min
a′ 6=z(n)

∆(r|z(n)→ a′,b)

∆(r|z(n)→ a′, c(n))

}
Ideally the above f -score will be 0 for real subtrees of the
target tree. We use a small upperbound θ > 0 (set to 10−5

in our experiments) to allow for roundoff errors. If the test
fails, it means that n does not d-separateA from the root and
hence is not a valid subtree.

Sample Complexity Analysis
While the uniform convergence results of (Dasgupta 1997;
Haussler 1992; Pollard 1984) can be used to derive the sam-
ple complexity of our algorithm, they are applicable to any
algorithm that learns a consistent causal model, and are quite
loose. Here we derive tighter bounds which are specific to
our algorithm. We first need the following faithfulness as-
sumption on the target causal network and the distribution
of data generated by it.
Definition 4 The target causal network is α-faithful to the
natural distribution D(x) and the conditional distribution
P (r|x) if there is a probability threshold α > 0 such that for
any latent subtree and a potential conditional independence
relation I that is not entailed by the target causal network,
the probability of P generating an instance x that violates
I is at least α.

The faithfulness assumption guarantees that with large
enough data bad subtrees will be eventually discovered by

violations of conditional independence relationships. With-
out this assumption, several bad subtrees may be learned
at lower levels, which could lead to other bad subtrees at
higher levels with potentially exponential blow up. We are
now ready to state and prove our main result.

Theorem 3 Let the true causal model be represented as a
tree of p leaf nodes, q non-leaf nodes and degree k. Let
the target causal model be α-faithful and the EXP ora-
cle answers the experimental queries exactly. Let BuildTree
be called on a random input sample of size m >

max(qε ln 2q
δ ,

1
α ln 2(q+k ln p)

δ) chosen using an arbitrary but
fixed natural distribution P . Then with probability at least
≥ 1− δ it outputs a causal model whose probability of non-
zero error on a random test example is at most ε. Its query
and time complexity are polynomial in q, p, 1

α ,
1
δ , and

1
ε .

Proof: Note that the algorithm only uses the random sample
to find the distinguishing contexts and to rule out bad sub-
trees. Hence, there are the following 2 types of imperfections
in any tree learned by the algorithm.

1. Decoy Subtrees. The learned tree contains one or more
subtrees that do not exist in the target tree.

2. Non-distinguishability. One or more subtrees of the
target tree are absent in the learned tree due to non-
distingushability of their root nodes.

Call a causal tree model “bad” if it contains a decoy sub-
tree or the probability of error on a random example cho-
sen using P due to absent subtrees is ≥ ε. Otherwise it is
“good.” Hence the probability of a good tree mispredicting
on a random test example is < ε. We should show that the
probability of learning a bad causal tree < δ when trained
on the above sample size. We consider each of the 2 types of
errors in that order.

First, the only way to have a set of decoy subtrees in the
learned output is when all training data are consistent with
the corresponding conditional independence relationships.
By α-faithfulness, the probability of a training example de-
tecting a non-existent conditional independence relationship
is≥ α. Hence, the probability thatm i.i.d. random examples
are not able to detect a specific subtree is at most (1− α)m.
At most pk subtrees are considered at the lowest level of
the tree by Algorithm 2. The number of subtrees considered
reduces in each iteration for at most q iterations, giving an
upper bound of qpk subtrees. By union bound, the probabil-
ity that some subtree goes undetected is upper bounded by
qpk(1− α)m < qpke−αm.

Now we will consider the second type of error due to non-
distinguishability. For a random test example to fail with a
probability ≥ ε due to this reason, at least one of the q in-
ternal nodes, say node i should not have been distinguished
with probability ≥ ε

q . Since the training and testing distri-
butions are the same, this implies that the probability of a
training example distinguishing i must be ≥ ε

q . The prob-
ability that an example not distinguishing an internal node
< 1 − ε

q . The probability that m i.i.d. examples not distin-

guishing that node < (1 − ε
q)m < e−

mε
q . The probability

9779

that m i.i.d. examples not distinguishing some internal node
< qe−

mε
q due to union bound.

Hence the probability of learning a bad causal model due
to either type of error < qe−

mε
q + qpke−mα. To keep it less

than δ, we enforce qe−(mεq) < δ
2 and qpke−mα < δ

2 , which
will be satisfied by m > max(qε ln 2q

δ ,
1
α ln 2(q+k ln p)

δ).
BuildTree makes at most m + 2mqpk + qpk2k experi-

mental queries in the worst case. The first term is for the
EXP query on each sample which is pre-computed. The sec-
ond term accounts for lines 7 and 10 of Algorithm 2. Each
line loops over the m samples for pk iterations of the While
loop and q iterations of the Repeat loop. The last term is due
to filling the CPTs of the roots of all subtrees generated (line
7 of Algorithm 3). Lines 10,11 and 13 do not generate addi-
tional queries since they can be folded into the For loop. The
time complexity is bounded by O(qpk+1(2k + m)), since
the time is dominated by the experimental queries and each
query takes O(p) time to setup. �

Experimental Results
Unfortunately the worst-case PAC bounds tend to be very
pessimistic in general and are not useful to predict the learn-
ing curves. To examine the empirical performance of our
algorithm, we evaluated it on datasets generated from syn-
thetic target causal trees. Each is a full binary tree with depth
4 and 16 leaf nodes. At each node we randomly selected a
CPT, where each probability in the table is chosen indepen-
dently from a uniform distribution in the union of the two
intervals (0.0, 0.1) and (0.9, 1.0). The extreme probabilities
are chosen to make the learning problem challenging. The
input example distribution P is uniform. During the training
of each batch, the algorithm also asks experimental queries,
which are answered by referring to the target tree. When a
query is answered, its response is stored so that it is never
asked again. After each batch of training the learned tree was
evaluated on 40 test examples which were chosen randomly
from the pool of examples not queried during training.

We report in Table 1 the average results of 30 different
training sets on 10 target trees, one per each row. The first
two columns are based on an algorithm that knows the tree
structure. It is identical to Algorithm 2 with two differences:
(1) the candidate list of trees constructed in line 4 will only
include the correct subtrees at the next level, and (2) the test
“if f(T, S) < θ ” in line 13 is removed and treated as true
since we are only considering correct subtrees. The last 3
columns are based on our algorithm. Columns 1 and 3 report
the number of average unique queries asked on each target
tree in the two scenarios. To achieve comparable test error
rates, the algorithm was run with 5 random examples when
the tree is not given and 1 random example when the tree is
given. The results show that approximately 10 times as many
unique queries are asked when the tree is learned compared
to when it is given.

The last column reports the fraction of training sets in
which there were one or more errors in the learned tree struc-
ture. In two of the target trees, 1 out of 30 training sets re-
sulted in an error. In one target tree, 3 out of 30 training sets
gave an error. Column 4 reports the average absolute error

Tree structure is given Tree structure is learned
Queries Test Error Queries Test Error Errors

45.47 4.705E-14 486.13 9.950E-17 0/30
45.40 3.791E-15 483.00 1.339E-16 0/30
44.87 4.876E-15 482.73 2.328E-16 0/30
46.03 2.194E-15 494.83 2.094E-16 0/30
44.33 3.301E-16 462.90 1.237E-16 0/30
45.73 2.218E-15 474.80 0.0199E0 1/30
44.77 3.746E-16 465.63 0.0151E0 1/30
44.53 1.485E-14 484.93 1.372E-16 0/30
44.47 4.408E-16 467.73 1.290E-16 0/30
45.03 7.252E-16 483.93 0.0112E0 3/30

Table 1: Mean number of unique queries asked and mean
test error on 10 different target trees. The last column shows
the fraction of trials where the learned tree was imperfect.

in the conditional probabilities of the target variable on the
test set. The errors are near-zero except for the 3 target trees
where the learned trees are imperfect. Column 2 reports the
errors when the tree is given, which are always near-zero.
The results show both the effectiveness of our learning algo-
rithm in robustly learning causal trees, as well as the signif-
icant reduction in sample and query complexities when the
tree structure is given. It also shows that a very small number
of random examples is sufficient and the query complexity
is dominated by structure learning.

Conclusions and Future Work
While the informational need for experiments to identify the
causal structure is well-known, their role in the computa-
tional efficiency of learning is not as well-studied. We pre-
sented an efficient algorithm to PAC-learn causal trees with
latent variables from examples and directed experiments.
Without the experiments, learning the trees from random
examples alone appears to be intractable. Random observa-
tional examples are also needed because without them, the
trees can encode arbitrary passwords so that it takes expo-
nentially many guesses to get useful information in the worst
case. Our algorithm can be generalized to exactly identifying
the causal tree from counterexamples and experiments by
rerunning it whenever a new counterexample is discovered.
This framework generalizes Angluin’s model of exact learn-
ing from counterexamples and membership queries (An-
gluin 1987) to stochastic functions. Our algorithm assumes
that the EXP oracle is exact and the true model is a tree. Gen-
eralizations to approximate EXP oracles and agnostic learn-
ing are important future directions. Extending the algorithm
to more general causal structures and non-binary variables
offers some more challenges. Another direction is to build
a simpler causal tree that approximates the predictions of a
more complicated network and can be said to explain its be-
havior (Shaughnessy et al. 2020).

Acknowledgments
The authors acknowledge the support of DARPA under con-
tract N66001-17-2-4030 and NSF under grant IIS-1619433.

9780

References
Angluin, D. 1987. Queries and Concept Learning. Machine
Learning 2(4): 319–342.

Bello, K.; and Honorio, J. 2017. Learning Bayes networks
using interventional path queries in polynomial time and
sample complexity URL http://arxiv.org/abs/1706.00754.

Bshouty, N. H.; Hancock, T. R.; and Hellerstein, L. 1995.
Learning Boolean read-once formulas over generalized
bases. Journal of Computer and System Sciences 50(3):
521–542.

Colombo, D.; Maathuis, M. H.; Kalisch, M.; and Richard-
son, T. S. 2012. Learning High Dimensional Direct Acyclic
Graphs with Latent and Selection Variables. The Annals of
Statistics 40(1): 294–321.

Cooper, G. F.; and Yoo, C. 1999. Causal discovery from a
mixture of experimental and observational data. In Proceed-
ings of the Fifteenth conference on Uncertainty in artificial
intelligence, 116–125. Morgan Kaufmann Publishers Inc.

Dasgupta, S. 1997. The Sample Complexity of Learning
Fixed Structure Bayesian Networks. Machine Learning 29:
165–180.

Eaton, D.; and Murphy, K. 2007. Exact Bayesian structure
learning from uncertain interventions. In Artificial Intelli-
gence and Statistics, 107–114.

Hauser, A.; and Bühlmann, P. 2014. Two optimal strate-
gies for active learning of causal models from interven-
tional data. International Journal of Approximate Reasoning
55(4): 926–939.

Haussler, D. 1992. Decision Theoretic Generalizations of
the PAC Model for Neural Net and Other Learning Applica-
tions. Inf. Comput. 100(1): 78–150.

He, Y.-B.; and Geng, Z. 2008. Active Learning of Causal
Networks with Intervention Experiments and Optimal De-
signs. JMLR 9: 2523–2547.

Hyttinen, A.; Hoyer, P. O.; Eberhardt, F.; and Järvisalo, M.
2013. Discovering Cyclic Causal Models with Latent Vari-
ables: A General SAT-Based Procedure. In Proceedings of
the Conference on Uncertainty in Artificial Intelligence.

Kearns, M. J.; and Schapire, R. E. 1994. Efficient
Distribution-Free Learning of Probabilistic Concepts. J.
Comput. Syst. Sci. 48(3): 464–497.

Kocaoglu, M.; Shanmugam, K.; and Bareinboim, E. 2017.
Experimental Design for Learning Causal Graphs with La-
tent Variables. In Advances in Neural Information Process-
ing Systems 30, 7018–7028.

Li, G.; and Leong, T.-Y. 2009. Active Learning for Causal
Bayesian Network Structure with Non-symmetrical En-
tropy. In PAKDD, 290–301. Springer-Verlog.

Pearl, J. 2009. Causality. Cambridge university press.

Pearl, J. 2019. The seven tools of causal inference, with
reflections on machine learning. Commun. ACM 62(3): 54–
60.

Pearl, J.; and Mackenzie, D. 2018. The Book of Why: The
New Science of Cause and Effect. Basic Books.
Peters, J.; Bühlmann, P.; and Meinshausen, N. 2016. Causal
inference by using invariant prediction: identification and
confidence intervals. Journal of the Royal Statistical So-
ciety: Series B (Statistical Methodology) 78(5): 947–1012.
Pitt, L.; and Valiant, L. G. 1988. Computational limitations
on learning from examples. J. ACM 35(4): 965–984.
Pitt, L.; and Warmuth, M. K. 1990. Prediction-Preserving
Reducibility. J. Comput. Syst. Sci. 41(3): 430–467.
Pollard, D. 1984. Convergence of Stochastic Processes. New
York, Berlin: Springer Verlog.
Reichenbach, H. 1991. The direction of time, volume 65.
Univ of California Press.
Schapire, R. E. 1994. Learning Probabilistic Read-once For-
mulas on Product Distributions. Machine Learning 47–81.
Shaughnessy, M.; Canal, G.; Connor, M.; Rozell, C.; and
Davenport, M. 2020. Generative causal explanations of
black-box classifiers. In Advances in Neural Information
Processing Systems, volume 33, 5453–5467. Curran Asso-
ciates, Inc.
Silander, T.; and Myllymaki, P. 2012. A simple approach
for finding the globally optimal Bayesian network structure.
arXiv preprint arXiv:1206.6875 .
Spirtes, P.; Glymour, C.; and Scheines, R. 2000. Causation,
prediction, and search. Adaptive computation and machine
learning.
Tadepalli, P. 1993. Learning from Queries and Examples
with Tree-structured Bias. In Proceedings of the Tenth In-
ternational Machine Learning Conference, 322–329.
Tadepalli, P.; Barrie, C.; and Russell, S. J. 2019. Learning
Causal Trees with Latent Variables via Controlled Experi-
mentation. In AAAI Spring Symposium on Beyond Curve Fit-
ting: Causation, Counterfactuals, and Imagination-Based
AI.
Tadepalli, P.; and Russell, S. J. 1998. Learning from Exam-
ples and Membership Queries with Structured Determina-
tions. Machine Learning 32(3): 245–295.
Tong, S.; and Koller, D. 2001. Active Learning for Structure
in Bayesian Networks. In IJCAI, 863–869.

9781

