The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

Shuffling Recurrent Neural Networks

Michael Rotman and Lior Wolf

The School of Computer Science, Tel Aviv University
rotmanmi @post.tau.ac.il, wolf@cs.tau.ac.il

Abstract

We propose a novel recurrent neural network model, where the
hidden state h; is obtained by permuting the vector elements
of the previous hidden state h;—; and adding the output of a
learned function 3 (z) of the input z; at time ¢. In our model,
the prediction is given by a second learned function, which is
applied to the hidden state s (h;). The method is easy to imple-
ment, extremely efficient, and does not suffer from vanishing
nor exploding gradients. In an extensive set of experiments,
the method shows competitive results, in comparison to the
leading literature baselines. We share our implementation at
https://github.com/rotmanmi/SRNN.

Introduction

Recurrent Neural Networks (RNN) architectures have been
successful in solving sequential or time dependent problems.
Such methods maintain a latent representation, commonly
referred to as the “hidden state”, and apply the same learned
functions repeatedly to the input at each time step, as well as
to the current hidden state.

A well-known challenge with RNNs is that of exploding
or vanishing gradients. The various methods devised in order
to solve this problem can be roughly divided into two groups.
The first group utilizes a gating mechanism to stabilize the
gradient flow between subsequent hidden states (Hochreiter
and Schmidhuber 1997; Cho et al. 2014), whereas the second
group focuses on preserving the norm of the hidden states
by employing constraints on the family of matrices used as
the network’s parameters (Arjovsky, Shah, and Bengio 2016;
Henaff, Szlam, and LeCun 2016).

An alternative view of the problem of exploding and van-
ishing gradients considers it as the symptom of a deeper issue
and not as the root cause. Current RNN architectures perform
a matrix multiplication operation, with learned weights, over
previously seen hidden states during each time step. There-
fore, inputs appearing in different times are processed using
different powers of the weight matrices (with interleaving
non-linearities): the first input of a sequence of length T is
processed by the same learned sub-network 7' times, whereas
the last input at time 7" is processed only once. This creates
an inherent gap in the way that each time step influences the
network weights during training.

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

9428

In this work, we propose an alternative RNN framework.
Instead of using a learned set of parameters to determine
the transition between subsequent hidden states, our method
uses a parameter-free shift mechanism, in order to distinguish
between inputs fed at different times. This shift mechanism
forms an orthogonal matrix operation, and is, therefore, not
prone to the gradient explosion or to its vanishing. Further-
more, the various time steps are treated in a uniform manner,
leading to an efficient and perhaps more balanced solution.
This allows us, for example, to solve problems with much
larger sequence lengths than reported in the literature.

Our experiments show that our Shuffling Recurrent Neural
Network (SRNN) is indeed able to tackle long-term memo-
rization tasks successfully, and shows competitive results, in
comparison to the current state of the art of multiple tasks.
SRNN is elegant, easy to implement, efficient, and insensitive
to its hyperparameters.

Background and Related Work
RNNs have been the architecture of choice, when solving
sequential tasks. The most basic structure, which we refer
to as the vanilla RNN, updates at each time a hidden state
vector h; using an input x,

ht =0 (Wlht—l —+ ngt) = O'(Zt) y (1)

where o is a non-linear activation function, such as tanh or
ReLU. Given a sequence of length 7', {xt}tT 1> computing
the gradients of a loss function, £, w.r.t to W7, avff: , requires
backpropagation throughout all the hidden states {ht}thl,

oL Ohy oL
Z Ohy OW, — 2= Oh,” (et)
oL (’)h,,/ 8}1,/ 0hi+1 —

t/
where 2£ and =TIl

tht o (zl)Wl Depending on the max1mal eigenvalue of
W1, the repeated multiplication by W1 in % may lead to

exponential growth or decay in z- when 7" > 1.

Many of the successful RNN methods utilize a gating
mechanism, where the hidden state h; can be either sup-
pressed or scaled, depending on a function of the previous
hidden state and the input. Among these solutions, there
is the seminal Long-Short Term Memory network (LSTM)

Zt’—tJrl Oh, Ohy dh;

(Hochreiter and Schmidhuber 1997) that utilizes a gating
mechanism together with a memory cell, the powerful Gated
Recurrent Unit (GRU) (Cho et al. 2014), and the recent Non-
Saturating Recurrent Unit (NRU) (Chandar et al. 2019) that
makes use of a non-saturating function, such as a ReLU, for
the activation function. These units often make use of a gra-
dient clipping scheme while training, since they contain no
inherent mechanism to deal with exploding gradients over
very long time sequences.

A second family of RNNs focuses on constraining the
weight matrix W of the RNN to be orthogonal or unitary.
Unitary Recurrent Neural Networks (uRNN) (Arjovsky, Shah,
and Bengio 2016) force a strict structure regime on the pa-
rameter matrices, thus modifying these matrices in a sub-
manifold of unitary matrices. Noting that the method neglects
some types of unitary matrices, the Full-Capacity Unitary Re-
current Neural Network (Wisdom et al. 2016) uses a weight
parameterization that spans the complete set of unitary ma-
trices, by constraining the gradient to reside on a Stiefel
manifold. EUNN (Jing et al. 2017) employs a more efficient
method in order to span this set. Another efficient approach
to optimize in this space, which is based on Householder
reflections, was proposed by Mhammedi et al. (2017), and
a Cayley transform parameterization was used in (Helfrich,
Willmott, and Ye 2018; Maduranga, Helfrich, and Ye 2019).
The recent nnRNN (Kerg et al. 2019) method parameterizes
the transformations between successive hidden states using
both a normal matrix and a non-normal one, where the first is
responsible for learning long-scale dynamics and the second
adds to the expressibility of the model.

Method

The SRNN layer contains two hidden-state processing com-
ponents, the learned network [that is comprised of fully con-
nected layers, and a fixed permutation matrix W,. At each
time step, the layer, like other RNNS, receives two input sig-
nals: the hidden state of the previous time step, h;—1 € R,
and the input at the current time step, x; € R where dj,
and d; are the dimensions of the hidden state and the input,
respectively. The layer computes the following, (we redefine
the notation, disregarding the definitions of Sec.):

hy =0 (Wphi—1 + B (1)) = 0 () , (3)

where o is the activation function (such as ReLLU or tanh),
see Fig. 1(a). The permutation operator W), reflects the time
dependency, whereas [is agnostic to the ordering of the
input. Without loss of generality, the operator can be chosen
as the shift operation that can represented by the off-diagonal
matrix

0 1 0o --- 0
0 . . .0
W, = :)
[|
1 0 -~ 0 O

Network 5 employs a two-headed structure for a self-
gating mechanism. The primary branch is composed of an
MLP f,.R%— R . The gating branch scales 3’s output by
applying a single affine layer with a sigmoid activation,

B (ze) = fr (x) © sigmoid (Wyzy + by) , 5)

9429

—0O

fr

Hidden

Hidden W

g

by

(b)

Figure 1: (a) The SRNN layer. The output of 3 is added to
the shifted version of the previous hidden state, followed by a
non-linearity, o. The output at time ¢ is obtained by a function
s that is applied to the new hidden state. (b) The structure
of network (. The primary sub-network f, is an MLP. The
gating sub-network (right branch) has a single affine layer
and a sigmoid non-linearity. The outputs of the two branches
are multiplied elementwise to produce 3’s output.

where W, € R4 *di and b, € R are the weights and bi-
ases of the gating branch. Network [is depicted in Fig. 1(b).

The output of the network at time step ¢, o, is obtained by
using a single affine layer s, o; = s (hy).

Analysis of gradient dynamics Since W, is a permu-
tation matrix, it is also orthogonal. Our method benefits from
this property, since the successive applications of W), do
not increase nor decrease the norm of the hidden state vector,
such that the gradients w.r.t the hidden state do not suffer from
an exponential growth or decay. Therefore, the method can
be applied without the use of any gradient clipping schemes.

In addition, since the operator W), is not learned, none of
weights inside the layer appear with powers greater than one
in the gradient. The gradient of the loss w.r.t a parameter S
in network f is

oL Ohy

. Z Oy By, ©
The derivative of Eq. 3 w.r.t 51@ yields a recursive equation,
Ohy Ohi—1 I (x+)
— =W,o' (2 +o' (2) 7
Expanding Eq. 7 yields the closed form,
aht o / aﬂ (xl)
o’ (z) (W,o' (25 . 8

Since W), is orthogonal, the only terms that may influence the
gradients’ growth or decay are ¢’ (2;). For most commonly
used activation functions, such as the sigmoid, tanh and
ReLU, |0’ (2;)] is bounded by 1. Therefore, one obtains

Ohy L 9B (z;)
M < AT
95| < |2 g, ®
Combining this result with Eq. 6 reveals that
86 xl
75| < Z Oh; Z - 10

Method Time complexity | Method Time complexity IS. Mtd dn MSE[S.Mtd dn, MSE[S.Mtd d, MSE|
Vanilla RNN O (T'd; 4+ T'dnd;) | uRNN O(Tdp log dy, + Tdnd;) LSTM 84 143|oRGD 128 14.6| uRNN 128 12.1
GRU O(Td? + Tdpd;) | NRU O(Td% + Tdyd;) LSTM 120 13.0 §RGD 128 14.6| uRNN 256 10.8
LSTM O(Td} + Tdnd;) | SRNN O(Tdnd; + Tkd?) LSTM 158 12.6 |{SRGD 192 14.5| uRNN 512 11.9
. EXPRNN 224 5.3 — RGD 256 14.7| NRU 128 12.3
<
Table 1: Time complexity for one gradient step for sequence g EXPRNN 322 4.4 | LSTM 128 19.8 g NRU 256 5.9
length T'. dj, and d; are the hidden state and input dimensions. g EXPRNN 425 5.5 | LSTM 256 159 |ZNRU 512 3.2
k is the number of layers in 3 SCORNN 224 8.5 2 LSTM 512 12.3 8 NRU 1024 04
" 9 SCORNN 322 7.8 |5 LSTM 1024 8.7 SRNN 128 12.7
SCORNN 425 74 |5 GRU 128 39.7| SRNN 256 7.9
Method LSTM GRU uRNN NRU SRNN EURNN 158 185 |©GRU 256 37.2| SRNN 512 4.7
PMNIST 89.50% 91.87% 91.74% 91.64% 96.43% EURNN ggg }g; ggg 1501224 ;g'g gggg ;82; (1)'2
Big pMNIST 33.60% 9.45% OOM 11.01% 90.31% . . :

Table 2: Accuracy for the pMNIST and its 4 x larger version.
OOM-=out of memory.

As % gains only linear contributions from the derivatives

of 3, it cannot explode.

For the ReLLU activation function, the gradients in Eq. 8
vanish if and only if there is a time ¢’ > t, where 2y < 0.
Since previous hidden states can only increase h;, negative
contributions only arise due to the outputs of network .
These outputs, 5(x;), approximately follow a normal distri-
bution of A/ (0,1) (He et al. 2015). An estimation for the
number of time steps it takes for a neuron in h; to vanish is
achieved by assuming that the probability of either obtaining
a negative or a positive contribution to its activation at step
tis % This scenario is known as the Gambler’s Ruin prob-
lem (Steele 2012). Although the probability of having the
hidden state vanish, p (z; < 0) = HLT, approaches one for
T > 1, the expected number of steps until this happens is 7.

Time complexity The computation of /; does not in-
volve any matrix multiplications between previous hidden-
state h;_1, and the permutation operator can be applied in
O(dp,). The most time-consuming operator is the application
of the function 3. However, since (3 does not rely on previ-
ous states, it can be applied in parallel to all time steps, thus
greatly reducing the total runtime. The time complexity, in
comparison to the literature methods, is presented in Table 1
for a minibatch of size one. It assumes that the number of
hidden units in each layer of f,. is O(d;) and that d; < d,.
Our method is the only one that is linear in dj,.

Experiments

We compare our SRNN architecture to the leading RNN archi-
tectures from the current literature. The baseline methods in-
clude: (1) a vanilla RNN, (2) LSTM (Hochreiter and Schmid-
huber 1997), (3) GRU (Cho et al. 2014), (4) uRNN (Arjovsky,
Shah, and Bengio 2016), (5) NRU (Chandar et al. 2019), and
(6) nnRNN (Kerg et al. 2019). All methods, except NRU, em-
ployed the RMSProp (Bengio 2015) optimizer with a learning
rate of 0.001 and a decay rate of 0.9. For NRU, we have used
the suggested ADAM (Kingma and Ba 2014) optimizer with
a learning rate of 0.001, and employed gradient clipping with
a norm of one. The optimization parameters for nnRNN were
taken from the official repository. For all problems involving

9430

Table 3: MSE on TIMIT. dj, is the size of the hidden state.
S=source; Mtd=Method.

Method Source Negative Log-likelihood
Vanilla RNN Bai et al. 4.05
GRU Bai et al. 3.46
LSTM Bai et al. 3.29
SRNN Our run 3.22
RNN R-transformer Our run 2.34
GRU R-transformer Our run 2.42
LSTM R-transformer Our run 2.46
SRNN R-transformer Our run 2.27

Table 4: Test set loss for the Nottingham Polyphonic Music
Modeling task.

one-hot inputs, we have added an embedding layer before
the RNN, since it benefited all methods. We believe that re-
ports, which have deemed GRU as ineffective in some of
the proposed benchmarks, did not include such a layer. The
activation function o in Eq. 3 and within the network 5 was
a ReLLU. The activation function of the vanilla RNN (denoted
‘RNN’ in the figures) was tanh.

Copying Memory Problem RNNs are often chal-
lenged by the need to take into account information that
has occurred in the distant past. The Copying Memory (Mem-
Copy) task of (Arjovsky, Shah, and Bengio 2016) was de-
signed to test the network’s ability to recall information seen
in the past. The objective is to memorize the first 10 charac-
ters of the sequence. Let A = {ai}le be a set of 8 symbols,
ag the blank symbol and a;, the delimiter symbol. We create
a sequence with the length 7"+ 20, where the first 10 symbols
are taken from A, then the next 7" — 1 symbols are the blank
symbol ag followed by a single appearance of the delimiter
symbol, a1g. The last 10 symbols are again set to the blank
symbol ag. The required output is a sequence of 7'+ 10 blank
symbols followed by the first 10 symbols taken from A of the
original sequence. The baseline model for this task predicts
some constant sequence after the appearance of the delimiter
symbol, a1g. The cross-entropy for this solution is 179 f_gg.

We trained all models with a minibatch of size 20. We
used a hidden size of d;, = 128 for all models. Network 3
contains one hidden layer with f,. = 8, i.e., f, projects the

Cross Entropy

Cross Entropy

Figure 2: Results for the MemCopy task. Shown is the cross entropy as a function of the number of training examples. Each plot

0.6

0.4

0.2

0.

¥}

o
—
S

e
s

2
1=}
St

Time Lag = 100

Time Lag = 200

T T
mRNN
—— RNN
—— LSTM

GRU
—— NRU
uRNN
—— SRNN

- - - Baseline

200 400 600 800
Training Examples (thousands)
Time Lag = 500

1,000

nRNN
—— RNN
—— LSTM

GRU
—— NRU
uRNN
—— SRNN

M\
i

800

i

Training Examples (thousands)

M ! MNNH

600

- - - Baseline

Cross Entropy

Cross Entropy

0.6

0.4

0.2

depicts the results for a different sequence length.

MSE

MSE

Figure 3: Results for the Adding problem for varying sequence lengths, noted on the top of each plot. Shown are MSE as a
function of the number of training steps for our method and the baseline methods. For a longer sequence length, we sometimes

0.5

0.4

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

Sequence Length = 100

—— RNN
—— LSTM

GRU
—— NRU
uRNN
—— SRNN
- - - Baseline

[l

s e e T VATV

200 400 600 800
Training Examples (thousands)
Time Lag = 1000

1,000

200 400 600 800

Training Examples (thousands)

1,000

Sequence Length = 200

Training steps (hundreds)

Training steps (hundreds)

——T——T1— — 0.5 — T T —
nnRNN nnRNN
—— RNN | —— RNN |
—— 1LSTM || 04 —— LSTM ||
GRU . GRU
—— NRU —— NRU |
~—— uRNN uRNN
—— SRNN 0.3 —— SRNN
- - - Baseline | |2 - - - Baseline
| @ |
=
. 0.2 | .
N 0.1 V B
MM
0 200 400 600 800 1,000 200 400 600 800 1,000
Training steps (hundreds) Training steps (hundreds)
Sequence Length = 750 Sequence Length = 1000
R — 0.5 — 71— —
—— RNN nnRNN
—— LSTM || —— RNN |
GRU || 04 —— LSTM ||
—— NRU : GRU
uRNN | ~— NRU ||
—— SRNN uRNN
- - - Baseline [0.3 —— SRNN [
= - - - Baseline
= |
=
N 0.2 |
Ll L " P ' "' Y
WU L‘ “ u J ‘ w W‘M\ 1 o1 MMWWWW M\ 8
‘ !J 0 W |
I ! L Mo | L I 0 L I \\A_A ‘\ L
0 200 400 600 800 1,000 200 400 600 800 1,000

Cross Entropy

Cross Entropy

MSE

MSE

0.2

<
—
t

o
o

e
=}
S

e
1=}
=3

0.04

0.02

0.5

0.4

0.3

0.2

0.1

0.5

0.4

0.3

0.2

0.1

0

Time Lag = 300

NN
—— RNN
—— LSTM
GRU
(it (I e "

I

uRNN
—— SRNN
- - - Baseline
It
200 600 800 1,000
Training Examples (thousands)
Time Lag = 2000

—— RNN
—— LSTM

GRU
—— NRU
uRNN
—— SRNN

- - - Baseline

W e

0

200 400 600

Training Examples (thousands)

Sequence Length = 400

—— RNN

GRU
—— NRU

—— SRNN
- - - Baseline

—— LSTM]

uRNN ||

.

o

L ‘Wulmwku‘wm;}'u"m“’h

200 600 800 1,000
Training steps (hundreds)

Sequence Length = 1500

—— RNN

GRU
—— NRU
uRNN
—— SRNN
- - - Baseline

—— LSTM]

1 . I !
200 400 600 800 1,000

Training steps (hundreds)

stopped the run of uRNN before the allocated number of training iterations, due to the slow runtime of this method.

9431

096 e

5
<
0.95 - g
.+ |h 6 E
dy = 1024, |hy,| =32 o ,
—e—dy, = 1024, f, |hy,| = 64 5
0.94— : ‘
2 3
Number of hidden layers in f,
T dy =128, hy, | =8 - >~ dy =128 , |hy, | = 32
30| = =256 |hy,| =8 == dy =256, |y | =32 |
dy =512, |hy| =8 dy =512, |hy,| =32
| ——dy= 1024, |hy,| = 8->~ dy = 1024 , |hy,| =32 |
—x—dj, = 2048 , |hy,| = 8->~ dy = 2048 , |y, | = 32
=20 B
2}
=i
e mmmmmm e mm— e —-——-—m-o -k
10F / N
et e e R
— —
0 R A LT R ¥

2
Number of hidden layers in f,

Figure 4: SRNN accuracy on pMNIST for multiple config-
urations. For each configuration, we report the accuracy for
up to three hidden layers. Dashed lines employ no gating in
network [(top). Same for TIMIT, reporting MSE. (bottom)

Runtime per dataset (sec) param
MemCpy Add pMNIST TIMIT Add
RNN 0.18 1.53 19.64 1.76 17k
LSTM 0.26 1.76 22.88 1.80 67k
GRU 0.19 1.63 17.43 1.78 50k
NRU 7.13 61.77 835.47 42.98 102k
uRNN 13.48 112.78 151054 76.10 2k
SRNN 0.07 0.77 8.59 1.27 5k

Table 5: The runtime in seconds for one training epoch for
various methods on a minibatch of 100. For MemCopy and
Adding T" = 300, SRNN’s /3 network contains one hidden
layer in f,. with 32 units. The number of samples in Mem-
Copy epoch is 1000, and the number of samples in Adding
epoch is 10000. In all cases d, = 128. The right column
reports the number of parameters in the Adding task.

input to activations in R® and then to R*28,

Fig. 2 shows the cross-entropy loss for all models for the
time lag of 7' = 100, 200, 300, 500, 1000, 2000. While most
methods are successful with sequences of length T' = 100,
only SRNN is able to deal efficiently with longer time lags. In
contrast to results reported in the literature, GRU and LSTM
are able to partially solve this problem, and they even do so
better than uRNN for sequences larger than 1000, where it
becomes unstable. However, the convergence rate of LSTM
and GRU is very slow. Note that the cross entropy obtained
for SRNN, while better than other methods, can increase as
training progresses. This is similar to what is observed in
Arjovsky, Shah, and Bengio (2016), for their uRNN method,
in the cases where uRNN is successful. nnRNN is successful
for T" < 300 and is unstable for longer sequences.

9432

Adding Problem The Adding problem was first intro-
duced in Hochreiter and Schmidhuber (1997); We follow
a close variant formulated in Arjovsky, Shah, and Bengio
(2016). The input for this task consists of two sequences of
length T' (the two are concatenated to form x;). The first
sequence contains real numbers that have been uniformly
sampled from ¢/ (0, 1). The second sequence is an indicator
sequence, that is set to 0, except for two random entries that
are set to 1. One of these entries is located in the first half of
the sequence and the other in the last half of the sequence.
The objective of this task is to output the sum of the two
numbers in the first sequence that correspond to the location
of the 1s in the second. The baseline to this task is the model
which predicts 1, no matter what the input sequences are. The
expected mean squared error (MSE) for this case is 0.167. A
hidden size of 128 was used for all methods. All models were
fed with a minibatch of 50. As in the MemCopy problem, all
the training samples were generated on the fly. Network S of
SRNN contains a hidden layer with size 8.

Fig. 3 shows the MSE for all models for sequence lengths
of T 100, 200, 400, 750, 1000, 1500. NRU, GRU and
SRNN solve this problem quickly, with NRU showing very
fast convergence. LSTM is also successful in solving this
task, but its convergence is much slower. nnRNN is able to
solve this task whenever it was able to initialize properly for
sequence sizes shorter than 200.

Permuted Sequential MNIST The permuted MNIST
(pMNIST) benchmark by Le, Jaitly, and Hinton (2015) mea-
sures the performance of RNNs, when modeling complex
long-term dependencies. In this task, each MNIST image is
reshaped into a 784-dimensional vector. This vector is fed to
the RNN one entry at a time. The objective is to classify the
image at the last time step. In order to increase the difficulty
of the problem, a fixed permutation matrix is applied to each
of the vectors before feeding them to the neural network.
The same permutation and samples were used to train and
evaluate all methods.

In this task, all models had on the order of 165k parameters,
except for SRNN with 50k parameters. We tried to initialize
nnRNN with the same initialization presented in the literature
of 800k parameters. However, it failed, so it was trained with
less. Unfortunately, we were not able to get the vanilla RNN
to converge on this task and nnRNN initialization (which
depends on a numerical solver) failed, despite multiple efforts
done using the official code of this method.

For SRNN, a hidden state size of d;, = 1024 was used, and
the function f,. of network [contained three hidden layers
of size 32. A minibatch size of 100 was used for training,
similar to the experiments performed for NRU. Models were
trained for 60 epochs. Table 2 presents the accuracy over the
test set for the epoch with the lowest cross entropy over the
validation set. As can be seen, SRNN is more effective than
all other methods. We cannot compare with IndRNN (Li et al.
2018), which uses a different split.

In order to verify that our method is not overly sensitive to
its parameters, namely the dimensionality of the hidden state
and the depth and number of hidden units per layer of net-
work f,. (the primary sub-network of 3), we tested multiple
configurations. The results are reported in Fig. 4(a) and show

t—

(d)

Figure 5: (a) The shifted hidden state of the SRNN for the Adding task. The arrows indicate the positions where the indicator
sequence in x; is set to 1. These positions split the hidden state into three regions. (b) The shifted hidden state of the SRNN for
the MemCopy task. After 7' = 10 there is almost no change to the hidden state, as expected. (c) The shifted hidden state of the
SRNN for the pMNIST task. Unlike the Adding or the MemCopy Task, the hidden state evolves through time, and the cell is
able to suppress activations or accumulate additional information. (d) Shifted hidden state of the SRNN with 2048 units for the
TIMIT task with a sequence length of 7' = 151. For better visualization, the shift that occurs in each time step has been removed.

that the method’s accuracy is stable with respect to its param-
eters. As an ablation, we also report results in which gating
is not used (the effect on the number of parameters is neg-
ligible). Without gating, performance somewhat decreases,
especially for larger networks. However, overall, gating does
not seem to be the most crucial part of the architecture.

Another version of pMNIST was tested, in which the
MNIST image is padded with zeros, so that it is four times
as large. The results are also reported in Table 2. Evidently,
our method has an advantage in this dataset, which requires a
much larger amount of memorization. Note that uRNN could
not run due to GPU memory limitations, despite an effort to
optimize the code using PyTorch JIT (Paszke et al. 2019).

TIMIT The TIMIT (Garofolo et al. 1993) speech
frames prediction task was introduced by Wisdom et al.
(2016) and later (following a fix to the way the error is com-
puted) used in Lezcano-Casado and Martinez-Rubio (2019).
The train/validation/test splits and exactly the same data used
by previous work are employed here: using 3640 utterances
for training , 192 for validating, and 400 for testing.

Table 3 reports the results of various methods, while vary-
ing the dimensionality of the hidden state, both for our
runs, and for baselines obtained from Lezcano-Casado and
Martinez-Rubio (2019). Despite some effort, we were not
able to have the published code of nnRNN run on this dataset
(failed initialization). Running uRNN for d;, > 512 was not
feasible. As can be seen, our SRNN outperforms almost all of
the baseline methods, including EXPRNN (Lezcano-Casado
and Martinez-Rubio 2019), SCORNN (Helfrich, Willmott,
and Ye 2018), EURNN (Jing et al. 2017), and RGD (Wisdom
et al. 2016). The only method that outperforms SRNN is
NRU. However, the NRU architecture has an order of mag-
nitude more parameters than our method for a given hidden
state size; NRU with d;, = 1024 has more than ten times the
number of parameters than SRNN with dj, = 2048.

The SRNN model used on TIMIT has three hidden layers
in f,, each with 32 hidden neurons in each. However, the
method is largely insensitive to these parameters, as can be

9433

seen in Fig. 4(b). Networks with 8 hidden neurons in each
layer perform slightly worse than those with 32, and the
number of layers has a small effect when the dimensionality
of the hidden state is high enough.

Music Modeling The Nottingham Polyphonic Music
dataset (Boulanger-Lewandowski, Bengio, and Vincent 2012)
is a collection of British and American Folk tunes. It is a
commonly used benchmark for the task of music modeling.
We follow the same settings and data splitting presented by
Bai, Kolter, and Koltun (2018), who applied RNNs followed
by a transformer model (Vaswani et al. 2017). The training
set consists of 694 tunes. 173 and 170 tunes are used as
the validation and test set, respectively. Evaluation is done
with the Negative Log-likelihood. For modeling with SRNN,
we use a stack of 3 SRNN layers with one hidden layer
inside network 8 with f,. = 128, and a hidden state size of
dp, = 2048. The optimizer used was Adam with a learning
rate of 0.001, where between each intermediate SRNN layer
we also apply dropout with p = 0.3 to avoid overfitting.

We further show that SRNN can be integrated as a building
block in methods that depend on a recurrent component. This
is done for the R-Transformer (Wang et al. 2019), where we
replaced the recurrent cell with SRNN. For all cell types,
the hyperparameters used are the same as in R-transformer’s
official repository. The hidden size dj, for all methods is 160,
where for SRNN, 3 contains one hidden layer with f,. = 160.

Table 4 reports the results of the various methods for music
modeling. As can be seen, SRNN outperforms all other tested
methods with and without the transformer layers.

Visualization of the hidden units Fig. 5 provides a
visualization of the hidden state of the SRNN, h;, for the
Adding, MemCopy, pMNIST and TIMIT tasks. For better
visualization, the plot has been modified so that the shift is
removed. As can be seen, the method can retain information
in cases in which memorization is needed, such as in the
Adding problem. It also has the capacity to perform non-
trivial computations in cases in which processing is needed,
such as pMNIST. SRNN does not suffer from the vanishing

Dataset Size = 100

Dataset Size = 1000

Dataset Size = 10000

— . . . — . — . . —
1} y 1} 1}
0.8 - B 0.8 - 0.8 -
I —RNN | & I
2 06} _ stma|E 06F 2 06|
§ —— GRU § §
——SRNN
= 0.4+ ‘ “ 4= 0.4+ = 0.4+
0.2 B 0.2 0.2
0 | | | | | | | | | | | | | | | 0 | | | | | | | | | | | | | | | 0 | | | | | | | | | | | | | | |
0 500 1,000 1,500 2,000 2,500 3,000 0 500 1,000 1,500 2,000 2,500 3,000 0 500 1,000 1,500 2,000 2,500 3,000
Epoch Epoch Epoch
(a) (b) (©)
Dataset Size = 100 Dataset Size = 1000 Dataset Size = 10000
T T T T T T T T LA B E— T T L) B B B R B]
1F 1F _— 1F f
'WW e
L - MA\ -
0.8 - 0.8 - 0.8 - B
z IS I RN |
2 06| 2 06} 2 06| _IsTM
3 3 3 o
0.4 0.4 041 Mm 4
02} 02} 02} : ﬂ ﬁ Vs W j mqﬂ a
0 | | | | | | | | | | | | | | | 0 | | | | | | | | | | | | | | | 0 | | | | | | | | | | | | | | |
0 500 1,000 1,500 2,000 2,500 3,000 0 500 1,000 1,500 2,000 2,500 3,000 0 500 1,000 1,500 2,000 2,500 3,000
Epoch Epoch Epoch
(d) (e ®

Figure 6: Fitting random labels for 100/1000/10000 samples of 8 x 8 MNIST patches (a-c, respectively). (d-f): same for 16 x 16.

gradient problem, since the activations are maintained over
time. SRNN is able to remove irrelevant information for the
future from the hidden state, an ability that is not required for
the addition or the Memory Copy Tasks.

Capacity Since the orthogonal matrix SRNN employs
is fixed, one may wonder if it is less expressive than other
RNNs. The experiments below indicate that the capacity of
SRNN is comparable to that of other methods with the same
number of parameters. One way to measure capacity is to
measure the ability to learn random labels (Collins, Sohl-
Dickstein, and Sussillo 2016). In our experiments, the labels
of MNIST are shuffled and a subset of NV samples is randomly
selected. To limit the sequence size, the MNIST images are
cropped to a 8 X 8 or 16 x 16 center patches, so the generated
sequences are now 64 or 256 steps long. For this experiment
the models were selected to have an order of 15K parameters.
Testing is done on the training samples, since the aim is to
measure the ability to overfit random labels.

Fig. 6(a-c) presents the classification accuracy with re-
spect to the random label for SRNN, LSTM, GRU and
the vanilla RNN architectures for different subset sizes,
N = 100, 1000, 10000 and cropped patches of size 8 x 8.
As can be seen, for N = 100, 1000, all models are able to
differentiate between the different samples, i.e., overfit to the
random labels. For the case of N = 10000, all models suc-
ceed, except for the vanilla RNN. Fig. 6(d-f) depicts a similar
experiment for the case of 16 x 16 patches. For NV = 100 and
N = 1000 all methods are able to overfit, however, SRNN

9434

shows a marked advantage in the number of required training
epochs. For N = 10,000, only SRNN and GRU are able
to (partially) overfit the data. Note that SRNN also fits the
data faster than the other methods across the experiments,
indicating that it may have a higher capacity.

Runtime Table 5 compares the runtime of our method,
for a single epoch on each listed dataset, in comparison to the
official implementations of other methods. As can be seen,
our method is much more efficient than the other methods.
In the same set of experiments, we also recorded the number
of parameters reported by PyTorch. This number is the same
across benchmarks, except for the embedding size, so the
results reported are from the Adding problem, where the
embedding size is negligible. The only method with fewer
parameters than our method is uRNN, which parameterizes
the unitary transformation very efficiently.

Conclusions

In this work, we introduce a new RNN architecture that
does not suffer from vanishing and exploding gradients. The
method employs gating only on the sub-network that pro-
cesses the input, makes use of a fixed shifting operator as an
orthogonal transformation of the hidden states, is efficient,
and has a lower complexity than other RNN architectures.
The new method obtains competitive results in comparison
with previous methods, which rely on much more sophisti-
cated machinery.

Acknowledgments

This project has received funding from the European Re-
search Council (ERC) under the European Unions Horizon
2020 research and innovation program (grant ERC CoG
725974). The authors would like to thank Amit Dekel for
valuable insights, Ameen Ali for his help with the music mod-
eling task, and Daniel Dubinsky for the CUDA-optimized
implementation. The contribution of the first author is part of
a Ph.D. thesis research conducted at TAU.

References

Arjovsky, M.; Shah, A.; and Bengio, Y. 2016. Unitary Evolu-
tion Recurrent Neural Networks. In ICML, 1120-1128.

Bai, S.; Kolter, J. Z.; and Koltun, V. 2018. An empirical
evaluation of generic convolutional and recurrent networks
for sequence modeling. arXiv preprint arXiv:1803.01271 .

Bengio, Y. 2015. Rmsprop and equilibrated adaptive learning
rates for nonconvex optimization. corr abs/1502.04390 .

Boulanger-Lewandowski, N.; Bengio, Y.; and Vincent, P.
2012. Modeling temporal dependencies in high-dimensional
sequences: Application to polyphonic music generation and
transcription. arXiv preprint arXiv:1206.6392 .

Chandar, S.; Sankar, C.; Vorontsov, E.; Kahou, S. E.; and
Bengio, Y. 2019. Towards non-saturating recurrent units
for modelling long-term dependencies. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
3280-3287.

Cho, K.; van Merriénboer, B.; Gulcehre, C.; Bahdanau, D.;
Bougares, F.; Schwenk, H.; and Bengio, Y. 2014. Learning
Phrase Representations using RNN Encoder—Decoder for
Statistical Machine Translation. In EMNLP.

Collins, J.; Sohl-Dickstein, J.; and Sussillo, D. 2016. Capacity
and trainability in recurrent neural networks. arXiv preprint
arXiv:1611.09913 .

Garofolo, J. S.; Lamel, L. E.; Fisher, W. M.; Fiscus, J. G.;
and Pallett, D. S. 1993. DARPA TIMIT acoustic-phonetic
continous speech corpus CD-ROM. NIST speech disc 1-1.1.
NASA STI/Recon technical report n 93.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2015. Delving deep
into rectifiers: Surpassing human-level performance on ima-
genet classification. In Proceedings of the IEEE international
conference on computer vision, 1026—-1034.

Helfrich, K.; Willmott, D.; and Ye, Q. 2018. Orthogonal
Recurrent Neural Networks with Scaled Cayley Transform.
In International Conference on Machine Learning, 1969—

1978.

Henaff, M.; Szlam, A.; and LeCun, Y. 2016. Orthogonal
RNNs and Long-Memory Tasks. CoRR abs/1602.06662.
URL http://arxiv.org/abs/1602.06662.

Hochreiter, S.; and Schmidhuber, J. 1997. Long Short-Term
Memory. Neural Comput. 9(8): 1735-1780. ISSN 0899-7667.
doi:10.1162/neco.1997.9.8.1735. URL http://dx.doi.org/10.
1162/neco.1997.9.8.1735.

9435

Jing, L.; Shen, Y.; Dubcek, T.; Peurifoy, J.; Skirlo, S.; LeCun,
Y.; Tegmark, M.; and Soljaci¢, M. 2017. Tunable efficient
unitary neural networks (eunn) and their application to rnns.
In Proceedings of the 34th International Conference on Ma-
chine Learning-Volume 70, 1733-1741. IMLR. org.

Kerg, G.; Goyette, K.; Touzel, M. P.; Gidel, G.; Vorontsov,
E.; Bengio, Y.; and Lajoie, G. 2019. Non-normal Recurrent
Neural Network (nnRNN): learning long time dependencies
while improving expressivity with transient dynamics. In

Advances in Neural Information Processing Systems, 13591—
13601.

Kingma, D. P,; and Ba, J. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980 .

Le, Q. V.; Jaitly, N.; and Hinton, G. E. 2015. A simple way
to initialize recurrent networks of rectified linear units. arXiv
preprint arXiv:1504.00941 .

Lezcano-Casado, M.; and Martinez-Rubio, D. 2019. Cheap
Orthogonal Constraints in Neural Networks: A Simple
Parametrization of the Orthogonal and Unitary Group. In
International Conference on Machine Learning, 3794-3803.

Li, S.; Li, W.; Cook, C.; Zhu, C.; and Gao, Y. 2018. Indepen-
dently recurrent neural network (indrnn): Building a longer
and deeper rn. In Proceedings of the IEEE conference on
computer vision and pattern recognition, 5457-5466.

Maduranga, K. D.; Helfrich, K. E.; and Ye, Q. 2019. Complex
unitary recurrent neural networks using scaled cayley trans-
form. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 33, 4528-4535.

Mhammedi, Z.; Hellicar, A.; Rahman, A.; and Bailey, J. 2017.
Efficient orthogonal parametrisation of recurrent neural net-
works using householder reflections. In Proceedings of the

34th International Conference on Machine Learning-Volume
70, 2401-2409. JMLR. org.

Paszke, A.; Gross, S.; Massa, F.; Lerer, A.; Bradbury, J.;
Chanan, G.; Killeen, T.; Lin, Z.; Gimelshein, N.; Antiga, L.;
et al. 2019. Pytorch: An imperative style, high-performance
deep learning library. In Advances in neural information
processing systems, 8026-8037.

Steele, J. M. 2012. Stochastic calculus and financial applica-
tions, volume 45. Springer Science & Business Media.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.;
Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. Attention
is all you need. In Advances in neural information processing
systems, 5998-6008.

Wang, Z.; Ma, Y.; Liu, Z.; and Tang, J. 2019. R-Transformer:
Recurrent Neural Network Enhanced Transformer. arXiv
preprint arXiv:1907.05572 .

Wisdom, S.; Powers, T.; Hershey, J. R.; Roux, J. L.; and
Atlas, L. 2016. Full-Capacity Unitary Recurrent Neural
Networks. In Proceedings of the 30th International Con-
ference on Neural Information Processing Systems, NIPS’ 16,
4887-4895. Red Hook, NY, USA: Curran Associates Inc.
ISBN 9781510838819.

