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Abstract
Partial differential equations (PDEs) play a prominent role
in many disciplines for describing the governing systems
of interest. Traditionally, PDEs are derived based on first
principles. In the era of big data, the needs of uncovering
PDEs from massive data-set are emerging and become es-
sential. One of the latest advance in PDE discovery models is
PDE-Net, which has shown promising predictive power with
its moment-constrained convolutional filters, but may suffer
from noisy data and numerical instability intrinsic in numeri-
cal differentiation. We propose a novel and robust regulariza-
tion method tailored for moment-constrained convolutional
filters, namely, Differential Spectral Normalization (DSN), to
allow accurate estimation of coefficient functions and stable
prediction of dynamics in a long time horizon. We investi-
gated the effectiveness of DSN against batch normalization,
dropout, spectral normalization, weight decay, weight nor-
malization, jacobian regularization and orthonormal regular-
ization and supported with empirical evidence that DSN owns
the highest effectiveness by learning the convolutional filters
in a robust manner. Numerical experiments further reveal that
with DSN there is a substantial potential to uncover the hid-
den PDEs in a scarce data setting and predict the dynamical
behavior for a long time horizon, even in a noisy environment
where all data samples are contaminated with noise.

1 Introduction
Partial differential equations (PDEs) play a significant role
in many scientific disciplines for describing the dynamics
in the systems of interest. Traditionally, PDEs are derived
based on first principles. For example, the Navier-Stokes
equations in fluid dynamics are derived from the conser-
vation laws of mass, momentum and energy; the Black-
Scholes equations in option pricing theory are derived from
the geometric brownian motion assumption of stock price
dynamics. However, these first principles are not always
available as the governing physical laws may be unknown
or the dynamical systems are too complicated. Given the re-
cent advances of machine learning theories, the rapid devel-
opment of computational powers and the availability of vast
quantities of data, a data-driven approach to uncover the hid-
den PDEs in dynamical systems was emerging and popular
in the past decade.
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Given measurements of u (x1, . . . , xS) over certain tem-
poral and spatial domains, {u (t, x1, . . . , xS) : t ∈
{0,∆t, 2∆t, . . . , T} ⊂ R, (x1, . . . , xS) ∈ Ω ⊂ RS}, the
objective of PDE discovery problem is to uncover equation
(1) governing the observed system. Equation (1) expresses a
generic form of PDE with S spatial dimensions and 1 tem-
poral dimension of order K.
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It was recently shown that residual network (ResNet) (He
et al. 2016a,b) has close relation with PDEs and may be suit-
able for PDE modeling and discovery (Haber and Ruthotto
2017; Sonoda and Murata 2017; Qin, Wu, and Xiu 2019;
Wu and Xiu 2020). Exploiting the architecture of convo-
lutional ResNet, Long et al. (2017); Long, Lu, and Dong
(2019) introduced PDE-Net which trains convolutional fil-
ters (abbr. filters) with moment constraints and weights ma-
trices to approximate the derivatives terms and variable co-
efficients of PDE without assumptions on the explicit form
of the PDE being known. PDE-Net possesses high inter-
pretability and requires zero prior knowledge on the PDE
to be discovered, but it lacks regularization on its filters and
suffers from numerical instability intrinsic in numerical dif-
ferentiation (Burden and Faires 2004; Baydin et al. 2017).

In the PDE-Net approach, (1) is discretized to

∂u

∂t
≈

i1+i2+...,+iS=K∑
i1=0,i2=0,...,iS=0

Ai1,i2,...,iS (Di1,i2,...,iS ~ ~u)

+ Non-linear terms (2)

where

• Di1,i2,...,iS are filters. Under moment constraints,
Di1,i2,...,iS ~ ~u acts as a discretization of ∂i1+i2...+iSu

∂x
i1
1 ∂x

i2
2 ...∂x

iS
S

.

• Ai1,i2,...,iS are weight matrices discretizing the coefficient
functions.

• Non-linear terms include (D2,0,...,0 �D0,1,...,0) ~ ~u

which models ∂u2

∂x2
1
· ∂u
∂x2

with � being hadamard product.
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• ~u is the discretized u.

To simplify notations, we use ~ut to denote the discretized u
at time t and drop the non-linear terms in equation WLOG.
Equation (3) is derived from equation (2) with time step ∆t
under forward Euler method.

~ut+∆t = ~ut + ∆t
∑

i1,i2,...,iS

Ai1,i2,...,iS (Di1,i2,...,iS ~ ~ut)

(3)
Equation (3) expresses a prediction from time t (input) to t+
∆t (output), modeled as a convolutional layer (Di1,i2,...,iS )
stacked with a fully connected layer (Ai1,i2,...,iS ) under a
residual connection. Likewise, a prediction from time t to t+
n∆t proceeds via iterating equation (3), forming a ResNet
with 2n layers and n residual connections, which is called
the PDE-Net.

In this paper, we propose a novel regularization method
tailored for moment-constrained filters, Differential Spectral
Normalization (DSN), which enhances the robustness of fil-
ters to enable more accurate estimation of coefficients and
more stable prediction of the dynamical behavior. DSN reg-
ularizes the spectral norm of the filters and can be stream-
lined in a fast and parallel algorithm proposed in (Sedghi,
Gupta, and Long 2018), and possesses several unique prop-
erties. Firstly, DSN is carefully designed to be compatible
with moment constraints which characterize filters to func-
tion as differential operators. This is warranted by our theo-
rem which proves the invertibility of the mapping between
moment-constrained filters and moment tensors which con-
tain moments as its entries.Moreover, DSN carefully con-
siders the physical meanings of filters and weight matrices
when designing their Lipschitz constant hyper-parameter
and when judging whether they are eligible for normaliza-
tion. Our main contribution is DSN, the first normalization
technique tailored for moment-constrained filters.

The rest of the paper is structured as follows. Section 2
introduces the background of PDE discovery problem. Sec-
tion 3 presents an error analysis by considering the Lips-
chitz constants in PDE-Net, which motivates our proposal of
DSN. The definitions and physical meanings of DSN will be
discussed. Section 4 introduces common regularization tech-
niques which will be compared. Section 5 covers our empir-
ical studies on a linear PDE (convection-diffusion equation)
and a nonlinear PDE (KdV equation), followed by a discus-
sion on the effectiveness of DSN against other regularization
methods. Section 6 is our conclusion.

2 Related Work
Different approaches have been attempted in data-driven
discovery of PDEs. One of the major approaches is sparse
regression, which constructs a predefined large candidate li-
brary of simple functions and their partial derivatives and
leverages sparsity promoting techniques, to identify a small
number of those terms in the library to best represent the
data (Brunton, Proctor, and Kutz 2016; Rudy et al. 2017;
Schaeffer 2017; Schaeffer et al. 2013). Such approach suf-
fers from numerical instability intrinsic in numerical differ-
entiation and faces challenges in front of noisy data (Burden

and Faires 2004; Baydin et al. 2017). The use of finite dif-
ference filters common in this approach further limits the ex-
pressive and predictive power of the dictionary (Long et al.
2017; Long, Lu, and Dong 2019).

To alleviate the problem of numerical instability, (Raissi,
Perdikaris, and Karniadakis 2017b,a) leveraged automatic
differentiation which enables accurate evaluation of deriva-
tives at machine precision to introduce the physics-informed
neural network (PINN) which is capable to discover the
scalar coefficients of PDE but requires the assumption that
the explicit form of the PDE is known. To bypass this strong
assumption, several attempts have been made. Raissi (2018)
constructed a second neural network to approximate the un-
known solution besides PINN. Berg and Nyström (2019)
constructed a neural network for data modeling and feed a
second neural network with the automatic derivatives from
the first network to approximate the PDE. Both attempts fall
short in interpretability of the learned models. Xu, Chang,
and Zhang (2019) made another attempt by first construct-
ing a neural network for generation of ”meta-data” and apply
sparse regression on the automatic derivatives of the ”meta-
data”. Although this approach allows higher interpretability,
parsimony of the fictitious ”meta-data” may not be guaran-
teed.

Among popular regularization techniques, a recent ad-
vance was spectral normalization (SN) (Yoshida and Miy-
ato 2017; Miyato et al. 2018), which regularizes the spec-
tral norm of filters and weight matrices and was suggested
to be an effective regularization for GAN models. Sedghi,
Gupta, and Long (2018) leveraged the properties of circu-
lant matrices to introduce an algorithm for fast computation
of spectral norm of filters, based on which Singla and Feizi
(2019) further developed numerical methods for estimating
upper bounds on spectral norm. Saito, Matsumoto, and Saito
(2017); Jia et al. (2017), on the other hand, developed singu-
lar value clipping.

Other common regularization techniques include weight
decay (Krogh and Hertz 1992), weight normalization (Sali-
mans and Kingma 2016), Jacobian regularization (Gu and
Rigazio 2014), orthonormal regularization (Brock et al.
2016), batch normalization (Ioffe and Szegedy 2015) and
dropout (Srivastava et al. 2014). While weight decay (aka.
Frobenius norm regularization) regularizes the sum of
squared singular values, weight normalization normalizes
the l2 norm of each row vector in the weight matrices. It can
be shown that weight normalization is equivalent to weight
decay up to a constant. Jacobian regularization instead reg-
ularizes the l2 norm of layerwise Jacobians. For PDE-Net,
which is entirely linear, Jacobian regularization degener-
ates to weight decay. Orthonormal regularization regularizes
‖W ᵀW−I‖2F which sets all singular values to one. All these
approaches attempt to regularize all or sum of the singular
values instead of just the largest one, destroying much of the
information about the spectrum of the weight matrices. On
the other hand, batch normalization and dropout are well es-
tablished regularization methods but do not suit our model
well. We will discuss more details in section 4.
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3 Our Approach
We start with an error analysis on PDE-Net for insight in
regularization, motivated by which, we then propose a novel
regularization technique, Differential Spectral Normaliza-
tion (DSN).

Error Analysis
Our analysis focuses on error and noise propagation in
PDE-Net, i.e. iterations of equation (3).There are two main
sources of errors and noises. Firstly, all our data are collected
from noisy environment, which is an inevitable assumption
for real-world problems, and we assume no prior knowledge
on their characteristic. Secondly, our model is full of round-
off and truncation errors, which are induced by the limited
precision of computation intrinsic in computation machines
and numerical differentiation (Burden and Faires 2004; Bay-
din et al. 2017). These two types of errors and noises mag-
nify in each layer and PDE-Net may turn ill-conditioned if
no proper regularization is applied.

Based on equation (3), we expressed each iteration as an
application of F with F defined as

F = I + ∆t
∑

i1,i2,...,iS

Ai1,i2,...,iS (Di1,i2,...,iS~) (4)

To predict u at time n∆t from time 0, we perform F on u0

for n times. A robust F should reduce the noise and errors
generated in each time step and calm down errors accumu-
lated from previous time steps. To simplify notations, we use
~ut, ~̂ut and ~̃ut to denote the true value, noisy observations and
predictions at time t respectively. We start by looking at the
loss function L, which compares the noisy observation with
prediction,

L =
∥∥∥~̂uT − ~̃uT∥∥∥

2
(5)

A careful observation on the loss function (5) reveals∥∥∥~̂uT − ~̃uT∥∥∥
2

=
∥∥∥~̂uT − F (~uT−∆t + εT−∆t)

∥∥∥
2

=
∥∥∥~̂uT − F (~uT−∆t) + F (~uT−∆t)−

F (~uT−∆t + εT−∆t)
∥∥∥

2

≤
∥∥∥~̂uT − F (~uT−∆t)

∥∥∥
2

+

‖F (~uT−∆t)− F (~uT−∆t + εT−∆t)‖2
(6)

where εt is the noises and errors accumulated till time t. It
shows that L is bounded by two separate loss functions in
equation (6), the former of which minimizes the round-off
and truncation errors generated in the last time step, the latter
mitigates the noise and errors accumulated from previous
time steps.

To minimize the first loss term in equation (6),∥∥∥~̂uT − F (~uT−∆t)
∥∥∥

2
, our best effort is to apply F to the

observed value ~̂uT−∆t and compare with the observed
value at time T for training, as we have no knowl-
edge about the true value ~u. For the second loss term

‖F (~uT−∆t)− F (~uT−∆t + εT−∆t)‖2, we examine it in
further depth as follows,

‖F (~uT−∆t)− F (~uT−∆t + εT−∆t)‖2
= ‖F (~uT−∆t)− F (~uT−∆t)− F (εT−∆t)‖2
= ‖F (εT−∆t)‖2
≤‖F‖2 ‖εT−∆t‖2 (7)

The first equality is warranted by the linearlity of F , because
unlike common neural network with non-linearity, PDE-Net
is entirely linear with activation functions being identity.

As we assumed no prior knowledge on the characteristics
of noises and errors, equation (7) tells us our focus should
be on regularizing the spectral norm (2-norm) of F . Further
analyzing equation (7) gives

‖F‖2

=

∥∥∥∥∥∥I + ∆t
∑

i1,i2,...,iS

Ai1,i2,...,iS (Di1,i2,...,iS~)

∥∥∥∥∥∥
2

≤1 +

∥∥∥∥∥∥∆t
∑

i1,i2,...,iS

Ai1,i2,...,iS (Di1,i2,...,iS~)

∥∥∥∥∥∥
2

=1 +

∥∥∥∥∥∥∆t
∑

i1,i2,...,iS

Ai1,i2,...,iSWi1,i2,...,iS

∥∥∥∥∥∥
2

≤1 + ∆t
∑

i1,...,iS

‖Ai1,...,iS‖2 ‖Wi1,...,iS‖2 (8)

where Wi1,i2,...,iS is the matrix representation of
Di1,i2,...,iS~.

A direct examination of equation (8) reveals that we
should regularize the spectral norms of Wi1,i2,...,iS and
Ai1,...,iS . However,Ai1,i2,...,iS andDi1,i2,...,iD carry certain
physical meanings. We have to handle two of them indepen-
dently.
• Ai1,i2,...,iS carries its physical meaning as discretized co-

efficient functions. As we assume no prior knowledge on
the characteristics of the coefficient functions, it is unfea-
sible to apply a regularization on its norm.

• Di1,i2,...,iS carries its physical meaning as discretized
differential operators. As PDE-Net applies moment con-
straints to characterize the filters to act as differential op-
erators, a regularization method which is compatible with
the moment constraints must be proposed.

Differential Spectral Normalization
Motivated by the above analysis, we propose Differential
Spectral Normalzation (DSN) dedicated to training of filters.
Definition 1 (Differential Spectral Normalization (DSN)).

WDSN i1,...,iS ,
∥∥∥Ŵi1,...,iS

∥∥∥
2

Wi1,...,iS

‖Wi1,...,iS‖2
(9)

where Ŵi1,...,iS is the symmetric finite difference filter of
order i1, . . . , iS . For example, in the case of a single spa-
tial dimension, Ŵ1 is the matrix representation of filter
[1/12,−2/3, 0, 2/3,−1/12].
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There are several important points to remark in the defini-
tion of DSN.

1. As there is no theoretical guarantee that the optimal spec-
tral norm size of moment-constrained filter is 1, we take∥∥∥Ŵi1,...,iS

∥∥∥ to be the size of the normalize filter, to ensure
that training of filters proceed in a non-empty filter space.
In other words, we are worried that the space of filters
with unit norm size may has empty intersection with the
space of moment-constrained filters. Therefore, we have
the equality

‖WDSN i1,...,iS‖2 =
∥∥∥Ŵi1,...,iS

∥∥∥
2

(10)

2. Here, we drop the index i1, . . . , iS for simplicity. The gra-
dient of WDSN over the i,j entry of W is
∂WDSN

∂ (W )ij
=

1

‖W‖2

[∥∥∥Ŵ∥∥∥
2
Eij −WDSN (ηξᵀ)ij

]
(11)

where Eij is a matrix with 1 in its i, j entry and 0 every-
where else, and η and ξ are the first left and right singular
vectors of W .
The gradient of loss function L with respect to W is
∂L

∂W
=

1

‖W‖2

{∥∥∥Ŵ∥∥∥
2
E
[
δ~̂uᵀ
]
− E

[
δᵀWDSN~̂u

]
ηξᵀ
}

(12)

where δ = ∂L

∂WDSN~̂u
, and E [·] is the sample mean over a

batch. E
[
δᵀWDSN~̃u

]
in equation (12) acts as an adaptive

hyper-parameter controlling the regularization term.
3. Another important feature of DSN lies on its implemen-

tation. As moment constraints fix some of the moments
of the filters to be 0 or 1 based on the order of differen-
tial operators being approximated, a direct application of
equation (12) may alter the fixed moments and is unfea-
sible. To bypass this challenge, we utilize moment tensor
which stores the moments of a filter as their entries. Dong,
Jiang, and Shen (2017); Long et al. (2017); Long, Lu,
and Dong (2019) have introduced the concept of vanish-
ing moment and moment matrix for 2D filters and a map-
ping from 2D filters to moment matrix, but little was said
about its higher-dimensional generalization (moment ten-
sor) and the existence of its inverse mapping. We supply
a definition of its high-dimensional generalization and a
theorem which proves the linearity and invertibility of the
associated mapping. Such invertibility permits us to con-
vert the parameter space from moment-constrained filter
to moment tensor as leaf variables in arbitrary high spa-
tial dimensions. Training proceeds on the space of mo-
ment tensor instead of the space of filters to overcome the
challenge. Proof of Theorem 1 is appended after the ref-
erences.
Definition 2 (Moment tensor). Let d be a N -dimensional
filter with size LN and d[i1, . . . , iN ] as its i1, . . . , iN en-
try. Let M be a N -dimensional moment tensor with size
LN . The mapping from d to M is defined as

d 7→M = (mj1,...,jN )LN (13)

where

mj1,...,jN = M1 ·M2

with

M1 =
∏

i=j1,...,jN

1

(i− 1)!

M2 =
∑

(i1,...,iN )∈(ZL
+)

N

 ∏
k=1,...,N

ijk−1
k

 d[i1, . . . , iN ]

(14)

for j1, . . . , jN = 1, 2, . . . , L.
Theorem 1. The mapping defined in Definition 2, d 7→
M , is linear and invertible.

In each batch the gradient backpropagates to the moment
tensor M according to

∂L

∂M
=

∂L

∂W
· ∂W
∂M

(15)

where ∂L
∂W is expressed in equation (12) and ∂W

∂M is the
gradient of the inverse mapping proved in Theorem 1.
Only some entriesmj1,...,jN of the moment tensorM will
be updated according to the order of the differential oper-
ators being approximated. Lastly, to compute the ‖·‖2 for
filters, we have leveraged the algorithm for efficient com-
putation of spectral norm of filters in (Sedghi, Gupta, and
Long 2018).

4 Other Regularization Techniques
In this section, we discuss some major regularization tech-
niques and their limitations.

Weight decay. Weight decay (Krogh and Hertz 1992) adds
the Frobenius norm (F-norm) regularization term ‖W‖2F to
reduce the model’s sensitivity. Note that

max
i
σi (W )

2
= ‖W‖22 ≤ ‖W‖2F =

∑
i

σi (W )
2 (16)

which shows F-norm is a more stringent constraint than
spectral norm (2-norm). Regularizing the F-norm can mit-
igate the noise and error propagation, but it also shrinks the
weight in all directions including those orthogonal to the first
singular vector, with a tendency to inadvertently reduce W
to a small rank matrix.

Weight normalization. Weight normalization (Salimans
and Kingma 2016) normalizes the l2 norm of each row vec-
tor in the weight matrices, i.e.

∑
σi (W )

2
= d where d

is a pre-defined hyper-parameter. It differs from weight de-
cay with just this hyper-parameter which in weight decay is
taken to be 1. It suffers from same pitfall as weight decay.

Jacobian regularization. Jacobian regularization (Gu
and Rigazio 2014) regularizes layerwise Jacobians, i.e.∥∥∥ ∂~̃ut

∂~̃ut+1

∥∥∥2

F
, which is same as the F-norm of the weight ma-

trices for PDE-Net as PDE-Net is linear. Jacobian regular-
ization degenerates to weight decay.
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Orthonormal regularization. Orthonormal regulariza-
tion (Brock et al. 2016) adds the regularization term
‖W ᵀW − I‖2F . It targets to constrain all the singular val-
ues to one, thus risk destroying the information about the
spectrum, unlike in DSN where we only constrain the largest
singular values.

Batch normalization. Batch normalization (Ioffe and
Szegedy 2015) normalizes the input of each layer to fixed
means and variances in each batch, to mitigate the problem
of internal covariate shift. Since PDE-Net is linear, batch
normalization degenerates to data normalization (a coordi-
nate transform of all the observed data), which can be done
as a data pre-processing step but does not help regularize the
filters directly.

Dropout. Dropout (Srivastava et al. 2014) randomly drops
entries of weights and their connections from the neural net-
work during training to prevent over-fitting. It is unfeasi-
ble for PDE-Net because both the filters or weight matrices
carry physical meanings which cannot be dropped.

5 Experiment
In this section, we compare DSN against 5 other settings:
(1) symmetric finite difference filters (F), (2) moment-
constrained filters without regularization (M), (3) spectral
normalization (SN), (4) Weight decay (WD) as weight nor-
malization and jacobian regularization both degenerate to
WD, and (5) Orthonormal regularization (OR) on a 1D non-
linear PDE, namely, Korteweg-de Vries (KdV) equation, and
a 2D linear PDE, namely, confection-diffusion equation re-
spectively. To allow comparability, the implementation of
SN, WD and OR are all adjusted with reference to theorem 1
to allow their trainings to proceed on the space of moment
tensor.

Evaluation metric. We define two evaluation metrics,
namely, relative error and maximum derivation. Relative er-
ror ε measures accuracy of non-zero coefficient functions
and prediction of dynamical behavior.

ε =

∥∥∥~̃u− ~u∥∥∥
2

‖~u− ~uaverage‖2
(17)

where ~u is the true value, ~̃u is the estimated/ predicted value,
~uaverage is the spatial average of ~u. u here can be the non-zero
coefficient functions or the PDE solution.

Maximum derivation (MD), on the other hand, evaluates
the largest derivation of zero coefficient functions (i.e. the
derivative terms do not exist in the PDE) by

MD = max
A
{‖A‖max} (18)

where A’s are the weight matrices approximating the zero
coefficients.

Korteweg-de Vries (KdV) Equation
Our 1D non-linear PDE, KdV equation reads as

∂u

∂t
= −u∂u

∂x
− a(x)

∂3u

∂x3
(19)

where a(x) = 0.0025 (1 + 0.0005 sin(x)).
We take Ω = [0, 2π]. The grid size of Ω is 100. The time

step ∆t is 0.01. Filter size is 5.
Suppose we know a priori that the PDE we have been

looking for is of sum of order no more than 3 in each deriva-
tive term and that the 0-th order term appears in each deriva-
tive term at most once only. Equation (4) then takes the form

F =I + ∆t
[
A1W1 +B1 (W0 �W1) +A1,1 (W1 �W1)

+B1,1 (W0 �W1 �W1) +A1,1,1 (W1 �W1 �W1)

+B1,1,1 (W0 �W1 �W1 �W1)

+A1,1,1,1 (W1 �W1 �W1 �W1)

+B1,1,1,1 (W0 �W1 �W1 �W1 �W1)

+A2 (W2) +B2 (W0 �W2) +A2,1 (W2 �W1)

+B2,1 (W0 �W2 �W1) +A2,1,1 (W2 �W1 �W1)

+B2,1,1 (W0 �W2 �W1 �W1) +A2,2 (W2 �W2)

+B2,2 ((W0 �W2 �W2) +A3 (W3)

+B3 (W0 �W3) +A3,1 (W3 �W1)

+B3,1 (W0 �W3 �W1) +A4 (W4)

+B4 ((W0 �W4) +A0 (W0)
]

(20)

where Wi is the matrix representation of the filter approxi-
mating differential operator of order i, and A and B are the
weight matrices for the corresponding coefficient functions.

Convection-diffusion Equation
Our 2D linear PDE, convection-diffusion equation reads as

∂u

∂t
=

∑
0≤i,j≤2

ai,j(x, y)
∂i+ju

∂xi∂yj
(21)

where

a0,0(x, y) = 0

a1,0(x, y) = cos(x) + y (2π − y) sin(y) + 0.6

a0,1(x, y) = 2 (cos(x) + sin(y)) + 0.8

a2,0(x, y) = 0.3 cos(x) + 0.2 cos(x)

a0,2(x, y) = 0.2 sin(y) + 0.1 cos(y)

a1,1(x, y) = 0.1 sin(x) + 0.3 cos(y) (22)

We take Ω = [0, 2π]× [0, 2π]. The grid size of Ω is 100×
100. Differentiation filter size is 5 × 5. The time step ∆t is
0.01.

Suppose we know a priori that the PDE we have been
looking for is linear and of order no more than 4. Equa-
tion (4) then takes the form

F =I + ∆t

 ∑
0≤i+j≤4

Ai,jDi,j~

 (23)

whereDi,j is the filter approximating differential operator of
order i, j andAi,j is the weight matrix for the corresponding
coefficient functions.
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Figure 1: Relative errors of F, DSN, M, SN, WD, OR against time step ∆t for scenario 2 with the KdV equation, with the
banded curves showing the 25% & 75% percentile of the relative errors among 30 repeated evaluations

F DSN M SN WD OR

B1 0.628 0.316 0.390 0.566 0.523 0.540
A3 0.720 0.307 0.474 0.625 0.508 0.498

Table 1: Relative errors of non-zero coefficients for the KdV
equation (Scenario 1)

F DSN M SN WD OR

B1 0.823 0.352 0.499 0.693 0.642 0.649
A3 0.783 0.389 0.542 0.710 0.631 0.602

Table 2: Relative errors of non-zero coefficients for the KdV
equation (Scenario 2)

Train-set. We generate the train-set as follows.
• The initial condition for the KdV equation is u0 =
λ cos(x) with λ ∼ N(0.2, 0.05). The initial condition
for the convection-diffusion equation is u0 = λ sin(x) +
γ cos(y) with λ, γ ∼ N(0.1, 0.05). The batch size is 12.
Adam (Kingma and Ba 2014) is used as the optimizer.

• For both PDEs, we set two separate scenarios with differ-
ent noise magnitudes. Noise is added to train-set by

~̂ut = ~ut + [max (~ut)−min (~ut)] · µ (24)

where max and min is the spatial maximum and min-
imum respectively. We set µ ∼ N(0, 0.01) and µ ∼
N(0, 0.05) in scenario 1 and 2 respectively.

• For both PDEs, to mimic real-world scenarios with scarce
data setting, the train-set only consists of data in time
{0,∆t, 5∆t}. Training consists of two steps. First step is
to compare the prediction at time ∆t from time 0 with the
observed value. Second step is with the prediction at time
5∆t.

Test-set. To evaluate the predictive powers and robustness
of the models, we generate the test-set as follows.
• The time is from 0 to 40∆t, {0,∆t, 2∆t, . . . , 40∆t}. We

will observe the prediction at time ∆t to 40∆t based on

F DSN M SN WD OR

MD1 2.213 0.250 0.262 1.626 1.493 1.670
MD2 3.978 0.374 0.358 2.591 1.977 2.113

Table 3: MD of zero coefficients for the KdV equation with
MD1 and MD2 for scenarios 1 and 2 resp.

input at time 0. Noise is added to the test-set in the same
way as train-set scenario 2.

• In the test-set, we aim to test the trained models given
unseen initial conditions. The initial condition for the
KdV equation is u0 = λ sin(x) with λ ∼ N(0.2, 0.01).
The initial condition for convection-diffusion equation is
u0 =

∑
0≤i+j≤4 λi,j sin(ix+jy)+γi,j cos(ix+jy) with

λi,j , γi,j ∼ N(0.1, 0.1)

Results and Discussion
Here we present our experimental results and discuss the ef-
fectiveness of different regularization techniques in different
settings.

KdV equation. Tables 1, 2 and 3 show that given in-
creased noise magnitude in the train-set, both the relative
errors and the maximum derivation for coefficients surge in
all the six settings. This suggests the presence and increase
of noise hinders the training of filters. A careful examination
of tables 1 and 2 also reveals that given the same amount
of noise increase, the relative errors of coefficients for DSN
grow by the smallest amount, suggesting that DSN is more
robust towards noise.

Tables 1 and 2 further show that DSN estimates the non-
zero coefficients most accurately among all six settings, fol-
lowed by M. We see that SN, WD or OR have not improved
the training of PDE-Net. One possible reason is that we
take the hyper-parameter for the regularization terms of all
these three methods as 1. A more careful tuning of hyper-
parameter may be needed, but this shows the deficiency of
these three methods compared to DSN which doesn’t require
any hyper-parameter tuning. Also note that WD and OR per-
form slightly better than SN. A possible explanation is that
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Figure 2: Relative errors of F, DSN, M, SN, WD, OR against time step ∆t for scenario 2 with the convection-diffusion equation,
with the banded curves showing the 25% & 75% percentile of the relative errors among 30 repeated evaluations

F DSN M SN WD OR

A1,0 0.523 0.246 0.333 0.503 0.492 0.481
A0,1 0.643 0.329 0.317 0.526 0.413 0.460
A2,0 0.738 0.311 0.412 0.579 0.543 0.521
A0,2 0.712 0.290 0.390 0.502 0.498 0.452
A1,1 0.620 0.279 0.351 0.499 0.442 0.470

Table 4: Relative errors of non-zero coefficients for the
convection-diffusion equation (Scenario 1)

F DSN M SN WD OR

A1,0 0.742 0.366 0.486 0.648 0.599 0.584
A0,1 0.781 0.415 0.432 0.623 0.561 0.602
A2,0 0.803 0.353 0.590 0.688 0.703 0.610
A0,2 0.890 0.395 0.505 0.641 0.537 0.591
A1,1 0.784 0.312 0.421 0.712 0.606 0.572

Table 5: Relative errors of non-zero coefficients for the
convection-diffusion equation (Scenario 2)

SN tremendously shrinks the filter norm size to 1 while WD
and OR add their regularization terms to the loss function
without directly fixing the spectral norm of the filter to 1.

Figure 1 indicates that when faced with unseen data, DSN
remain to be stable and its relative error of prediction stay
relatively flat till time 40 while that of M start blowing up
since time 20. We also see that the relative errors of SN, WD,
and OR explode at a quite early time compared to DSN and
M. This result matches with our observation on the relative
errors and maximum derivations of the coefficients.

Convection-diffusion equation Agreeing with the obser-
vations for the KdV equation, tables 4, 5 and 6 show that
DSN estimate coefficients most accurately and are most ro-
bust to noise among the tested methods.

Figure 2 indicates that the relative errors of prediction for
DSN stay very flat and stable from the beginning to time 40,
showing a strong robustness towards disturbance like noises
and errors. The relative errors of SN, WD and OR are ob-
served to explode at around time 10 and that of M climb

F DSN M SN WD RO

MD1 1.493 0.312 0.562 1.044 1.272 1.673
MD2 4.773 0.503 0.714 3.439 2.001 2.395

Table 6: MD of zero coefficients for the convection-diffusion
equation with MD1 and MD2 for scenarios 1 and 2 resp.

slowly.
In summary, we observe that DSN is an effective and pow-

erful means of regularization for moment-constrainted fil-
ters in PDE-Net. Compared to other common regularization
techniques, DSN is more robust towards noise and errors,
offers a more accurate estimation of coefficient functions
and a more stable prediction of long term dynamics. Other
common regularization techniques are either not applicable
(dropout and batch normalization) or are too stringent as a
constraint to have a tendency to distort the spectrum of the
weight matrices (SN, WD, OR).

6 Conclusion
In this paper, we have studied the background of PDE dis-
covery problem and the limitations of existing data-driven
approaches. Motivated by one of the latest advance, PDE-
Net, which lacks a robust regularization tool, we propose
a novel regularization technique, Differential Spectral Nor-
malization (DSN), tailored for the moment-constrained fil-
ters widely used in PDE-Net. We have conducted a de-
tailed investigation on the effectiveness of DSN against
other common regularization methods, including batch nor-
malization, dropout, weight decay, weight normalization, ja-
cobian regularization, orthonormal regularization, and ex-
amined them with data from two different PDEs (1D KdV
equation and 2D convection diffusion equation) under noisy
and unseen conditions. Substantial empirical evidence sug-
gests that DSN outperforms all of them in terms of (1) pre-
dictive power over a long time horizon, (2) accurate esti-
mation of coefficient functions, and (3) the robustness to
noises and errors in both train-set and test-set. We expect
moment-constrained filters with DSN to have a great poten-
tial to be widely applied in convolution neural network for
diverse disciplines.
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Proof of Theorem 1
Here we supply the proof of Theorem 1.

Proof. If we express the moment tensor M and filter d
as two vectors ~M and ~d with certain indexing, it suffices
to show that the mapping defined in Definition 2 can be
expressed as an invertible linear transformation. In other
words, if we can find a linear transformation T such that

~M = T~d

and show that T is invertible, then we are done.
We will proceed with mathematical induction on N . For

N = 1, we have

mj =
1

(j − 1)!

∑
i∈ZL

(
ij−1d[i]

)
for j = 1, 2, . . . , L. Expressing the transformation T in ma-
trix form, we get

~M =


m1

m2

...
mL

 = T


d[− (L−1)

2 ]

d[− (L−1)
2 + 1]
...

d[ (L−1)
2 ]

 = T~d

where

T = T1T2

,

T1 =


1

(1−1)! 0
1

(2−1)!

. . .
0 1

(L−1)!


and

T2 =

(
1−L

2

)1−1
(

1− (L−1)
2

)1−1

· · ·
(

(L−1)
2

)1−1

(
1−L

2

)2−1
(

1− (L−1)
2

)2−1

· · ·
(

(L−1)
2

)2−1

...
...

. . .
...(

1−L
2

)L−1
(

1− (L−1)
2

)L−1

· · ·
(

(L−1)
2

)L−1


.

We observe that T1 is a diagonal matrix, and is obviously in-
vertible. T2 is in fact a square Vandermonde matrix, whose
determinant is proven to be non-zero, thus is also invertible.
As product of invertible matrices are invertible, T = T1T2

is invertible. We have finished for the case N = 1.
Now assume Theorem 1 holds for the caseN = k, we will

prove for N = k+ 1. As the theorem holds for N = k, if dk

is a k-dimensional filter with size Lk and Mk is the moment
tensor mapped by dk according to the mapping defined in
Definition 2, we have an invertible matrix Tk such that

~Mk = Tk
~dk

where ~Mk and ~dk are the vector expressions for Mk and dk
respectively.

Now, looking atMk+1 and dk+1, we construct their vector
forms ~Mk+1 and ~dk+1 by ”stacking” L copies of ~Mk and ~dk
together, such that the m-th copy contains entries of Mk+1

and dk+1 indexed with m in the k + 1 dimension. We write
as

~Mk+1 =


~Mk,jk+1=1

~Mk,jk+1=2

...
~Mk,jk+1=L


Lk+1

and

~dk+1 =


~dk[ik+1 = − (L−1)

2 ]
~dk[ik+1 = − (L−1)

2 + 1]
...

~dk[ik+1 = (L−1)
2 ]


Lk+1

where ~Mk,jk+1=x refer to the copy of ~Mk indexed with m
in the k + 1 dimension, and ~dk[ik+1 = x] refer to the copy
of vecdk indexed with m in the k + 1 dimension.

Now, we construct Tk+1 by a product of three square ma-
trices all of size Lk+1 as follows:

Tk+1 = T1T2T3

where

T1 =


Tk 0

Tk

. . .
0 Tk


,

T2 =


1

(1−1)! 0
1

(2−1)!

. . .
0 1

(L−1)!


and

T3 =

(
1−L
2

)1−1 (
1− (L−1)

2

)1−1
· · ·

(
(L−1)

2

)1−1
(
1−L
2

)2−1 (
1− (L−1)

2

)2−1
· · ·

(
(L−1)

2

)2−1
...

...
. . .

...(
1−L
2

)L−1 (
1− (L−1)

2

)L−1
· · ·

(
(L−1)

2

)L−1


where T1 is a diagonal block matrix with each diagonal
block being Tk, 1

(i−1)! in T2 refers to a diagonal matrix of
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size Lk with diagonal entries taking 1
(i−1)! and ij−1 in T3

refers to a diagonal matrix of size Lk with diagonal entries
taking ij−1.

In details, T1 is composed of L’s Tk on its diagonal,
T2 is composed of L’s 1

(i−1)! on its diagonal and T3 is
composed of L × L’s diagonal matrices of size Lk. Direct
checking entry by entry shows that ~Mk+1 = Tk+1

~dk+1 =

T1T2T3
~dk+1. Intuitively speaking, T1 is the transforma-

tion in k dimensions and T2 × T3 is the transformation in
the newly added k + 1-th dimension. It is obvious that T1

and T2 are both diagonal and invertible. For T3, though
it may not be obvious in a first glance, its inverse can be
constructed by a combination of the inverses of each subma-
trices in T3, which are diagonal and invertible. As T1, T2

and T3 are all invertible, Tk+1 is invertible and our proof is
finished.
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