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Abstract

The stability and generalization of stochastic gradient-based
methods provide valuable insights into understanding the al-
gorithmic performance of machine learning models. As the
main workhorse for deep learning, stochastic gradient de-
scent has received a considerable amount of studies. Never-
theless, the community paid little attention to its decentral-
ized variants. In this paper, we provide a novel formulation
of the decentralized stochastic gradient descent. Leveraging
this formulation together with (non)convex optimization the-
ory, we establish the first stability and generalization guar-
antees for the decentralized stochastic gradient descent. Our
theoretical results are built on top of a few common and mild
assumptions and reveal that the decentralization deteriorates
the stability of SGD for the first time. We verify our theoret-
ical findings by using a variety of decentralized settings and
benchmark machine learning models.

Introduction
The great success of deep learning (LeCun, Bengio, and
Hinton 2015) gives impetus to the development of stochastic
gradient descent (SGD) (Robbins and Monro 1951) and its
variants (Nemirovski et al. 2009; Duchi, Hazan, and Singer
2011; Rakhlin, Shamir, and Sridharan 2012; Kingma and Ba
2014; Wang et al. 2020). Although the convergence result-
s of SGD are abundant, the effects caused by the training
data is absent. To this end, the generalization error (Hardt,
Recht, and Singer 2016; Lin, Camoriano, and Rosasco 2016;
Bousquet and Elisseeff 2002; Bottou and Bousquet 2008)
is developed as an alternative method to analyze SGD. The
generalization bound reveals the performance of stochastic
algorithms and characterizes how the training data and s-
tochastic algorithm jointly affect the target machine learning
model. To mathematically describe generalization, Hardt,
Recht, and Singer (2016); Bousquet and Elisseeff (2002);
Elisseeff, Evgeniou, and Pontil (2005) introduce the algo-
rithmic stability for SGD, which mainly depends on the
landscape of the underlying loss function, to study the gen-
eralization bound of SGD. The stability theory of SGD has
been further developed (Charles and Papailiopoulos 2018;
Kuzborskij and Lampert 2018; Lei and Ying 2020).
∗Corresponding author.
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SGD has already been widely used in parallel and dis-
tributed settings (Agarwal and Duchi 2011; Dekel et al.
2012; Recht et al. 2011), e.g., the decentralized SGD (D-
SGD) (Ram, Nedić, and Veeravalli 2010b; Lan, Lee, and
Zhou 2020; Srivastava and Nedic 2011; Lian et al. 2017). D-
SGD is implemented without a centralized parameter serv-
er, and all nodes are connected through an undirected graph.
Compared to the centralized SGD, the decentralized one re-
quires much less communication with the busiest node (Lian
et al. 2017), accelerating the whole computational system.

From the theoretical viewpoint, although there exist plen-
ty of convergence analysis of D-SGD (Sirb and Ye 2016;
Lan, Lee, and Zhou 2020; Lian et al. 2017, 2018), the stabil-
ity and generalization analysis of D-SGD remains rare.

Contributions
In this paper, we establish the first theoretical result on the
stability and generalization of the D-SGD. We elaborate on
our contributions below.

1. Stability of D-SGD: We provide the uniform stability of
D-SGD in the general convex, strongly convex, and non-
convex cases. Our theory shows that besides the learning
rate, data size, and iteration number, the stability and gen-
eralization of D-SGD are also dependent on the connected
graph structure. To the best of our knowledge, our result
is the first theoretical stability guarantee for D-SGD. In
the general convex setting, we also present the stability of
D-SGD in terms of the ergodic average instead of the last
iteration for the excess generalization analysis.

2. Computational errors for D-SGD with convexity and pro-
jection: We consider more general schemes of D-SGD,
that is, D-SGD with projection. In the previous work
(Ram, Nedić, and Veeravalli 2010b), to get the conver-
gence rate, the authors need to make additional assump-
tions on the graph ([Assumptions 2 and 3, (Ram, Nedić,
and Veeravalli 2010b)]). In this paper, we remove these
assumptions, and we present the computational errors of
D-SGD with projections in the strongly convex setting.

3. Generalization bounds for D-SGD with convexity: We de-
rive (excess) generalization bounds for convex D-SGD.
The excess generalization is controlled by the computa-
tional error and the generalization bound, which can be
directly obtained from the stability.
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4. Numerical results: We numerically verify our theoreti-
cal results by using various benchmark machine learning
models, ranging from strongly convex and convex to non-
convex settings, in different decentralized settings.

Prior Art
In this section, we briefly review two kinds of related works:
decentralized optimization and stability and generalization
analysis of SGD.

Decentralized and distributed optimization Decentralized
algorithms arise in calculating the mean of data distributed
over multiple sensors (Boyd et al. 2005; Olfati-Saber, Fax,
and Murray 2007). The decentralized (sub)gradient descen-
t (DGD) algorithms are propose and studied by (Nedic and
Ozdaglar 2009; Yuan, Ling, and Yin 2016). Recently, DGD
has been generalized to the stochastic settings. With a local
Poisson clock assumption on each agent, Ram, Nedić, and
Veeravalli (2010a) proposes an asynchronous gossip algo-
rithm. The decentralized algorithm with a random commu-
nication graph is proposed in (Srivastava and Nedic 2011;
Ram, Nedić, and Veeravalli 2010b). Sirb and Ye (2016);
Lan, Lee, and Zhou (2020); Lian et al. (2017) consider the
randomness caused by the stochastic gradients and proposed
the decentralized SGD (D-SGD). The complexity analysis
of D-SGD has been done in (Sirb and Ye 2016). In (Lan,
Lee, and Zhou 2020), the authors propose another kind of D-
SGD that leverages dual information, and provide the relat-
ed computational complexity. In the paper (Lian et al. 2017),
the authors show the advantage of D-SGD compared to the
centralized SGD. In a recent paper (Lian et al. 2018), the au-
thors developed asynchronous D-SGD with theoretical con-
vergence guarantees. The biased decentralized SGD is pro-
posed and studied by (Sun et al. 2019). In (Richards et al.
2020), the authors studied the stability for a non-fully decen-
tralized training method, in which each node needs to com-
municate extra gradient information. Paper (Richards et al.
2020) is closed to ours, but we consider the DSGD, which is
different from the algorithm investigated by (Richards et al.
2020) and more general. Further more, we studied the non-
convex settings.

Stability and Generalization of SGD In (Shalev-Shwartz
et al. 2010), on-average stability is proposed and further s-
tudied by Kuzborskij and Lampert (2018). The uniform sta-
bility of empirical risk minimization (ERM) under strongly
convex objectives is considered by Bousquet and Elisseef-
f (2002). Extended results are proved with the pointwise-
hypothesis assumption, which shows that a class of learning
algorithms is convergent with global optimum (Charles and
Papailiopoulos 2018). In order to prove uniform stability of
SGD, Hardt, Recht, and Singer (2016) reformulate SGD as
a contractive iteration. In (Lei and Ying 2020), a new sta-
bility notion is proposed to remove the bounded gradien-
t assumptions. In (Bottou and Bousquet 2008), the authors
establish a framework for the generalization performance of
SGD. Hardt, Recht, and Singer (2016) connects the uniform
stability with generalization error. The generalization errors
with strong convexity are established in (Hardt, Recht, and

Singer 2016; Lin, Camoriano, and Rosasco 2016). The sta-
bility and generalization are also studied for the Langevin
dynamics (Li, Luo, and Qiao 2019; Mou et al. 2018).

Setup
This part contains preliminaries and mathematical descrip-
tions of our problem. Analyzing the stability of D-SGD is
more complicated than that of SGD due to the challenge
arises from the mixing matrix in D-SGD. We cannot directly
adapt the analysis for SGD to D-SGD. To this end, we refor-
mulate D-SGD as an operator iteration with an error term,
which is followed by bounding the error in each iteration.

Stability and Generalization
The population risk minimization is an important model in
machine learning and statistics, whose mathematical formu-
lation reads as

min
x∈Rd

R(x) := Eξ∼Df(x; ξ),

where f(x; ξ) denotes the loss of the model associated with
data ξ and D is the data distribution. Due to the fact that
D is usually unknown or very complicated, we consider the
following surrogate ERM

min
x∈Rd

RS(x) :=
1

N

N∑
i=1

f(x; ξi),

where S := {ξ1, ξ2, . . . , ξN} and ξi ∼ D is a given data.

For a specific stochastic algorithm A act on S with out-
putA(S), the generalization error ofA is defined as εgen :=
ES,A[R(A(S))−RS(A(S))]. Here, the expectation is taken
over the algorithm and the data. The generalization bound
reflects the joint effects caused by the data S and the al-
gorithm A. We are also interested in the excess generaliza-
tion error, which is defined as εex-gen := ES,A[R(A(S)) −
R(x∗)], where x∗ is the minimizer of R. Let x be the mini-
mizer of RS . Due to the unbiased expectation of the data S,
we have ES [RS(x∗)] = E[R(x∗)]. Thus, Bottou and Bous-
quet (2008) point out εex-gen can be decomposed as follows

ES,A[R(A(S))−R(x∗)] = ES,A[R(A(S))−RS(A(S))]︸ ︷︷ ︸
generalization error

+ ES,A[RS(A(S))−RS(x)]︸ ︷︷ ︸
optimization error

+ES,A[RS(x)−RS(x∗)]︸ ︷︷ ︸
test error

.

Notice that RS(x) ≤ RS(x∗), therefore

εex-gen ≤ εgen + ES,A[RS(A(S))−RS(x)].

The uniform stability is used to bound the generalization
error of a given algorithmA (Hardt, Recht, and Singer 2016;
Elisseeff, Evgeniou, and Pontil 2005).

Definition 1 We say that the randomized algorithm A is ε-
uniformly stable if for any two data sets S, S′ with n samples
that differ in one example, we have

sup
ξ

EA [f(A(S); ξ)− f(A(S′); ξ)] ≤ ε.
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It has been proved that the uniform stability directly implies
the generalization bound.

Lemma 1 ((Hardt, Recht, and Singer 2016)) Let A
be ε-uniformly stable, it follows |ES,A[R(A(S)) −
RS(A(S))]| ≤ ε.

Thus, to get the generalization bound of a random algorithm,
we just need to compute the uniform stability bound ε.

Problem Formulation
Notation: We use the following notations throughout the pa-
per. We denote the `2 norm of x ∈ Rd as ‖x‖. For a matrix
A, A> denotes its transpose, we denote the spectral norm
of A as ‖A‖op. Given another matrix B, A � B means that
A−B is positive define; and A � B means A−B is posi-
tive semidefinite. The identity matrix is defined as I. We use
E[·] to denote the expectation of · with respect to the under-
lying probability space. For two positive constants a and b,
we denote a = O(b) if there exists C > 0 such that a ≤ Cb,
and Õ(b) hides a logarithmic factor of b.

Let Di = {ξl(i)}1≤l≤n (1 ≤ i ≤ m) denote the data stored
in the ith client, which follow the same distribution of D 1.
In this paper, we consider solving the objective function (1)
by the DGD, where

f(x) :=
1

mn

m∑
i=1

n∑
l=1

f(x; ξl(i)). (1)

Note that (1) is a decentralized approximation to the follow-
ing population risk function

F (x) := Eξ∼Df(x; ξ). (2)

To distinguish from the objective functions in the last sub-
section, we use f rather thanRS here. The decentralized op-
timization is usually associated with a mixing matrix, which
is designed by the users according to a given graph structure.
In particular, we consider the connected graph G = (V , E)
with vertex set V = {1, ...,M} and edge set E ⊆ V×V with
edge (i, l) ∈ E represents the communication link between
nodes i and l. Before proceeding, let us recall the definition
of the mixing matrix.

Definition 2 (Mixing matrix) For any given graph G =
(V , E), the mixing matrix W = [wij ] ∈ RM×M is defined
on the edge set V that satisfies: (1) If i 6= j and (i, j) /∈ E ,
then wij = 0; otherwise, wij > 0; (2) W = W>; (3)
null{I−W} = span{1}; (4) I �W � −I.

Note that W is a doubly stochastic matrix (Marshall,
Olkin, and Arnold 1979), and the mixing matrix is non-
unique for a given graph. Several common examples for W
include the Laplacian matrix and the maximum-degree ma-
trix (Boyd, Diaconis, and Xiao 2004). A crucial constant that
characterizes the mixing matrix is

λ := max{|λ2|, |λm(W)|},
1For simplicity, we assume all clients have the same amount of

samples.

Algorithm 1 Decentralized Stochastic Gradient Descent (D-
SGD)

Require: (αt > 0)t≥0, initialization x0

for node i = 1, 2, . . . ,m
for t = 1, 2, . . .
updates local parameter as (3) and (4)
xt = 1

m

∑m
i=1 x

t(i)
end for

end for

where λi denotes the ith largest eigenvalue of W ∈ Rm×m.
The definition of the mixing matrix implies that 0 ≤ λ <
1. In [Corollary 1.14., (Montenegro and Tetali 2006)], the
authors proved the following result.

Lemma 2 Let P ∈ Rm×m be the matrix whose elements
are all 1/m. Given any k ∈ Z+, the mixing matrix W ∈
Rm×m satisfies

‖Wk −P‖op ≤ λk.

Note the fact that the stationary distribution of an irreducible
aperiodic finite Markov chain is uniform if and only if its
transition matrix is doubly stochastic. Thus, W corresponds
to some Markov chain’s transition matrix, and the parameter
0 ≤ λ < 1 characterizes the speed of convergence to the
stationary state.

We consider a general decentralized stochastic gradien-
t descent with projection, which carries out in the following
manner: in the t-th iteration, 1) client i applies an approxi-
mate copy xt(i) ∈ Rd to calculate a unbiased gradient es-
timate ∇f(xt(i); ξjt(i)), where jt(i) ∈ Z+ is the local ran-
dom index; 2) client i replaces its local parameters with the
weighted average of its neighbors, i.e.,

x̃t(i) =
∑
l∈N (i)

wi,lx
t(l); (3)

3) client i updates its parameters as

xt+1(i) = ProjV
(
x̃t(i)− αt∇f(xt(i); ξjt(i))

)
(4)

with learning rate αt > 0, and ProjV (·) stands for project-
ing the quantity · into the space V . We stress that, in practice,
we do not need to compute the average xt = 1

m

∑m
i=1 x

t(i)
in each iteration, and we take the average only in the last
iteration.

In the following, we draw necessary assumptions, which
are all common and widely used in the nonconvex analysis
community.

Assumption 1 The loss function f(x; ξ) is nonnegative and
differentiable with respect to x, and∇f(x; ξ) is bounded by
the constant B over V , i.e., maxx∈V,ξ∼D ‖∇f(x; ξ)‖ ≤ B.

Assumption 1 implies that |f(x; ξ)− f(y; ξ)| ≤ B‖x−y‖,
for all x,y ∈ V and any ξ ∼ D.
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Assumption 2 The gradient of f(x; ξ) with respect to x is
L-Lipschitz, i.e., ‖∇f(x; ξ) −∇f(y; ξ)‖ ≤ L‖x − y‖, for
all x,y ∈ V and any ξ ∼ D.

Assumption 3 The set V forms a closed ball in Rd.

Compared with the scheme presented in (Lian et al. 2017),
our algorithm accommodates a projection after each update
in each client. When ∇f(x; ξ) is non-strongly convex, V
can be set as the full space and Algorithm 1 reduces to the
scheme given in (Lian et al. 2017), whose convergence has
been well studied. Such a projection is more general and
is necessary for the strongly convex analysis; we explain
this necessary claim as follows: if f is ν-strongly convex,
then ‖∇f(x)‖2 ≥ ν‖x − x∗‖2 with x∗ being the minimiz-
er of f(x) (Karimi, Nutini, and Schmidt 2016). Thus, when
x is far from x∗, the gradient is unbounded, which breaks
Assumption 1. However, with the projection procedure, D-
SGD (Algorithm 1) actually minimizes function (1) over the
set V . The strong convexity gives us f(x)−f(x∗) ≥ ν

2‖x−
x∗‖2, which indicates x∗ ∈ B(0,

√
2(f(x0)−min f)/ν).

Thus, when the radius of V is large enough, the projection
does not change the output of D-SGD.

Stability of D-SGD
In this section, we prove the stability theory for D-SGD in
strongly convex, convex, and nonconvex settings.

General Convexity
This part contains the stability result of D-SGD when f(·; ξ)
is generally convex.

Theorem 1 Let f(·; ξ) be convex and Assumptions 1, 2, 3
hold. If the step size αt ≤ 2/L, then D-SGD satisfies the
uniform stability with

εstab ≤
2B2

∑T−1
t=1 αt

mn
+4B2

T−1∑
t=1

[
(1+αtB)

t−1∑
j=0

αjλ
t−1−j

]
.

Compared to the results of minimizing (1) by using cen-
tralized SGD with step sizes (αt)t≥1 [Theorem 3.8, (Hardt,
Recht, and Singer 2016)], which yields the uniformly sta-
ble bound as 2B2

∑T−1
t=1 αt/(mn). Theorem 1 shows that

D-SGD suffers from an additional term 4B2
∑T−1
t=1 (1 +

αtB)
∑t−1
j=0 αjλ

t−1−j , which does not vanish when λ > 0.
If we set αt = 1/(t+ 1), with Lemma 3, it is easy to

check that εstab = O( lnT
mn + Cλ lnT ); However, if we use

a constant learning rate, (i.e., αt ≡ α), when 0 < λ < 1,
we have 4B2

∑T−1
t=1 (1 + αtB)

∑t−1
j=0 αjλ

t−1−j = O( αT1−λ )

and εstab = O( αT1−λ + αT
mn ). The result indicates that although

decentralization reduces the busiest node’s communication,
it hurts the stability.

Theorem 1 provides the uniform stability for the last-
iterate of D-SGD. However, the computational error of D-
SGD in general convexity case uses the following average

ave(xT ) :=

∑T−1
t=1 αtx

t∑T−1
t=1 αt

. (5)

Such a mismatch leads to the difficulty in characterizing the
excess generalization bound. It is thus necessary describe to
the uniform stability in terms of ave(xT ). To this end, we
consider that D-SGD outputs ave(xt) instead of xt in the t-
th iteration. The uniform stability, in this case, is defined as
εave-stab, and we have the following result.

Proposition 1 Let f(·; ξ) be convex and Assumptions 1, 2,
3 hold. If the step size αt ≡ α ≤ 2/L, the uniform stability
εave-stab, in terms of ave(xt), satisfies

εave-stab ≤
2B2α(t− 1)

mn
+

4αB2(1 + αB)(t− 1)

1− λ
1λ6=1.

Furthermore, if the step size is chosen as αt = 1/(t+ 1),
we have

εave-stab ≤
B2 lnT

mn
+

4B2(1 +B)

ln(T + 1)
1λ6=1.

Unlike the uniform stability for xT , the average turns out to
be a very complicated one. We thus just present two classical
kinds of step size.

Strong Convexity

In the convex setting, for a fixed iteration number T , as the
data size mn increases and λ decreases, εstab gets smaller
for both diminishing and constant learning rates. However,
similar to SGD, D-SGD also fails to have εstab under con-
trol when T increases. This drawback does not exist in the
strongly convex setting.

Strongly convex loss functions appear in the `2 regular-
ized machine learning models. As mentioned in Section 2,
to guarantee the bounded gradient, the set V should be re-
stricted to a closed ball. We formulate the uniform stability
results in this case in Theorem 2.

Theorem 2 Let f(·; ξ) be ν-strongly convex and Assump-
tions 1, 2, 3 hold. If the step size αt ≡ α ≤ 1/L, then
D-SGD satisfies the uniform stability with

εstab ≤
2B2

mnν
+

4(1 + αB)B2

ν

1λ6=0

1− λ
.

Furthermore, if the step size αt = 1
ν(t+1) , it holds that

εstab ≤
2B2

mnν
+ 4(1 +

B

ν
)
B2

ν

1λ6=0

1− λ
.

The uniformly stability bound for SGD with strong convex-
ity is 2B2/(mnν) (Hardt, Recht, and Singer 2016), which
is smaller than the one of D-SGD. From Theorem 2, we see
that the uniform stability bound of D-SGD is independent on
the iterative number T . Moreover, D-SGD enjoys a smaller
uniformly stable bound when the data size mn is larger and
λ is smaller.
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Figure 1: Structures of the connected graph used in our numerical tests.

Nonconvexity
We now present the stability result for nonconvex loss func-
tions.

Theorem 3 Suppose Assumptions 1, 2, 3 hold and
supx∈V,ξ f(x; ξ) ≤ 1. For any T , if the step size αt ≤
c/(t+ 1) and c is small enough, then D-SGD satisfies the

uniform stability with εstab ≤ c
1

1+cL T
cL

1+cL

mn +c
1

1+cL

[
2B2cL
mn +

4(1 + cB)B2LCλ

]
T

cL
1+cL .

Without the convexity assumption, the uniform stable bound
of D-SGD deteriorated. Theorem 3 shows that εstab =

O((1 + Cλ)T
cL

1+cL /(mn)), which is much larger than the
bounds in the convex case (O(lnT/(mn) + Cλ lnT )).

Excess Generalization for Convex Problems
In the nonconvex case, the optimization error of the func-
tion value is unclear. Thus, the excess generalization error
is absent. We are also interested in the excess generalization
associated with the computational optimization error. The
existing computational errors of Algorithm 1 require extra
assumptions on the graph for projections. However, these as-
sumptions may fail to hold in many applications. Thus, we
first present the optimization error of D-SGD when f(x; ξ)
is convex without extra assumptions.

Optimization Error of Convex D-SGD
This part consists of optimization errors of D-SGD for con-
vex and strongly convex settings. Assume x∗ is the minimiz-
er of f(x) over the set V , i.e., f(x∗) = minx∈V f(x).

Lemma 3 Let f(·; ξ) be convex and Assumptions 1, 2 hold,
and let (xt)1≤t≤T be the sequence generated by D-SGD.
Then

E(f(ave(xT ))− f(x∗)) ≤ ‖x
1 − x∗‖2∑T−1
t=1 αt

+
2B2

∑T−1
t=1 α2

t

m
∑T−1
t=1 αt

+ 8LrBM(T ) + 2λ2B2M(T )2,

where M(T ) := max1≤t≤T−1{
∑t−1
j=0 αjλ

t−1−j} and r is
the radius of V .

It is worth mentioning that the optimization error is estab-
lished on the average point ave(xT ) for technical reasons.

In the following, we provide the results for the strongly
convex setting.
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(b) Regularized logistic
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Figure 2: Comparison of the absolute loss difference under
different graphs. (a), (b) and (c) correspond to the general
convex, strongly convex, and nonconvex cases, respective-
ly. In the strongly convex case, the curves become stable
after enough iterations for all graphs. In the general con-
vex case, the absolute loss difference oscillates and inferior
to the strongly convex case. D-SGD performs worst in the
nonconvex tests in terms of stability.

Lemma 4 Let f(·; ξ) be ν-strongly convex and Assumptions
1, 2, 3 hold, and let V be a closed ball with radius r > 0, and
let (xt)1≤t≤T be the sequence generated by D-SGD. When
αt ≡ α > 0, then

E‖xT − x∗‖2 ≤ (1− 2αν)T−1‖x1 − x∗‖2

+ (
4αLrB

(1− λ)ν +
λ2B2α

m(1− λ)2ν )1λ6=0,

where 1λ6=0 = 1 when λ 6= 0, and 1λ6=0 = 0 when λ = 0.
When αt = 1/(2ν(t+ 1)), it then follows

E‖xT − x∗‖2 ≤ ‖x
1 − x∗‖2

T − 1
+
Dλ lnT

T − 1
,

where Dλ := B2

2ν2 +
λ2B2C2

λ

2ν2m + 2LrBCλ
ν2 and

Cλ :=

{
ln 1

λ
λln 1

λ

λ +
ln2 1

λ

16λ λ
ln 1
λ

8 + 2
λ ln 1

λ

λ 6= 0,

0, λ = 0.

The result shows that D-SGD with projection converges
sublinearly in the strongly convex case. To reach an ε > 0
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error, we shall set the iteration number as Õ(1/ε). Our re-
sult coincides with the existing convergence results of S-
GD with strong convexity (Rakhlin, Shamir, and Sridharan
2012). What is different is that D-SGD is affected by the pa-
rameter λ, which is determined by the structure of the con-
nected graph2.

General Convexity
Notice that the computational error of D-SGD, in this case,
is described by ave(xT ). Thus, we need to estimate the gen-
eralization bound about ave(xT ).

Theorem 4 Let f(·; ξ) be convex and Assumptions 1, 2, 3
hold. If the step size αt ≡ α ≤ 2/L, then the average output
(5) obeys the following generalization bound

εex-gen ≤
2B2α(t− 1)

mn
+

4αB2(1 + αB)(t− 1)

1− λ 1λ6=1

+
4r2

(T − 1)α
+

2B2α

m
+

8LrBα

1− λ 1λ6=1 +
2λ2B2α2

(1− λ)2 .

Furthermore, if the step size is chosen as αt = 1/(t+ 1),
we have

εex-gen ≤
B2 lnT

mn
+

4B2(1 +B)

ln(T + 1)
1λ6=1 + 2λ2B2C2

λ

+
4r2

ln(T + 1)
+

4B2

m ln(T + 1)
+ 8LrBCλ1λ6=1.

Strong Convexity
Now, we present the excess generalization of D-SGD under
strong convexity.

Theorem 5 Let f(·; ξ) be ν-strongly convex and Assump-
tions 1, 2, 3 hold. If the step size αt ≡ α ≤ 1/L, the excess
generalization bound is

εex-gen ≤
2B2

mnν
+

4(1 + αB)B2

ν

1λ6=0

1− λ

+B

√
(1− 2αν)T−14r2 + (

4αLrB

(1− λ)ν +
λ2B2α

m(1− λ)2ν )1λ6=0.

Furthermore, if the step size αt = 1/(ν(t+ 1)), the excess
generalization bound is

εex-gen ≤
2B2

mnν
+

4(ν +B)B2

ν2
1λ6=0

1− λ +B

√
4r2

T − 1
+
Dλ lnT

T − 1
.

Numerical Results
We numerically verify our theoretical findings in this sec-
tion, with a focus on testing three kinds of models, namely,
strongly convex, convex, and nonconvex. For all the above
three scenarios, we set the number of nodesm to 10 and con-
duct two kinds of experiments: the first kind of experiments
is to verify the stability and generalization results. Given a
fixed graph, we use two sets of samples that are of the same

2For the strongly convex case, we avoid showing the result un-
der general step size due to the complicated form.
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Figure 3: Absolute loss difference versus epochs for linear
regression task on Body Fat dataset. With current learning
rates, D-SGD diverges for the Cycle graph. With enough
iterations, the smaller learning rate can achieves a smaller
difference for all graph.

amount, and the entries are differing by a small portion. We
compare the training loss and training accuracy of D-SGD
on these two datasets; the second kind is to demonstrate the
effects due to the structure of the connected graph. We run
our experiments on different types of connected graphs with
the same dataset. In particular, we test six different connect-
ed graphs, as shown in Figure 1.

Convex Case

We consider the following optimization problem
minx∈R14 Φ(x) := 1

504

∑252
i=1 ‖ξ>i x − yi‖2, which

arises from a simple regression problem. Here, we use
the Body Fat dataset (Johnson 1996) which contains 252
samples. We run D-SGD on two subsets of the Body Fat
dataset, and both of size 200. Let xk and x̂k be the outputs
of the D-SGD on the two different subsets. We define
the absolute loss difference as |Φ(xk) − Φ(x̂k)|. For the
above six graphs, we record the absolute difference in
the value of function Φ for a set of learning rate, namely,
{0.001, 0.004, 0.016, 0.064} in Figure 3. In the second test,
we use the learning rate 0.001 and compare the absolute
loss difference with different graphs in Figure 2 (a). Our
results show that the smaller learning rate usually yields a
smaller loss difference, and the complete graph can achieve
the smallest bound. These observations are consistent with
our theoretical results for the convex D-SGD.
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Figure 4: Absolute loss difference versus epochs for the `2
regularized logistic regression task on ijcnn1. The strongly
convex tests are similar to general convex ones but more s-
mooth. With strong convexity, D-SGD converges over the
Cycle graph. In particular, when a smaller learning rate is
used.

Strongly Convex Case
To verify our theory on the strongly convex case, we consid-
er the regularized logistic regression model as follows

min
x∈R22

{
1

9000

9000∑
i=1

(
log(1 + exp(−bia>i x)) +

λ

2
‖x‖2

)}
.

We use the benchmark ijcnn1 dataset(Rennie and Rifkin
2001) and set λ = 10−4. Two 8000-sample sub-datasets
with 1000 different samples are used as the test set. We con-
duct experiments on the two datasets with the same set of
learning rates that are used in the last subsection. The abso-
lute loss difference under different learning rates is plotted in
Figure 4, and the performance under different graphs is re-
ported in Figure 2 (b). The results of D-SGD in the strongly
convex case is similar to the convex case. Also, note that the
absolute loss difference increases as the learning rates grow.

Nonconvex Case
We test ResNet-20 (He et al. 2016) for CIFAR10 classifi-
cation (Krizhevsky 2009). We adopt two different 40000-
sample subsets. The loss values are built on the test set.
The absolute loss difference with the learning rate set
{0.0001, 0.0004, 0.0016, 0.0064} versus the epochs is pre-
sented in Figure 5, and the absolute loss difference with dif-
ferent graphs are shown in Figure 5 (c). 100 epochs are used
in the nonconvex test. The results show that the nonconvex
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Figure 5: Absolute loss difference versus epochs for train-
ing nonconvex machine learning model, i.e., ResNet20. Un-
like the convex cases, the absolute loss difference oscillates
chaotically, which implies worse stability.

D-SGD is much more unstable than the convex ones, which
matches our theoretical findings.

Conclusion
In this paper, we develop the stability and generalization er-
ror for the (projected) decentralized stochastic gradient de-
scent (D-SGD) in strongly convex, convex, and nonconvex
settings. In contrast to the previous works on the analysis
of the projected decentralized gradient descent, our theories
are built on much more relaxed assumptions. Our theoretical
results show that the stability and generalization of D-SGD
depend on the learning rate and the structure of the connect-
ed graph. Furthermore, we prove that decentralization dete-
riorates the stability of D-SGD. Our theoretical results are
empirically supported by experiments on training different
machine learning models in different decentralization set-
tings. There are numerous avenues for future work: 1) de-
riving the improved stability and generalization bounds of
D-SGD in the general convex and nonconvex cases, 2) prov-
ing the high probability bounds, 3) studying the stability and
generalization bound of the moment variance of D-SGD.
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