TempLe: Learning Template of Transitions for Sample Efficient Multi-task RL
DOI:
https://doi.org/10.1609/aaai.v35i11.17174Keywords:
Reinforcement Learning, Transfer/Adaptation/Multi-task/Meta/Automated LearningAbstract
Transferring knowledge among various environments is important for efficiently learning multiple tasks online. Most existing methods directly use the previously learned models or previously learned optimal policies to learn new tasks. However, these methods may be inefficient when the underlying models or optimal policies are substantially different across tasks. In this paper, we propose Template Learning (TempLe), a PAC-MDP method for multi-task reinforcement learning that could be applied to tasks with varying state/action space without prior knowledge of inter-task mappings. TempLe gains sample efficiency by extracting similarities of the transition dynamics across tasks even when their underlying models or optimal policies have limited commonalities. We present two algorithms for an ``online'' and a ``finite-model'' setting respectively. We prove that our proposed TempLe algorithms achieve much lower sample complexity than single-task learners or state-of-the-art multi-task methods. We show via systematically designed experiments that our TempLe method universally outperforms the state-of-the-art multi-task methods (PAC-MDP or not) in various settings and regimes.Downloads
Published
2021-05-18
How to Cite
Sun, Y., Yin, X., & Huang, F. (2021). TempLe: Learning Template of Transitions for Sample Efficient Multi-task RL. Proceedings of the AAAI Conference on Artificial Intelligence, 35(11), 9765-9773. https://doi.org/10.1609/aaai.v35i11.17174
Issue
Section
AAAI Technical Track on Machine Learning IV