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Abstract

Various methods for solving the inverse reinforcement learn-
ing (IRL) problem have been developed independently in ma-
chine learning and economics. In particular, the method of
Maximum Causal Entropy IRL is based on the perspective
of entropy maximization, while related advances in the field
of economics instead assume the existence of unobserved ac-
tion shocks to explain expert behavior (Nested Fixed Point
Algorithm, Conditional Choice Probability method, Nested
Pseudo-Likelihood Algorithm). In this work, we make previ-
ously unknown connections between these related methods
from both fields. We achieve this by showing that they all
belong to a class of optimization problems, characterized by
a common form of the objective, the associated policy and
the objective gradient. We demonstrate key computational and
algorithmic differences which arise between the methods due
to an approximation of the optimal soft value function, and
describe how this leads to more efficient algorithms. Using
insights which emerge from our study of this class of opti-
mization problems, we identify various problem scenarios and
investigate each method’s suitability for these problems.

1 Introduction
Inverse Reinforcement Learning (IRL) – the problem of in-
ferring the reward function from observed behavior – has
been studied independently both in machine learning (ML)
(Abbeel and Ng 2004; Ratliff, Bagnell, and Zinkevich 2006;
Boularias, Kober, and Peters 2011) and economics (Miller
1984; Pakes 1986; Rust 1987; Wolpin 1984). One of the most
popular IRL approaches in the field of machine learning is
Maximum Causal Entropy IRL (Ziebart 2010). While this
approach is based on the perspective of entropy maximiza-
tion, independent advances in the field of economics instead
assume the existence of unobserved action shocks to explain
expert behavior (Rust 1988). Both these approaches opti-
mize likelihood-based objectives, and are computationally
expensive. To ease the computational burden, related methods
in economics make additional assumptions to infer rewards
(Hotz and Miller 1993; Aguirregabiria and Mira 2002). While
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the perspectives these four methods take suggest a relation-
ship between them, to the best of our knowledge, we are
the first to make explicit connections between them. The de-
velopment of a common theoretical framework results in a
unified perspective of related methods from both fields. This
enables us to compare the suitability of methods for various
problem scenarios, based on their underlying assumptions
and the resultant quality of solutions.

To establish these connections, we first develop a com-
mon optimization problem form, and describe the associated
objective, policy and gradient forms. We then show how
each method solves a particular instance of this common
form. Based on this common form, we show how estimat-
ing the optimal soft value function is a key characteristic
which differentiates the methods. This difference results in
two algorithmic perspectives, which we call optimization-
and approximation-based methods. We investigate insights
derived from our study of the common optimization problem
towards determining the suitability of the methods for various
problem settings.

Our contributions include: (1) developing a unified per-
spective of methods proposed by Ziebart (2010); Rust (1987);
Hotz and Miller (1993); Aguirregabiria and Mira (2002) as
particular instances of a class of IRL optimization prob-
lems that share a common objective and policy form (Section
4); (2) explicitly demonstrating algorithmic and compu-
tational differences between methods, which arise from a
difference in soft value function estimation (Section 5); (3)
investigating the suitability of methods for various types of
problems, using insights which emerge from a study of our
unified perspective (Section 6).

2 Related Work
Many formulations of the IRL problem have been proposed
previously, including maximum margin formulations (Abbeel
and Ng 2004; Ratliff, Bagnell, and Zinkevich 2006) and
probabilistic formulations (Ziebart 2010). These methods are
computationally expensive as they require repeatedly solving
the underlying MDP. We look at some methods which reduce
this computational burden.

One set of approaches avoids the repeated computation by
casting the estimation problem as a supervised classification
or regression problem (Klein et al. 2012, 2013). Structured
Classification IRL (SC-IRL) (Klein et al. 2012) assumes a lin-
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early parameterized reward and uses expert policy estimates
to reduce the IRL problem to a multi-class classification prob-
lem. However, SC-IRL is restricted by its assumption of a
linearly parameterized reward function.

Another work that avoids solving the MDP repeatedly is
Relative Entropy IRL (RelEnt-IRL) (Boularias, Kober, and
Peters 2011). RelEnt-IRL uses a baseline policy for value
function approximation. However, such baseline policies are
in general not known (Ziebart 2010), and thus RelEnt-IRL
cannot be applied in such scenarios.

One method that avoids solving the MDP problem focuses
on linearly solvable MDPs (Todorov 2007). (Dvijotham and
Todorov 2010) present an efficient IRL algorithm, which
they call OptV, for such linearly solvable MDPs. However,
this class of MDPs assumes that the Bellman equation can
be transformed into a linear equation. Also, OptV uses a
value-function parameterization instead of a reward-function
parameterization, it can have difficulties with generalization
when it is not possible to transfer value-function parameters
to new environments (Ziebart 2010; Levine and Koltun 2012).

Recent work that avoids solving the MDP repeatedly is
the CCP-IRL approach (Sharma, Kitani, and Groeger 2017),
which observes a connection between Maximum Causal En-
tropy IRL (MCE-IRL) and Dynamic Discrete Choice mod-
els, and uses it to introduce a conditional choice probability
(CCP)-based IRL algorithm. On the other hand, our work es-
tablishes formal connections between MCE-IRL and a suite
of approximation-based methods, of which the CCP method
is but one instance. Unlike recent work, we perform a compre-
hensive theoretical and empirical analysis of each algorithm
in the context of trade-offs between the correctness of the
inferred solution and its computational burden.

3 Preliminaries
In this section, we first introduce the forward decision prob-
lem formulation used in economics literature. We then fa-
miliarize the reader with the inverse problem of interest, i.e.,
inferring the reward function, and the associated notation.

The Dynamic Discrete Choice (DDC) model is a dis-
crete Markov Decision Process (MDP) with action shocks.
A DDC is represented by the tuple (S,A, T, r, γ, E , F ). S
and A are a countable sets of states and actions respec-
tively. T : S × A × S → [0, 1] is the transition function.
r : A× S → R is the reward function. γ is a discount factor.
Distinct from the MDP, each action has an associated “shock”
variable ε ∈ E , which is unobserved and drawn from a distri-
bution F over E . The vector of shock variables, one for each
action, is denoted ε. The unobserved shocks εa account for
agents that sometimes take seemingly sub-optimal actions
(McFadden et al. 1973). For the rest of this paper, we will
use the shorthand p′ for transition dynamics T (s′|s, a) and
softmaxf(a) = exp f(a)/

∑
a exp f(a).

The Forward Decision Problem: Similar to reinforce-
ment learning, the DDC forward decision problem in state
(s, ε) is to select the action a that maximizes future ag-
gregated utility: E [

∑
t γ

t (r(st, at,θ) + εat) | (s, ε)] where
the state-action reward function is parametrized by θ. (Rust
1988) describes the following Bellman optimality equation

for the optimal value function V ∗θ (s, ε):

V ∗θ (s, ε)

= max
a∈A

{
r(s, a, θ) + εa + γEs′∼p′,ε′ [V ∗θ (s′, ε′)]

}
. (1)

The optimal choice-specific value is defined as Q∗θ(s, a) ,
r(s, a, θ) + Es′∼p′,ε′ [V ∗θ (s′, ε′)]. Then:

V ∗θ (s, ε) = maxa∈A
{
Q∗θ(s, a) + εa

}
. (2)

Solution: The choice-specific value Q∗θ(s, a) is the fixed
point of the contraction mapping Λθ (Rust 1988):

Λθ(Q)(s, a)

= r(s, a, θ) + γEs′∼p′,ε′
[
max
a′∈A

{
Q(s′, a′) + εa′

}]
. (3)

We denote the indicator function as I{}. From (2), the optimal
policy at (s, ε) is given by:

π(a|s, ε) = I {a = arg maxa′∈A {Q∗θ(s, a′) + εa′}} . (4)

Therefore, πθ(a|s) = Eε [π(a|s, ε)] is the optimal choice
conditional on state alone. πθ is called the conditional choice
probability (CCP). Notice, πθ has the same form as a policy
in an MDP.
The Inverse Decision Problem: The inverse problem, i.e.,
IRL in machine learning (ML) and structural parameter esti-
mation in econometrics, is to estimate the parameters θ of a
state-action reward function r(s, a, θ) from expert demonstra-
tions. The expert follows an unknown policy πE(a|s). A state-
action trajectory is denoted: (s,a) = (s0, a0, ..., sT ). The
expert’s distribution over trajectories is given by PE(s,a).
Considering a Markovian environment, the product oNf
transition dynamics terms is denoted P (sT ||aT−1) =∏T
τ=0 P (sτ |sτ−1, aτ−1), and the product of expert policy

terms is denoted: πE(aT ||sT ) =
∏T
τ=0 πE(aτ |sτ ). The ex-

pert distribution is PE(s,a) = πE(aT ||sT ) P (sT ||aT−1).
Similarly, for a policy πθ dependent on reward parameters θ,
the distribution over trajectories generated using πθ is given
by Pθ(s,a) = πθ(aT ||sT ) P (sT ||aT−1).

4 A Unified Perspective
In order to compare various methods of reward parameter
estimation that have been developed in isolation in the fields
of economics and ML, it is important to first study their con-
nections and commonality. To facilitate this, in this section,
we develop a unified perspective of the following methods:
Maximum Causal Entropy IRL (MCE-IRL) (Ziebart 2010),
Nested Fixed Point Algorithm (NFXP) (Rust 1988), Condi-
tional Choice Probability (CCP) (Hotz and Miller 1993), and
Nested Pseudo-Likelihood Algorithm (NPL) (Aguirregabiria
and Mira 2002).

To achieve this, we first describe a class of optimization
problems that share a common form. While the methods we
discuss were derived from different perspectives, we show
how each method is a specific instance of this class. We
characterize this class of optimization problems using a com-
mon form of the objective, the associated policy πθ and the
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objective gradient. In subsequent subsections, we discuss
the critical point of difference between the algorithms: the
explicit specification of a policy π̃.
Objective Form: The common objective in terms of θ is
to maximize expected log likelihood L(θ) of trajectories gen-
erated using a policy πθ , under expert distribution PE(s,a):

L(θ) = EPE(s,a) [logPθ(s,a)] . (5)

Since transition dynamics P (sT ||aT−1) do not depend on θ,
maximizing L(θ) is the same as maximizing g(θ), i.e., the
expected log likelihood of πθ(aT ||sT ) under PE(s,a):

g(θ) = EPE(s,a)

[
log πθ(aT ||sT )

]
= EPE(s,a) [

∑
τ log πθ(aτ |sτ )] . (6)

Policy Form: The policy πθ in objective (6) has a general
form defined in terms of the state-action “soft” value function
Qπ̃θ(s, a) (Haarnoja et al. 2017), under some policy π̃.

Qπ̃θ(s, a)

= r(s, a, θ) + Es′,a′∼π̃
[
Qπ̃θ(s′, a′)− log π̃(a′|s′)

]
, (7)

πθ(a|s) = softmax Qπ̃θ(s, a). (8)

This policy form guarantees that πθ is an improvement over
π̃ in terms of soft value, i.e., Qπθ

θ (s, a) ≥ Qπ̃θ(s, a), ∀(s, a)
(Haarnoja et al. 2018). In subsequent sections, we explicitly
define π̃ in the context of each method.
Gradient Form: With this policy form (8), the gradient
of the objective (6) is given by:

∂g
∂θ =

∑
τ
EPE(s1:τ ,a1:τ )

[
∂Qπ̃θ (sτ ,aτ )

∂θ

−
∑
a′
πθ(a′|sτ )

∂Qπ̃θ (sτ ,a
′)

∂θ

]
. (9)

Proof: Sanghvi et al. 2021 (Appendix A.1).
The general forms we detailed above consider no discounting.
In case of discounting by factor γ, simple modifications apply
to the objective, soft value and gradient (6, 7, 9).
Details: Sanghvi et al. 2021 (Appendix A.2).
We now show how each method is a specific instance of
the class of optimization problems characterized by (6-9).
Towards this, we explicitly specify π̃ in the context of each
method. We emphasize that, in order to judge how suitable
each method is for any problem, it is important to understand
the assumptions involved in these specifications and how
these assumptions cause differences between methods.

4.1 Maximum Causal Entropy IRL and Nested
Fixed Point Algorithm

MCE-IRL (Ziebart 2010) and NFXP (Rust 1988) originated
independently in the ML and economics communities respec-
tively, but they can be shown to be equivalent. NFXP (Rust
1988) solves the DDC forward decision problem for πθ , and
maximizes its likelihood under observed data. On the other
hand, MCE-IRL formulates the estimation of θ as the dual
of maximizing causal entropy subject to feature matching
constraints under the observed data.

NFXP: Under the assumption that shock values εa are
i.i.d and drawn from a TIEV distribution: F (εa) = e−e

−εa ,
NFXP solves the forward decision problem (Section 3). At
the solution, the CCP:

πθ(a|s) = softmax Q∗θ(s, a), (10)

where Q∗θ(s, a) is the optimal choice-specific value function
(3). We can show Q∗θ is the optimal soft value, and, conse-
quently, πθ is optimal in the soft value sense.
Proof: Sanghvi et al. 2021 (Appendix A.3).
To estimate θ, NFXP maximizes the expected log likelihood
of trajectories generated using πθ (10) under the expert dis-
tribution. We can show the gradient of this objective is:

EPE(s,a)

[∑
t

∂r(st,at,θ)
∂θ

]
− EPθ(s,a)

[∑
t

∂r(st,at,θ)
∂θ

]
. (11)

Proof: Sanghvi et al. 2021 (Appendix A.4).
MCE-IRL: (Ziebart 2010) estimates θ by following the
dual gradient:

EPE(s,a) [
∑
t f(st, at)]− EPθ(s,a) [

∑
t f(st, at)] , (12)

where f(s, a) is a vector of state-action features, and
EPE(s,a) [

∑
t f(st, at)] is estimated from expert data. The

reward is a linear function of features r(s, a, θ) = θT f(s, a),
and the policy πθ(a|s) = softmax Qπθ

θ (s, a). This implies
πθ is optimal in the soft value sense (Haarnoja et al. 2018).
Connections: From our discussion above we see that, for
both NFXP and MCE-IRL, policy πθ is optimal in the soft
value sense. Moreover, when the reward is a linear function of
features r(s, a, θ) = θT f(s, a), the gradients (11) and (12)
are equivalent. Thus, NFXP and MCE-IRL are equivalent.
We now show that both methods are instances of the class
of optimization problems characterized by (6-9). From the
discussion above, πθ(a|s) = softmax Qπθ

θ (s, a). Compar-
ing this with the forms (7, 8), for these methods, π̃ = πθ.
Furthermore, by specifying π̃ = πθ, we can show that the
gradients (11, 12) are equivalent to our objective gradient (9)
(Proof: Sanghvi et al. 2021 (Appendix A.5)). From this we
can conclude NFXP and MCE-IRL are solving objective (6).
Computing Q∗θ: For NFXP and MCE-IRL, every gradi-
ent step requires the computation of optimal soft value Q∗θ.
The policy πθ (10) is optimal in the soft value sense. Q∗θ is
computed using the following fixed point iteration. This is a
computationally expensive dynamic programming problem.

Q(s, a)←r(s, a, θ) + γEs′∼p′ [log
∑
a′ expQ(s′, a′)] (13)

4.2 Conditional Choice Probability Method
As discussed in Section 4.1, NFXP and MCE-IRL require
computing the optimal soft value Q∗θ (3) at every gradient
step, which is computationally expensive. To avoid this, the
CCP method (Hotz and Miller 1993) is based on the idea
of approximating the optimal soft value Q∗θ . To achieve this,
they approximate Q∗θ ≈ Qπ̂Eθ , where Qπ̂Eθ is the soft value
under a simple, nonparametric estimate π̂E of the expert’s
policy πE . The CCP πθ (10) is then estimated as:

πθ(a|s) = softmax Qπ̂Eθ (s, a) (14)
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In order to estimate parameters θ, the CCP method uses
the method of moments estimator (Hotz and Miller 1993;
Aguirregabiria and Mira 2010):

EPE(s,a) [
∑
τ

∑
a F(sτ , a) (I{aτ = a} − πθ(a|sτ ))]

= 0, (15)

where F(s, a) =
∂Q

π̂E
θ (s,a)

∂θ (Aguirregabiria and Mira 2002).
An in-depth discussion of this estimator may be found in
(Aguirregabiria and Mira 2010).
Connections: We show that CCP is an instance of our class
of problems characterized by (6-9). Comparing (14) with (7,
8), for this method, π̃ = π̂E . Further, by specifying π̃ = π̂E ,
we obtain F(s, a) =

∂Qπ̃θ (s,a)
∂θ . From (15):∑

τ EPE(s1:τ ,a1:τ )

[
∂Qπ̃θ (sτ ,aτ )

∂θ −
∑
a πθ(a|sτ )

∂Qπ̃θ (sτ ,a)
∂θ

]
= 0 (16)

Notice that this is equivalent to setting our objective gradient
(9) to zero. This occurs at the optimum of our objective (6).

We highlight here that the CCP method is more compu-
tationally efficient compared to NFXP and MCE-IRL. At
every gradient update step, NFXP and MCE-IRL require
optimizing the soft value Q∗θ (13) to obtain πθ (10). On the
other hand, the CCP method only improves the policy πθ
(14), which only requires updating the soft value Qπ̂Eθ . We
show in Section 5 how this is more computationally efficient.

4.3 Nested Pseudo-Likelihood Algorithm
Unlike the CCP method which solves the likelihood objective
(6) once, NPL is based on the idea of repeated refinement
of the approximate optimal soft value Q∗θ. This results in a
refined CCP estimate (10, 14), and, thus, a refined objective
(6). NPL solves the objective repeatedly, and its first iteration
is equivalent to the CCP method. The authors (Aguirregabiria
and Mira 2002) prove that this iterative refinement converges
to the NFXP (Rust 1988) solution, as long as the first estimate
π̃ = π̂E is “sufficiently close” to the true optimal policy in
the soft value sense. We refer the reader to (Kasahara and
Shimotsu 2012) for a discussion on convergence criteria.
Connections: The initial policy π̃1 = π̂E is estimated
from observed data. Subsequently, π̃k = πk−1θ∗ , where πk−1θ∗

is the CCP under optimal reward parameters θ∗ from the
k− 1th iteration. We have discussed that NPL is equivalent to
repeatedly maximizing the objective (6), where expert policy
π̂E is explicitly estimated, and CCP πkθ (8) is derived from
refined soft value approximation Qπ̃

k

θ ≈ Q∗θ .

4.4 Summary
Commonality: In this section, we demonstrated connections
between reward parameter estimation methods, by develop-
ing a common class of optimization problems characterized
by general forms (6-9). Table 1 summarizes this section, with
specifications of π̃ for each method, and the type of computa-
tion required at every gradient step.
Differences: In Section 4.1, we discussed that the compu-
tation of the NFXP (or MCE-IRL) gradient (11) involves

Objective: g(θ) = EPE(s,a)

[∑
τ log πθ(aτ |sτ )

]
.

Policy: πθ(a|s) = softmax Qπ̃θ(s, a). Qπ̃θ is soft value. (7)

Method → MCE-IRL CCP NPLCharacteristic ↓ = NFXP

Specification πθ π̂E
π̂E ,

of π̃ π1
θ∗ ,

π2
θ∗ , ...

Gradient step Soft Value Policy im- Policy im-
computation optimization provement provement

Table 1: Summary of the common objective and policy form,
and specifications for each method.

solving the forward decision problem exactly in order to cor-
rectly infer the reward function. This requires computing a
policy π̃ = πθ that is optimal in the soft value sense. On the
other hand, we discussed in Sections 4.2-4.3 that the computa-
tion of the CCP and NPL gradient involves an approximation
of the optimal soft value. This only requires computing the
policy πθ that is an improvement over π̃ in the soft value
sense. This insight lays the groundwork necessary to com-
pare the methods. The approximation of the soft value results
in algorithmic and computational differences between the
methods, which we make explicit in Section 5. Approximat-
ing the soft value results in a trade-off between correctness
of the inferred solution and its computational burden. The
implication of these differences (i.e., approximations) on the
suitability of each method is discussed in Section 6.

5 An Algorithmic Perspective
In this section, we explicitly illustrate the algorithmic differ-
ences that arise due to differences in the computation of the
soft value function. The development of this perspective is
important for us to demonstrate how, as a result of approx-
imation, NPL has a more computationally efficient reward
parameter update compared to MCE-IRL.
Optimization-based Methods: As described in Section
4.1, NFXP and MCE-IRL require the computation of the
optimal soft value Q∗θ (13). Thus, we call these approaches
“optimization-based methods” and describe them in Alg. 1.
We define the future state occupancy for s′ when following
policy π: Occπ(s′) =

∑
t P

π (st = s′). The gradient (11)
can be expressed in terms of occupancy measures:

µπ̂E =
∑
s′

Occπ̂E (s′)Ea′∼π̂E
[
∂r(s′,a′,θ)

∂θ

]
, (17)

µπθ =
∑
s′

Occπθ (s′)Ea′∼πθ

[
∂r(s′,a′,θ)

∂θ

]
(18)

∂g
∂θ = µπ̂E − µπθ (19)

Approximation-based Methods: As described in Sec-
tions (4.2, 4.3), CCP and NPL avoid optimizing the soft
value by approximating Q∗θ ≈ Qπ̃θ using a policy π̃. We
call these approaches “approximation-based methods” and
describe them in Algorithm 2. Note, K = 1 is the CCP
Method. We define the future state occupancy for s′ when
beginning in (s, a) and following policy π : Occπ(s′|s, a) =
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Algorithm 1: Optimization-based Method
Input: Expert demonstrations.
Result: Reward params. θ∗, policy πθ∗ .

1 Estimate expert policy π̂E .
2 Evaluate Occπ̂E (s′) ∀s′.
3 repeat (update reward)
4 Optimize soft value Q∗θ . (13).
5 Compute πθ = softmax Q∗θ(s, a). (10).
6 Evaluate µπθ . (17).
7 Update gradient ∂g∂θ . (19).
8 Update θ ← θ + α ∂g∂θ .
9 until θ not converged

10 πθ∗ ← πθ , θ∗ ← θ.

∑
t P

π (st = s′ | (s0, a0) = (s, a)). (7, 9) can be written in
terms of occupancy measures as follows:

Qπ̃θ(s, a) = r(s, a, θ) +
∑
s′ Occπ̃(s′|s, a)Ea′∼π̃

[
r(s′, a′,θ)− log π̃(a′|s′)

]
, (20)

∂Qπ̃θ (s,a)
∂θ = ∂r(s,a,θ)

∂θ

+
∑
s′ Occπ̃(s′|s, a)Ea′∼π̃

[
∂r(s′,a′,θ)

∂θ

]
(21)

∂g
∂θ =

∑
s′ Occπ̂E (s′)

(
Ea′∼π̂E

[
∂Qπ̃θ (s

′,a′)
∂θ

]
− Ea′∼πθ

[
∂Qπ̃θ (s

′,a′)
∂θ

] )
. (22)

Reward Update: NPL has a very efficient reward param-
eter update (i.e., inner) loop (Alg. 2: Lines 6-12), compared
to the update loop of MCE-IRL (Alg. 1: Lines 3-9). Each
gradient step in MCE-IRL (Alg. 1) involves expensive dy-
namic programming for: (1) optimizing soft value (Line
4, (13)), and (2) evaluating µπθ by computing occupancy
measures Occπθ (s′) (Line 6, (13)). On the other hand, each
gradient step in NPL (Alg. 2) only involves: (1) updating
soft value Qπ̃θ (Line 7, (20)), and (2) updating value gradi-
ent (Line 9, (21)). Both steps can be efficiently performed
without dynamic programming, as the occupancy measures
Occπ̃(s′|s, a) can be pre-computed (Line 5). The value and
value gradient (20, 21) are linearly dependent on reward and
reward gradient respectively, and can be computed in one
step using matrix multiplication. We elaborate this point in
Sanghvi et al. 2021 (Appendix B). The gradient update step
in both algorithms (Alg. 1: Line 7, Alg. 2: Line 10) has the
same computational complexity, i.e., linear in the size of the
environment.

The outer loop in NPL (Alg. 2: Lines 4-14) converges in
very few iterations (< 10) (Aguirregabiria and Mira 2002).
Although computing occupancy measures Occπ̃(s′|s, a)
(Line 5) requires dynamic programming, the number of outer
loop iterations is many order of magnitudes fewer than the
number of inner loop iterations. Since Alg. 2 avoids dynamic
programming in the inner reward update loop, approximation-
based methods are much more efficient than optimization-
based methods (Alg. 1). We make explicit the comparison of
computational load in Sanghvi et al. 2021 (Appendix B).

Algorithm 2: Approximation-based method
Input: Expert demonstrations.
Result: Reward params. θ∗, policy πθ∗ .

1 Estimate expert policy π̂E .
2 Initialize π̃ ← π̂E .
3 Evaluate Occπ̂E (s′) ∀s′.
4 for k = 1 ... K do (update policy)
5 Evaluate Occπ̃(s′|s, a) ∀(s′, s, a).
6 repeat (update reward)
7 Update value Qπ̃θ . (20).
8 Improve πθ = softmax Qπ̃θ(s, a). (8).

9 Update ∂Qπ̃θ
∂θ . (21).

10 Update gradient ∂g∂θ . (22).
11 Update θ ← θ + α ∂g∂θ .
12 until θ not converged
13 π̃ ← πθ , πθ∗ ← πθ , θ∗ ← θ.
14 end

6 Suitability of Methods
In Section 5, we made explicit the computational and algo-
rithmic differences between optimization (MCE-IRL, NFXP)
and approximation-based (CCP, NPL) methods. While
approximation-based methods outperform optimization-
based methods in terms of computational efficiency, the ap-
proximation the soft value introduces a trade-off between
the correctness of the inferred solution and its computational
burden. For some types of problems, trading the quality of
the inferred reward for computational efficiency is unreason-
able, so optimization-based methods are more suitable. Using
theory we developed in Section 4, in this section, we develop
hypotheses about the hierarchy of methods in various types
of problem situations, and investigate each hypothesis using
an example. We quantitatively compare the methods using
the following metrics (lower values are better):
• Negative Log Likelihood (NLL) evaluates the likelihood

of the expert path under the predicted policy πθ∗, and is
directly related to our objective (5).

• Expected Value Difference (EVD) is value difference of
two policies under true reward: 1) optimal policy under
true reward and 2) optimal policy under output reward θ∗.

• Stochastic EVD is the value difference of the following
policies under true reward: 1) optimal policy under the
true reward and 2) the output policy πθ∗. While a low
Stochastic EVD may indicate a better output policy πθ∗ ,
low EVD may indicate a better output reward θ∗.

• Equivalent-Policy Invariant Comparison (EPIC)
(Gleave et al. 2020) is a recently developed metric that
measures the distance between two reward functions
without training a policy. EPIC is shown to be invariant
on an equivalence class of reward functions that always
induce the same optimal policy. The EPIC metric ∈ [0, 1]
with lower values indicates similar reward functions.

EVD and EPIC evaluate inferred reward θ∗, while NLL and
Stochastic-EVD evaluate the inferred policy πθ∗ . In addition
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True Reward
Path Obstacle Goal

Figure 1: Obstacleworld. Leftmost: True reward. Graphs show comparative performance (metrics vs. number of trajectories).

to evaluating recovered reward, evaluating πθ∗ is important
because different rewards might induce policies that perform
similarly well in terms of our objective (6). We provide ex-
perimental details in Sanghvi et al. 2021 (Appendices C, D).
Method Dependencies: From Section 4, we observe that the
MCE-IRL gradient (12) depends on the expert policy esti-
mate π̂E only through the expected feature count estimate
EP̂E(s,a) [

∑
t f(st, at)]. In non-linear reward settings, the de-

pendence is through the expected reward gradient estimate
EP̂E(s,a) [

∑
t ∂r(st, at,θ)/∂θ]. On the other hand, the NPL

(or CCP) gradient (16) depends on the expert policy estimate
for estimating a state’s importance relative to others (i.e.,
state occupancies under the estimated expert policy), and for
approximating the optimal soft value.

From these insights, we see that the suitability of a method
for a problem depends on: (1) the amount of expert data, and
on (2) how “good” the resultant estimates and approxima-
tions are in that scenario. In the following subsections, we
introduce different problem scenarios, each characterized by
the goodness of these estimates, and investigate our hypothe-
ses regarding each method’s suitability for those problems.

6.1 Well-Estimated Feature Counts
Scenario: We first investigate scenarios where feature
counts can be estimated well even with little expert data.
In such scenarios, the feature representation allows distinct
states to be correlated. For example, the expert’s avoidance of
any state with obstacles should result in identically low pref-
erence for all states with obstacles. Such a scenario would
allow expert feature counts to be estimated well, even when
expert data only covers a small portion of the state space.
Hypothesis: Optimization-based methods will perform bet-
ter than approximation-based methods in low data regimes,
and converge to similar performance in high data regimes.
Reasons: If feature counts can be estimated well from small
amounts of data, MCE-IRL (= NFXP) is expected to converge
to the correct solution. This follows directly from method
dependencies outlined above. On the other hand, NPL (and
CCP) require good estimates of a state’s relative importance
and soft value in order to perform similarly well. Since
low data regimes do not allow these to be well-estimated,
approximation-based methods are expected to perform as
well as optimization-based ones only in high data regimes.
Experiment: We test our hypothesis using the Obstacle-
world environment (Figure 1). We use three descriptive fea-
ture representations (path, obstacle, goal) for our states. Since

this representation is simultaneously informative for a large
set of states, we can estimate feature counts well even with lit-
tle expert data. The true reward is a linear function of features
(path : 0.2, obstacle : 0.0, goal : 1.0).
In Figure 1, we observe that in low data-regimes (i.e. with few
trajectories) MCE-IRL performs well on all metrics. How-
ever, with low expert data, CCP and NPL perform poorly
(i.e., high NLL, Stochastic EVD, EPIC). With more expert
data, CCP method and NPL converge to similar performance
as MCE-IRL. This is in agreement with our hypothesis.

6.2 Correlation of Feature Counts and Expert
Policy Estimates

Scenario: We now investigate the scenario where the good-
ness of feature count and expert policy estimates becomes
correlated. In other words, a high amount of expert data is
required to estimate feature counts well. This scenario may
arise when feature representations either (1) incorrectly dis-
criminate between states, or (2) are not informative enough
to allow feature counts to be estimated from little data.
Hypothesis: Both optimization-based and approximation-
based methods will perform poorly in low expert data
regimes, and do similarly well in high expert data regimes.
Reasons: In this scenario, the goodness of feature count,
relative state importance and optimal soft value estimates is
similarly dependent on the amount of expert data. Thus we
expect, optimization- and approximation-based methods to
perform poorly in low data regimes, and similarly well in
high data regimes.
Experiment: We investigate our hypothesis in the Moun-
tainCar environment, with a feature representation that dis-
criminates between all states. Thus, state features are defined
as one-hot vectors. MountainCar is a continuous environment
where the state is defined by the position and velocity of the
car. The scope of this work is limited to discrete settings with
known transition dynamics. Accordingly, we estimate the
transition dynamics from continuous expert trajectories using
kernels, and discretize the state space to a large set of states
(104). We define the true reward as distance to the goal.
In Figure 2, we observe that in low-data regimes all meth-
ods perform poorly with high values for all metrics. As the
amount of expert data increases, the performance of each
method improves. More importantly, around the same num-
ber of trajectories (≈ 400) all methods perform equally well,
with a similar range of values across all metrics. This is in
agreement with our hypothesis.
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True Reward

Figure 2: MountainCar. Leftmost: True reward. Lighter colors indicate higher reward. Graphs show comparative performance.

True Reward

Figure 3: Objectworld. Leftmost: True reward in 162 grid with 4 colors. Dark and light colors indicate low and high reward
respectively. Red arrows represent the optimal policy. Graphs show comparative performance in 322 grid with 4 colors.

MCE-IRL NPL CCP Method

Figure 4: Objectworld. Recovered reward in 162 grid, 4 colors
with 200 expert trajectories as input.

6.3 Deep Reward Representations
Scenario: We investigate scenarios where rewards are deep
neural network representations of state-action, as opposed to
linear representations explored in previous subsections.
Hypothesis: Optimization-based methods either perform
better or worse than the approximation-based methods in low
data regimes and perform similarly well in high data regimes.
Reasons: From (11), the gradient of optimization-based
methods depends on the expert policy estimate through the
expected reward gradient. Comparing (11) and (12), we can
think of the vector of reward gradients ∂r(st, at,θ)/∂θ as
the state-action feature vector. During learning, since this
feature vector is dependent on the current parameters θ, the
statistic EP̂E(s,a) [

∑
t ∂r(st, at,θ)/∂θ] is a non-stationary

target in the MCE-IRL gradient. In the low data regime, at
every gradient step, this could either be well-estimated (simi-
lar to Section 6.1) or not (similar to Section 6.2), depending
on the capacity and depth of the network. On the other hand,
in high data regimes, we can expect reward gradient, relative
state importance and soft value to all be estimated well, since

the expert policy can be estimated well.
Experiment: We investigate the hypothesis using the Ob-
jectworld environment (Wulfmeier, Ondruska, and Posner
2015) which consists of a non-linear feature representation.
Objectworld consists of an N2 grid and randomly spread
through the grid are objects, each with an inner and outer
color chosen from C colors. The feature vector is a set of
continuous values x ∈ R2C , where x2i and x2i+1 are state’s
distances from the i’th inner and outer color.
From Figure 3, in low-data regimes, all methods perform
poorly with high values for all metrics. With more expert
data, the performance for all methods improve and converge
to similar values. Similar results for MCE-IRL were observed
in (Wulfmeier, Ondruska, and Posner 2015). Consistent with
our hypothesis, in this environment we observe no difference
in the performance of optimization- and approximation-based
methods in both low and high data regimes.

6.4 Discussion
In Sections 6.1-6.3, we described three problem scenar-
ios and discussed the performance of optimization- and
approximation-based methods. We now discuss the suitability
of methods for these scenarios.
High data regimes: In all scenarios we discussed, in high
data regimes, both optimization- and approximation-based
methods perform similarly well on all metrics (Figures 1-
3). Qualitatively, all methods also recover similar rewards
in high data regimes (Figures 4, 7 (Appendix D, Sanghvi
et al. 2021)). This is because, as stated in Section 4, NPL con-
verges to NFXP when the expert policy is well-estimated, i.e.,,
when more data is available. Further, approximation-based
methods are significantly more computationally efficient than
optimization-based methods (Section 5). This finding is em-
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Settings MCE-IRL NPL CCP Method

MountainCar

State Size: 1002 4195.76 589.21 (×7) 193.95 (×22)

ObjectWorld

Grid: 162, C: 4 32.21 4.18 (×8) 2.40 (× 13)
Grid: 322, C: 2 638.83 30.63 (×21) 14.00 (× 46)
Grid: 322, C: 4 471.64 29.85 (×16) 11.19 (× 42)
Grid: 642, C: 4 10699.47 340.55 (×31) 103.79 (× 103)

Table 2: Training time (secs) averaged across multiple runs.
Numbers in brackets indicate speed up against MCE-IRL.

pirically supported in Table 2. From these observations, we
conclude that approximation-based methods are more suit-
able than optimization-based methods in high data regimes.
Low data regimes: In Sections 6.2-6.3, we introduced
two scenarios where approximation- and optimization-based
methods both perform similarly (poorly) in low-data regimes
(Figures 2, 3). Since approximation-based methods always
outperform optimization-based methods in terms of computa-
tional efficiency (Table 2), in these scenarios, approximation-
based methods are more suitable. On the other hand,
optimization-based methods are more suitable when feature
counts can be estimated well from little data (Section 6.1).

6.5 Conclusions
In this work, we explicitly derived connections between four
methods of reward parameter estimation developed indepen-
dently in the fields of economics and ML. To the best of our
knowledge, we are the first to bring these methods under a
common umbrella. We achieved this by deriving a class of
optimization problems, of which each method is a special
instance. We showed how a difference in the estimation of
the optimal soft value results in different specifications of
the explicit policy π̃, and used our insights to demonstrate
algorithmic and computational differences between meth-
ods. Using this common form we analyzed the applicability
of each method in different problem settings. Our analysis
shows how approximation-based methods are superior to
optimization-based methods in some settings and vice-versa.

Additionally, approximation-based approaches have been
applied to situations with continuous state or action spaces
(Altuğ and Miller 1998). Such settings are outside of the
scope of this paper and we leave their discussion for future
work. In this work, our goal is to explicitly demonstrate con-
nections in the discrete problem setting, to facilitate further
inter-disciplinary work in this area.
Future Work: Finally, we touch upon interesting directions
to explore based on the theoretical framework developed in
this work. The first of these is leveraging our derived connec-
tions to investigate approximation-based methods from an
optimization perspective. Specifically, we propose to work
on the characterization of the primal-dual optimization forms
of these methods. Since many IRL methods (including adver-
sarial imitation learning) use an optimization perspective, we
believe this will not only lead to new algorithmic advances,

but will also shed more light on the similarities and differ-
ences between our approaches and more recent IRL methods.
Another direction we plan to explore is to use our explicit
algorithmic perspectives for practical settings where MCE-
IRL is intractable, such as problems with very large state
spaces, e.g. images in activity forecasting. For such situa-
tions, our work details how approximation-based methods
can be applied in a principled manner when expert data is
readily available. We hope to apply our insights to problems
such as activity forecasting, social navigation and human
preference learning.
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