
Classifying Sequences of Extreme Length with Constant Memory
Applied to Malware Detection

Edward Raff, 1,2,3 William Fleshman, 4 Richard Zak, 1,2,3

Hyrum S. Anderson, 5 Bobby Filar, 6 Mark McLean 1

1 Laboratory for Physical Sciences, 2 Booz Allen Hamilton, 3 University of Maryland, Baltimore County
4 U.S. Army, 5 Microsoft, 6 Elastic

{edraff, rzak, mrmclea}@lps.umd.edu, {raff edward, zak richard}@bah.com, {raff.edward, richard.zak}@umbc.edu,
william.c.fleshman.mil@mail.mil, hyruma@microsoft.com, robert.filar@elastic.co

Abstract

Recent works within machine learning have been tackling in-
puts of ever-increasing size, with cybersecurity presenting se-
quence classification problems of particularly extreme lengths.
In the case of Windows executable malware detection, inputs
may exceed 100 MB, which corresponds to a time series with
T = 100, 000, 000 steps. To date, the closest approach to
handling such a task is MalConv, a convolutional neural net-
work capable of processing up to T = 2, 000, 000 steps. The
O(T) memory of CNNs has prevented further application of
CNNs to malware. In this work, we develop a new approach
to temporal max pooling that makes the required memory in-
variant to the sequence length T . This makes MalConv 116×
more memory efficient, and up to 25.8× faster to train on its
original dataset, while removing the input length restrictions
to MalConv. We re-invest these gains into improving the Mal-
Conv architecture by developing a new Global Channel Gating
design, giving us an attention mechanism capable of learning
feature interactions across 100 million time steps in an effi-
cient manner, a capability lacked by the original MalConv
CNN. Our implementation can be found at https://github.com/
NeuromorphicComputationResearchProgram/MalConv2

1 Introduction
Cybersecurity has received increased attention from machine
learning practitioners and researchers due to the number of
challenges that exist within the space. Industry datasets are
routinely measured in petabytes (Spafford 2014), have noisy
labels, are both structured and unstructured, suffer from con-
tinuous concept drift (Kantchelian et al. 2013), and adversar-
ial attacks have been well motivated as a daily occurrence
for decades (Rajab et al. 2011). In this work we are inter-
ested in the task of static malware detection, where using the
on-disk byte representation, one wishes to predict if a new
executable program is benign or malicious. Current industry
models rely heavily on domain knowledge feature extraction,
which is time consuming and expensive, and requires inti-
mate knowledge of Windows and low-level assembly and
software design. Because malware authors adapt, this feature
engineering is a continuous processes, which can require
reverse engineering effort to determine what new features

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

should be extracted. To quantify the cost of such efforts, a
single program can take weeks for experts with decades of
experience to reverse engineer (Votipka et al. 2019), so the
ability to build models that perform their own feature extrac-
tion and construction can save an enormous amount of time
if successful.

Toward this goal, we follow the approach of MalConv,
which proposed to tackle the problem of malware detection
as a time series classification problem (Raff et al. 2018). For
an input file x of T bytes in length, a neural network must
learn to produce an output label y ∈ {Benign,Malicious}.
The MalConv architecture was relatively small (≈ 1 million
parameters) but represented a meaningful malware detector
by performing convolutions over raw byte inputs. Addition-
ally, the work identified a number of challenges with this task.
In particular, their approach would process up to 2 MB of
a file—equivalent to a time series prediction problem with
T = 2, 000, 000 steps. The next longest time series task we
are aware of is only on the order of ≤ 16, 000 steps (van den
Oord et al. 2016). Due to the extreme length of raw byte in-
puts, the MalConv solution required an NVIDIA DGX-1 with
128 GB of GPU memory to train over one month of compute
time. This has made MalConv difficult to replicate, while
simultaneously neglecting the fact that 2 MB is relatively
small with respect to the distribution of observed executable
file sizes, where the tails can reach in excess of 100 MB.

In this work, we produce a solution to the high memory
cost to train MalConv, making the memory use invariant to
the length of the input — allowing us to train on data points
in excess of 200,000,000 time steps in length using a single
GPU. This reduces the memory used to train MalConv by
a factor of 116× while simultaneously providing an up to
25.8× speedup, reducing the compute requirements from a
DGX-1 down to a free Google Colab instance. Our approach
leverages the sparse gradients of temporal max pooling to cap
the memory requirement during training on long inputs. By
significantly reducing the runtime and memory constraints of
MalConv, we are able to explore more advanced architectures
for the task of time series classification. In particular, we
develop a new global channel gating (GCG) that allows us to
enhance MalConv to learn interactions of features across the
entire input space. GCG can be implemented in only 7 lines
of Python, making it easy to implement while improving the

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

9386

accuracy of the end-to-end deep malware detection model.
Although we explicitly address malware detection where long
input sequences are dramatic, our contributions are relevant
generally to deep neural networks with long input sequences,
some of which are discussed in the following section. We
also note the task of learning interactions over a sequence of
unprecedented length of intrinsically interesting from a pure
ML perspective and benefits a real-world task.

We have organized the paper as follows. In §2 we will
review the work related to MalConv, which has received
significant attention from the cybersecurity community that
motivates our research, as well as other work in the domain
of processing long input sequences. Next we will detail our
approach to making the memory cost of MalConv style archi-
tectures invariant to feature length in §3. These improvements
are necessary to make our global channel gating possible,
which we detail in §4. The results detailing our speedups and
memory improvements are presented in §5, followed by our
conclusions in §6.

2 Related Work
The desire to perform malware classification from raw bytes,
to alleviate expensive and constant feature engineering, has
long existed. This was originally based on the Normalized
Compression Distance (NCD) (Li et al. 2004), which has
found extensive use for this task (Wehner 2007; Bailey et al.
2007; Hayes, Walenstein, and Lakhotia 2008; Bayer et al.
2009; Borbely 2015; Alshahwan et al. 2015; Faridi, Srini-
vasagopalan, and Verma 2019; Menéndez et al. 2019; S. Re-
sende, Martins, and Antunes 2019; Walenstein and Lakhotia
2007). Recent works like LZJD (Raff and Nicholas 2017,
2018; Raff, Aurelio, and Nicholas 2019) and BWMD (Raff,
Nicholas, and McLean 2020) are built from compression
algorithms and useful in unsupervised settings, but are less
effective in supervised ones. We will use these methods as
baselines to compare against.

MalConv was the first proposed approach to detect mal-
ware from raw bytes, processing inputs of up to 2 MB in
length (Raff et al. 2018). Through a broad search across
network architectures, the authors report that many classical
“best practices” for neural network architectures did not apply.
For example, they found that BatchNorm prevented conver-
gence, and that a network with 1 layer of extremely wide
convolutions performed better than deeply stacked narrow
filters. Since (Raff et al. 2018), a number of others have repli-
cated their approach or proposed alterations to better study
it, but all have reduced the input size in order to reduce com-
putational costs. Authors from the anti-virus company Avast
restricted their study to files that where ≤ 512 KB (Krčál
et al. 2018). Their work is notable for being the first to com-
pare the approach with hand engineered domain knowledge
features from their production malware classifier. They found
that the CNN was close in performance, and combining the
domain and CNN features improved accuracy by 4%, indicat-
ing the CNN was learning features or feature interactions not
previously found by domain experts. FireEye did an in-depth
reverse engineering of what a MalConv-like network learned
showing it corresponded well to what an analyst would look

for, but had to restrict their model to 100 KB(Coull and Gard-
ner 2019). Anderson and Roth (2018) introduced the Ember
dataset and found MalConv slightly worse than hand-crafted
features, but needed 25 hours/epoch to train on up-to 1 MB.
Recent work(Galinkin 2019) has even shown MalConv has an
ability to generalize across x86 architectures, detecting x86
macOS and Linux malware when trained only on Windows
data. Other works have used the same or similar architectures
to perform malware detection on datasets other than Win-
dows executables, including for Android APKs(Hasegawa
and Iyatomi 2018), PDF files(Jeong, Woo, and Kang 2019),
as well as malicious JavaScript and Visual Basic code detec-
tion(Stokes, Agrawal, and McDonald 2018).

These works have all demonstrated the value of the byte
based approach to malware detection, but simultaneously
show the computational limitations. These solutions all suffer
from an artificial limit in the maximum file size imposed
by memory constraints; these potentially degrade perfor-
mance and enable easy evasion in an adversarial scenario.
Many works have shown MalConv is susceptible to evasion
(Demetrio et al. 2019; Kolosnjaji et al. 2018; Kreuk et al.
2018; Fleshman et al. 2018), but these attacks can be thwarted
at a cost to accuracy (Fleshman et al. 2019). This defense is
only moderately effective because MalConv can be thwarted
by simply inserting the malicious payload after the 2 MB file
limit. Because malware authors are real active adversaries
attempting to evade detection, this is a serious limitation.
After years of activity and development, our work finally
removes this trivial limitation from this research area, which
also makes (Fleshman et al. 2019) more effective.

While MalConv has received significant interest for its
applications in malware detection, few other works within
machine learning approach the same length of sequence pro-
cessing. Recent work extending the Transformer approach to
more efficiently handle long inputs has reached T = 64, 000
time steps (Kitaev, Kaiser, and Levskaya 2020). While the
Transformer is able to learn more robust representations than
our current work, it is still orders of magnitude too short to
be able to process most executable files. Work by Voelker,
Kajić, and Eliasmith (2019) proposed an extension of Re-
current Neural Networks, showing them to be capable of
learning on synthetic time series of T = 1, 000, 000 steps.
Their approach requires over an hour to process a single time
series of this length, making it computationally infeasible
— where our approach enables MalConv to run on a similar
length input in under 42 milliseconds. While our approach
improves the representational power of MalConv and is faster
to train, it has less representational power compared to these
other works. We provide more details on the failed attempts
with transformers, and other approaches in a “What Did Not
Work” the appendix.

Our approach to fixing the memory cost of MalConv is
similar to checkpoint (or “rematerialization”) (Griewank and
Walther 2000). This approach involves re-computing results
during the backward pass to avoid saving results in the for-
ward pass, trading more compute for less memory but guaran-
teeing identical results. All work in this domain has focused
on ways to balance this trade off for different types of acyclic
network graphs (Chen et al. 2016; Gruslys et al. 2016; Kumar

9387

et al. 2019; Kusumoto et al. 2019; Beaumont et al. 2020). Our
work instead performs recomputation in the forward pass, so
that the backward pass produces an equivalent result, while
using less compute time and less memory.

Although we focus exclusively on the application of mal-
ware detection from byte sequences, we note that other do-
mains may similarly benefit from tools for classification over
long time series. For example, Genome Wide Association
Studies (GWAS) can exceed 500,000 time steps in length,
and have long dealt with issues in discovering interactions
across GWAS(Wu et al. 2010). When constrained to smaller
sequences with T ≤ 5000, architectures similar to MalConv
have found use for GWAS based prediction tasks (Liu et al.
2019).

3 Fixed Memory Convolution Over Time
The original MalConv architecture is shown in Figure 1. It
contains an embedding layer (of R8) that is used over an
alphabet of 257 tokens, 256 bytes + an End of File marker.
These are fed into two sets of 128 convolutional filters with
a width of 512 and a stride of 5121, which are then used in
a gating approach proposed by (Dauphin et al. 2017). The
gated result is then converted to a fixed length feature vector
using temporal max pooling (i.e., global max pooling, or max
pooling over time), after which it is fed into a simple fully
connected layer for prediction of the benign/malicious label.
Since there is only one layer, the receptive window size W is
equal to the kernel width 512.

Raw Byte Embedding

1D Conv

1D Conv

σ

⊗ Temporal Max-Pooling

Fully Connected

Softmax

Figure 1: Original MalConv architecture (Raff et al. 2018)
with ≈ 1M parameters, but required 128 GB of GPU RAM
to train.⊗ indicates element-wise product, and σ the sigmoid
activation.

Despite its simplicity, MalConv was the first architecture
to demonstrate that neural networks could learn to perform
malware detection from raw bytes and the first to show classi-
fication over time series/sequences of up to T = 2, 000, 000
steps. However, only the first 2 MB of the input was pro-
cessed in training MalConv because it required 128 GB of
GPU memory to train on a batch of 256 files up to the 2MB
limit. This is owing to the large memory cost of performing
an embedding and convolution over a time series of 2 million
steps (1 for each byte), and the resulting activations alone
require almost all of the GPU memory. Every subsequent
work we are aware of has processed less than the original 2
MB cap.

1Originally a width and stride of 500 was used, but it has been
noted in several works that using a power of two performs better
due to assembly code being aligned on powers of two when written
to an executable.

To overcome these issues, we developed a novel Temporal
Max-Pooling strategy that makes memory costs invariant to
the sequence length T . Importantly, we do this by noting that
Temporal Max-Pooling causes the gradient with respect to
the sequence to be sparse. For C channels, saving all C · T
activations is unnecessary, as only C values will actually be
used, one for each channel. Thus we are using many times
more memory than needed to train, and also performing
redundant GPU computations on the backward pass since the
majority of gradient values are exactly 0. When working with
normal images and standard applications of max-pooling,
the sparsity ratio may be 1:2 or 1:4, which is generally not
sparse enough to make exploitation of that fact useful. This is
because every non-zero value requires storing its associated
index, doubling the memory use of those values. Second,
operations on dense vectors/matrices result in more efficient
computation, delivering computational throughput closer to
the theoretical limits of modern hardware when using modern
BLAS libraries and software like CUDNN. As such, libraries
like PyTorch and Tensorflow do not support sparse gradients
through max-pooling.

Chunk 1

x
x x

x
x
x

x
x

x

MaxPool
FC Layers
& Softmax

Figure 2: Diagram of Temporal Max Pooling with fixed mem-
ory. The original input (top) is a 1D sequence with 3 channels
and is broken up into four chunks based on window size
W = 3. Without gradient computation/tracking, the max-
imum activation index is found within each chunk. Solid
colors show max values kept, “×” max in chunk but no max-
imal. Winning indices are copied to a new shorter sequence
(bottom), which runs with gradient tracking. The result is the
same output and gradient, but fixed memory cost.

Conversely, we obtain the benefits of sparse activations
while also retaining the higher computational throughput of
dense operations, without requiring any new code, as follows.
1. Turn off gradient computation (e.g.,

with torch.no_grad(): if using PyTorch)
and break the input sequence of length T into at most
T/(W · 2) overlapping chunks of size W · 3.

2. Perform max pooling over each chunk; for each channel
track the maximum value and its absolute index.

3. Compare values within each chunk to a set of global win-
ners. If a new chunk’s maximal activation exceeds the
global winner, it becomes the new global winner.

Once we have processed all chunks, we know theC locations,
one for each channel, that will win the max-pooling over time.

9388

The chunks overlap so that this computation is correct, and
not impacted by windowing issues.

With these C locations, we may simply concatenate their
values into a new sequence of length T ′ = C ·W . This new
sequence is now small enough that the full set of embedding,
convolutional layers, and temporal max pooling can be done
in a dense fashion (retaining computational efficiency bene-
fits), using memory proportional to what would be achieved
with sparsity-exploiting code. The total memory use is now
independent of the original sequence length T , and a diagram
of the process is presented in Figure 2.

Details on windowing artifacts: We noted that in the con-
catenation of different chunks in Figure 2 into one new se-
quence, it is technically possible for a new index to become
the maximal activation due to the receptive window length
W crossing between two chunks that were previously not ad-
jacent. This results in a pattern that has potentially not been
seen previously, which thus creates new activation values.
We have never observed this issue in practice, and so have
not taken any special steps to avoid this situation (with more
details in the appendix).

This hypothetical issue could be prevented by performing
the convolution and a max-pool over the chunks indepen-
dently. Then, the pooled results could be concatenated and a
second round of pooling performed. We have not observed
any issues warranting this extra complexity and overhead.

4 Global Channel Gating
With an efficient method for handling large input sequences,
we can explore a broader set of neural network architectures.
In particular, we note a weakness in the original design of
MalConv: the use of temporal max-pooling after a single
convolutional layer results in a somewhat myopic model:
learned features are purely local in nature. That is, with the
existing architecture, the model output does not consider
interactions between features that are far apart in time within
an input sequence/file.

To demonstrate why this is important in malware detection,
consider that a common feature to learn/extract is the use of
encryption libraries, which may indicate, for example, func-
tionality common in ransomware. However, if the program
does not access the file system, the use of encryption be-
comes less suspicious and less likely to indicate malware. In
its current embodiment, it is impossible for MalConv to learn
logic like this because the presence/absence of the associated
information may be in disparate regions of the input, and the
receptive window of the network (512 bytes) is far smaller
than most inputs (221 bytes).

To endow our network with the ability to learn such rela-
tionships while retaining computational tractability, we de-
velop a new attention inspired gating approach we call global
channel gating (GCG). The idea is that given a long time
sequence with C channels, X = {x1,x2, . . . ,xT } where
xt ∈ RC , we want to globally suppress certain time steps
based on the content of all channels. We approach this in a
style similar to the gated linear unit and the additive atten-
tion (Dzmitry Bahdana et al. 2015), using a learned context
ḡ ∈ RC , as shown in Eq. 1.

GCGW (xt, ḡ) = xt · σ (xᵀ
t tanh (W ᵀḡ)) (1)

The entries of the vector xt ∈ RC at time t may be sup-
pressed by the scalar quantity on the right hand side of the
GCG equation. Due to the sigmoid operation σ(·), xt will be
scaled by a value in the range of [0, 1], resulting in a context
sensitive suppression of each entry in the vector.

Embed

1D Conv

1D Conv

Temporal
Max-Pool

Fully
Connectedσ

⊗

Embed

1D Conv

1D Conv

Fully
Connected

⊗

σ

Input

Temporal
Max-Pool

GCG

Softmax
Context

Feature

X ∈ RT×C = {x1,x2, . . . ,xT }

g ∈ RC

1x1 Conv

LeakyReLU

Figure 3: Our new proposed architecture with global channel
gating (GCG). The blue thick dashed sub-network shows
the context extractor, which is used to suppress information
found from the Feature extraction sub-network (red, thinly
dashed sub-network).

We detail a new malware classification architecture which
we term MalConv with GCG in Figure 3 that leverages GCG.
The top half of the network serves to learn a global context
ḡ, which is used as input to the GCG. The bottom half of
the architecture shows the feature sub-network, which uses a
different embedding layer to perform initial feature extraction
and uses GCG to selectively suppress regions of the input,
allowing for potential feature interactions over time. The
inputs to GCG are a state vector from the top half context
network, and a sequence over time generated from the bottom
half, which has Eq. 1 applied point-wise over time. This is
followed by temporal max pooling, where we apply the fixed
memory approach from §3 to make the training feasible with
fixed memory costs.

4.1 Gating via Convolution
Care must be taken to implement the GCG approach effec-

tively. The naive strategy to implement GCG requires reshap-
ing the input array, and either running over every time step
with a for loop to extract a slice xt and perform a dot prod-
uct, or alternatively, duplicating the context ḡ into a larger
matrix and performing a larger BLAS operation against the
input X . The first approach suffers from excessive Python
and auto-grad overhead in our testing. The latter approach is
more efficient in terms of FLOPs, but still cumbersome and
slow due to the duplication of ḡ.

Instead, we exploit the nature of grouped convolutions
(Krizhevsky, Sutskever, and Hinton 2012) to efficiently im-

9389

def gcg(self, X, g):
X.shape = (B, T, C)
B, T, C = X.size(0), X.size(1), X.size(2)
g.shape = (B, C)
create context vector z = tanh(W ᵀg)
self.w references a nn.Linear(C, C)

layer↪→
z = torch.tanh(self.w(g))

Size is (B, C), but we need (B, C, 1) to
use as a 1d conv filter↪→

z = torch.unsqueeze(z, dim=2)
roll the batches into the channels
x_tmp = X.view(1,B*C,-1)
apply a conv with B groups; each batch

gets its own context applied↪→
This computes xᵀt z forall t = 1...T
x_tmp = F.conv1d(x_tmp, z, groups=B)
x_tmp has a shape of (1, B, T); re-order

as (B, 1, T)↪→
gates = x_tmp.view(B, 1, -1)

effectively apply xt · σ(xᵀt tanh(W ᵀg))
return X * torch.sigmoid(gates)

Figure 4: PyTorch code demonstrating how to implement
global channel gating in a computationally efficient manner.
The input context g is projected and re-shaped, such that it
can be used as the filter weights in a 1D convolution grouped
by the batch size. This results in computing the dot product
over time.

plement the GCG over time. Given a batch of B time series,
we reinterpret the input activation/context ḡ as a set of 1D
convolution weights/filters in a B × C × 1 matrix, and per-
form a grouped convolution with B groups. Thus we con-
volve the context with the input X where the window size is
1 (considering only one time-step at a time), the B different
contexts become the number of output “channels”, and by
grouping each context is applied only to its appropriate input.
The grouped convolution allows us to apply the different
filters to each batch in one operation. We find this easiest to
demonstrate with code, and present a working PyTorch imple-
mentation of GCG in Figure 4. With this additional insight,
the GCG operation is no more expensive than a 1× 1 convo-
lution, allowing us to leverage it for inputs with hundreds of
millions of time-steps without issue.

5 Results
The Ember2018 corpus (Anderson and Roth 2018) has
600,000 training samples and 200,000 test samples. At ≈1
TB it is our primary test set due to size and difficulty. Both
training and testing sets are evenly split between benign and
malicious, and all testing samples were first observed after
all training samples. The predecessor 2017 corpus was ex-
plicitly noted to be “easy” due to the way it was created,
and MalConv obtained an AUC of 99.8%, close to that of a
domain knowledge approach which achieved 99.9% AUC.
We prefer the 2018 corpus because it was designed to be
more challenging, and MalConv obtains an accuracy of only

Figure 5: Distribution of file lengths (x-axis, log-scale) and
percentage of files of an equal or lesser size (y-axis, log-scale)
for all files in the Ember2018 corpus. The largest file is 271.1
MB.

91% on the newer corpus. The domain knowledge features
were less impacted, dropping to only 99.6% AUC. This better
demonstrates the gap between current deep learning and do-
main knowledge based approaches for classifying malware.
We also use the Common Crawl to collect 676,843 benign
PDF files and VirusShare (Roberts 2011) 158,765 malicious
ones. This gives 464 GB of data total, with 10% used as a
test set. Malicious PDF files are easier to detect than mali-
cious executables, so the effect size of our improvements are
expected to be smaller. We include this test to show that our
methods still work on other types of data.

The distribution of file lengths in bytes is shown in Figure
5, with the longest file corresponding to a time series with
271,082,368 time steps. This is 135.5× longer than the origi-
nal MalConv work, and thus two orders of magnitude longer
than any previous time-series classification task we are aware.
We were able to train Malconv with and without GCG on
these data without any truncation. This removes the trivial
adversarial attack of moving malicious code past the 2 MB
limit.

For all networks, we trained using the Adam optimizer
(Kingma and Ba 2015) with the recently proposed decoupling
of weight-decay (Loshchilov and Hutter 2019), using the
recommended default parameters. A batch size of 128 was
used in each experiment. All experiments were performed on
a DGX-1. We note that our improved training procedure no
longer requires this level of compute power, however, we do
this to appropriately compare training time in our experiments
with previous work. We denote MalConv trained with the
original approach, truncating to the first 2MB of the input
file, as “MalConv (2MB, Orig)”. In what follows, we use
“MalConv” to denote the original architecture from Figure 1
trained with our new fixed-memory approach specified in §3.
Finally, our new MalConv with GCG from §4 will be the last
model we train for comparison. Both MalConv and MalConv
with GCG are trained to processes the entirety of the input
files, up to 271 MB. We train all models for 20 epochs, using
the result from the last epoch.

9390

For MalConv we use a filter size of 512, a stride of 512,
128 channels for each 1D Conv block, and an embedding
dimension of 8. For MalConv with GCG we use a filter size
of 256, a stride of 64, 256 channels for each convolution, and
an embedding dimension of 8. For all models we incorporate
the suggestion of (Fleshman et al. 2019) of including a special
token after the EOF that maps to an embedding vector of all
zeros. Details on the hyper-parameter selection, including
attempts at improving the standard MalConv, can be found
in the appendix. Below we will show the results indicating
how our methods have improved MalConv, and we provide a
discussion of other attempts to improve upon the MalConv
approach that were unsuccessful, and how they impacted our
approaches’ final design in the appendix.

5.1 Training MalConv with Fixed-Memory
Max-Pooling

Model Time Per Epoch GPU RAM

MalConv (2MB, Orig) 21 hr 29 min 128 GB
MalConv 1 hr 10 min 1.1 GB
MalConv w/ GCG 4 hr 5 min 2.2 GB

Table 1: Results on training time and computational effi-
ciency.

We first evaluate the impact of our fixed-memory approach
to training over long sequences. The original MalConv re-
quired 128 GB of GPU memory, and 21.5 hours per epoch on
the Ember2018 dataset. In Table 1 we can see the timing in-
formation and memory use compared to our new approaches.

Our fixed-memory approach to temporal max pooling re-
sults in significant benefits, with a 116× improvement in
memory use and a 18.4× reduction in training time. This
takes MalConv training down from the order of a month to
just a day. We note that the results are further improved when
we consider that fixed-memory pooling is faster while pro-
cessing more data, since it considers the entirety of each file.
Since 14.2% of files are greater than 2MB, we are actually
processing a total 1.4× more data than the original MalConv,
making our speedup effectively 25.8× per byte processed.
Our new approach makes it possible now for anyone with a
GPU and data to train MalConv.

Without these speed and memory improvements, our new
MalConv with GCG architecture would not have been possi-
ble to train. Naive scaling of the results indicates we would
have needed 256 GB of GPU RAM (which would have only
been possible with a DGX-2), and approximately 1 month of
training time.

5.2 Improved Accuracy
In Table 2 we show the classification performance of all three
models, and two state of the art compression based methods
LZJD and BWMD using 9-nearest neighbor classification.
We see that training MalConv with the prior approach but on
the entire sequence length has no appreciable difference in
accuracy (fluctuations of 0.1 percentage points). This shows

Model Accuracy AUC
MalConv (2MB, Orig) 91.27 97.19
MalConv 91.14 97.29
MalConv w/ GCG 93.29 98.04
LZJD 73.43 84.98
BWMD 81.97 91.12

Table 2: Ember 2018 results on accuracy and AUC for each
model.

W
orkshop

track
-IC

L
R
2018

such
as

com
pression

or
encryption

detected. 2
T
he

train,validation
and

testsets
consists

of
the

first
12

m
onths,the

next2
m
onths

and
the

last2
m
onths,respectively,so

thatw
e
m
easure

how
the

m
odel

generalizes
into

the
future.Forthe

sake
ofsim

plicity,w
e
use

binary
labels

clean
and

m
alw

are
only

w
ith

roughly
balanced

occurrence
throughoutourdataset.

A
great

obstacle
hindering

the
public

research
on

learning
m
alw

are
classifiers

(and
deep

netw
ork

classifiers
in

particular)
is

the
lack

of
an

industrial-sized
publicly

available
datasets.

T
his

causes
fragm

entation
of

the
research

w
here

differentresults
are

m
utually

directly
incom

parable,if
repro-

ducible
atall.Itis

ourlonger-term
vision

to
m
ake

available
som

e
ofourdata

in
a
form

and
volum

e
thatw

ould
be

appealing
to

the
deep

learning
com

m
unity.

2
A
R
C
H
IT

E
C
T
U
R
E
S

E
m
b
ed

d
in
g

192⇥
(N

/

4
0
9
6

z
}|

{
4·4·4·8·8)

F
u
lly

C
on

n
ected

F
u
lly

C
on

n
ected

F
u
lly

C
on

n
ected

F
ix
ed

E
m
b
ed

d
in
g

C
on

v
32

(strid
e
4
)

C
on

v
32

(strid
e
4
)

M
a
x
p
o
o
lin

g
4

C
on

v
16

(strid
e
8
)

C
on

v
16

(strid
e
8
)

G
lo
b
a
l
A
v
e
ra

g
e

8⇥
N

48 96 96

128

192

192

160

128 2
F
u
lly

C
on

n
ected

E
m
b
ed

d
in
g

F
u
lly

C
on

n
ected

F
u
lly

C
on

n
ected

F
u
lly

C
on

n
ected

G
lo
b
a
l
A
v
e
ra

g
e

192

192

160

128 2
F
u
lly

C
on

n
ected

F
ix
ed

E
m
b
ed

d
in
g

SELUReLU

Figure
1:O

urconvnet.

T
he

schem
e
of

our
netw

ork
is

visualized
in

Figure
1;

several
re-

m
arks

follow
.

Fixed
em

bedding.
E
ach

byte
ofthe

inputsequence
is
firstem

bed-
ded

to
an

8-dim
ensional

vector
of

the
form

(±
1
/
16,...,±

1/
1
6)

according
to

its
binary

representation
w
here

constant
1/1

6
w
as

found
em

pirically.W
e
observed

no
perform

ance
difference

betw
een

learnable
and

non-learnable
em

beddings.

C
onvolutionsw

ith
stride—

reducing
the

com
putationalload.To

m
itigate

the
com

putationalburden,w
e
apply

experim
entally

tuned
strides

of
4
and

8
atthe

firstand
the

second
block

of
convolutions,

respectively.W
e
have

verified
thatusing

stridesof3,5,7
and

9
(non-

pow
ers

oftw
o)in

the
respective

ordercauses
relative

drop
roughly

by
6–10

percents
in

allthe
m
etrics

w
e
have

m
easured. 3

D
etails

on
training.

W
e
initialize

the
convolutionallayers

by
ran-

dom
values

draw
n
from

the
uniform

distribution
according

to
G
lo-

rot
and

B
engio

(2010)
and

the
fully

connected
layers

according
to

K
lam

bauer
et

al.
(2017).

T
he

training
loss

is
the

usual
cross-

entropy
w
ith

every
clean

sam
ple

contributing
to

the
loss

7
tim

es
as

m
uch

as
every

m
alicious

sam
ple.

W
e
group

the
executables

into
batches

of128
sim

ilarly
sized

files
padded

by
zeros

atthe
end

(right
padding).

T
he

netw
ork

is
trained

by
the

A
dam

optim
izer

(K
ingm

a
and

B
a
(2014))

w
ith

the
default

param
eters.A

ccording
to

the
scores

on
the

validation
set,w

e
stop

the
training

shortly
afterthe

third
epoch.

E
m
b
ed

d
in
g

F
ix
ed

E
m
b
ed

d
in
g

8⇥
N

C
on

v
51

2
C
o
n
v
5
12

⇥
E
m
b
ed

d
in
g

G
lob

al
M
ax

12
8⇥

(N
/512)

F
u
lly

C
o
n
n
ected

128 2
F
u
lly

C
on

n
ected

Figure
2:

M
alC

onv
1.1.

B
oth

kernelsize
and

stride
is
512.

C
hoices

specifically
driven

by
the

zero
false

positives
target.

M
alw

are
detectors

are
tuned

forlow
false

positive
rates

so
thatthey

do
notoverw

helm
users

by
false

m
alw

are
detections

underthe
real

distribution
w
ith

the
vast

dom
inance

of
clean

files.
W
e
form

alize
this

targetscore
as

the
area

under
the

R
eceiver

O
perator

C
urve

re-
stricted

to
the

interval
[0
,0
.0
01]of

the
false

positive
rate.

For
con-

venience
the

area
is
reported

in
percentages

of
the

m
axim

alpossi-
ble

such
area—

0
.00

1.
W
e
w
illrefer

to
such

score
as

the
restricted

A
U
C
.
B
elow

w
e
list

possible
changes

in
our

architecture
and

the
corresponding

estim
ated

drops
in

the
restricted

A
U
C
score.

O
n
the

other
hand,

each
of

the
variations

im
proves

cross-entropy
and/or

accuracy:

1.
G
lobal

M
ax

instead
of

G
lobal

A
verage:

-20%
relative

drop.
2.

C
lean

and
m
alw

are
files

w
ith

equalw
eight:

-10%
relative

drop.
2O

urpipeline
could

be
extended

to
coverm

ajority
ofthe

obfuscated
files

by
using

unpackers.
3Strides

and
pooling

lengths
is
the

only
hyperparam

eterofournetw
ork

consciously
tailored

to
the

executa-
bles:allcom

pilers
(e.g.,M

icrosoftV
isualC

++)align
the

beginnings
ofso-called

sections
w
ithin

the
executable

to
m
ultiples

ofpow
ers

oftw
o
(e.g.,4096).

2

Figure 6: “AvastConv” architecture from (Krčál et al. 2018).
Their approach was originally trained on entire executables,
but each executable was ≤ 512 KB.

1) that we are able to still learn effectively while processing
more information, and 2) that our approach does not hinder
training in any way. As noted previously, parsing all of the
input file is also beneficial for thwarting the trivial attack
of moving all malicious code to the end of an executable.
We also see that our MalConv with GCG improves upon
the accuracy by 2.2% and AUC by 0.87% of the original
MalConv architecture.

We prefer evaluation on the Ember 2018 corpus because
it is both large and challenging. Our evaluations on the PDF
corpus are done to show that our improvements transfer to
other file types as well. On our PDF corpus we obtain an
Accuracy of 99.16% and an AUC of 99.76%. MalConv with
GCG improves this to 99.42% and 99.80%. Because PDF
file are easier to processes, the baseline MalConv is already
nearing maximal performance, so the gain is smaller — but
shows our GCG approach is still an improvement.

5.3 Ablation Testing of Avast Architecture
A difficulty of research in this space is that large testing of
over millions of executables can only be done in partnership
with commercial anti-virus companies, who have large cor-
pora to test against. Of the prior works we discussed in §2,
the work by Krčál et al. (2018) is of particular interest for
two reasons, 1) they found that global max pooling produced
a 20% relative drop in performance compared to their use
of global average pooling, and 2) it is the only extension to
MalConv we are aware that is easy to adjust with our fixed
memory max pooling form §3. The architecture they use,

9391

which we will call AvastConv, is given in Figure 6. Its pri-
mary differences are the use of more layers of smaller filter
widths (32 followed by 16), a hard coded embedding rather
than a learned embedding, and the aforementioned use of
global average pooling instead of global max pooling.

The pooling difference was the largest factor according
to the ablation testing by (Krčál et al. 2018) at 20%. They
found that fixed vs learned had no performance impact, and
other differences between their and our current architectures
accounted for no more than a 4% difference. The biggest
untested factor between these works is that their study was
constrained to smaller executables ≤ 512KB in size, where
in our work we consider unbounded size with inputs over
200 MB in size.

As such, we choose to perform a small ablation test against
this architecture, replacing the global average pooling with
our new fixed memory temporal max pooling. Training their
architecture for 20 epochs, we obtain an accuracy of 85.8%
and an AUC of 94.6%. These results are significantly lower
than MalConv and our improved version shown in Table 2.

While it may be possible that global averaging would re-
store performance to their approach, there is not enough
remaining accuracy for a 20% relative improvement to oc-
cur. This would seem to indicate their initial results on the
strength of global pooling are not as strong when factoring in
larger file sizes. This is beneficial from the perspective that
we can use max pooling to achieve fixed memory cost, which
is not possible with average pooling.

These results also give credence to a relatively shallower
architecture with wider convolutional filters, which is main-
tained in our current design. This runs in contrast to normal
applications of CNNs in the vision, signal, and natural lan-
guage processing domains, where the community has more
firmly rested on smaller filters with more layers being the
canonical design approach.

5.4 Example of Interactions Over Time With
GCG

http://booomaahuuoooapl[.]ru/
http://eoufaoeuhoauengi[.]ru/
http://maeobnaoefhgoajo[.]ru/
http://ashihsijaediaehf[.]ru/
http://plpanaifheaighai[.]ru/

C2 URLs

HttpQueryInfoA
InternetOpenUrlA
InternetOpenA
WININET.dll
URLDownloadToFileW

Internet Connectivity

GetModuleFileNameW
FindClose
FindNextFileW
SetFileAttributesW
GetVolumeInformationW

Benign Content

(21,226 - 21,244)(14,992 - 15,104) (21,722 - 21,794)

GCGW (·, g) =

12x 6x 6x

Feature Impact

3→6 0→10 3→1

T :

Figure 7: The time steps T that feature content is found is
shown in parenthesis. ḡ suppressed increased focus on inter-
net functionality. This shows GCG can related disconnected
portions with no overlapping receptive field, learning com-
plex interactions.

As our last result, we demonstrate an example of how
our new GCG has effectively learned non-linear interactions

across large time ranges. In Figure 7 we show a diagram
of the relevant content from a malicious sample, and how
the context impacts the selected features once the temporal
max-pooling is performed. In particular, three types of con-
tent found: Command-and-Control (“C2”) URLs used for
remote control of the malware, system calls used for internet
connectivity, and other innocuous benign content. The blue
lines into the context vector ḡ denote the number of filters
that had their maximum activation occur in the byte range
of that content, with 12 filters selecting the C2 URLs, and 6
each for the Internet connectivity and other benign content.
The values in parenthesis indicate the time-step T (i.e., byte
location) of the content within the file. We can see that the
C2 URLs are ≥6,122 steps/bytes away from the rest of the
content, far larger than the receptive field of the convolutions.

After the GCG gating is applied to the activations of the
feature sub-network, we see a large change in what is selected
by the final max-pooling operation. Without GCG, none of
the internet connectivity features were selected. In this case,
the GCG suppresses the activations of other regions in the bi-
nary, but opens the gate (i.e., GCGW (x21,226, ḡ) ≈ 1.0) for
the internet content. As such, 10 of the filters now activate for
this region. Similarly, the number of filters activating for the
C2 URLs increases from 3 to 6. We also see that the innocu-
ous content for working with the file system is suppressed by
the gate, reducing activations from 3 down to 1. Combined,
the C2 URLs and the use of APIs to connect to them over
the Internet are significant indicators for confirming this file
as malicious, which the network successfully performs. This
is helpful information for malware analysts, and others who
wish to know how the malware performs.

This malicious examples demonstrates that our GCG mech-
anism successfully learns the kinds of nuanced interactions
we desire over large time ranges. The use of file system
and internet connectivity is intrinsically non-suspicious on
their own. Correctly focusing on the right content requires
observing the suspicious URLs contained withing the file.
Simultaneously, this shows MalConv learning to perform
sub-tasks, like determining if a URL looks suspicious or not,
to make these informed contextual gating decisions. Because
this kind of analysis is expensive, we include more results
from the PDF corpus in the appendix.

6 Conclusion

Prior approaches to classifying time series of extreme length
where limited by the memory required to train the models.
We have developed a new approach that exploits the sparsity
of temporal max pooling to make this memory cost invariant
to the time series length, while simultaneously being faster
to compute. Using this improvement we designed a new ap-
proach to malware detection from raw bytes using a global
channel gating mechanism that gives us the capability of
learning feature interactions across time, despite extreme in-
put lengths in excess of 100 million time steps. This contribu-
tion further improves the accuracy of our malware detection
model by up to 2.2%.

9392

References
Alshahwan, N.; Barr, E. T.; Clark, D.; and Danezis, G. 2015.
Detecting Malware with Information Complexity. arXiv URL
http://arxiv.org/abs/1502.07661.

Anderson, H. S.; and Roth, P. 2018. EMBER: An Open
Dataset for Training Static PE Malware Machine Learning
Models. ArXiv e-prints URL http://arxiv.org/abs/1804.04637.

Bailey, M.; Oberheide, J.; Andersen, J.; Mao, Z. M.; Jaha-
nian, F.; and Nazario, J. 2007. Automated Classification
and Analysis of Internet Malware. In RAID, 178–197. URL
http://dl.acm.org/citation.cfm?id=1776434.1776449.

Bayer, U.; Comparetti, P. M.; Hlauschek, C.; Kruegel, C.;
and Kirda, E. 2009. Scalable , Behavior-Based Malware
Clustering. NDSS 9.

Beaumont, O.; Herrmann, J.; Pallez (Aupy), G.; and Shilova,
A. 2020. Optimal memory-aware backpropagation of deep
join networks. Philosophical Transactions of the Royal So-
ciety A: Mathematical, Physical and Engineering Sciences
378(2166): 20190049.

Borbely, R. S. 2015. On normalized compression distance
and large malware. Journal of Computer Virology and Hack-
ing Techniques 1–8.

Chen, T.; Xu, B.; Zhang, C.; and Guestrin, C. 2016. Training
Deep Nets with Sublinear Memory Cost. arXiv 1–12.

Coull, S. E.; and Gardner, C. 2019. Activation Analysis of a
Byte-Based Deep Neural Network for Malware Classification.
In In Proceedings of the 2nd Deep Learning and Security
Workshop (DLS). San Francisco, CA: IEEE, URL https://
arxiv.org/pdf/1903.04717.pdf.

Dauphin, Y. N.; Fan, A.; Auli, M.; and Grangier, D. 2017.
Language Modeling with Gated Convolutional Networks. In
Proceedings of the 34th International Conference on Machine
Learning, volume 70 of Proceedings of Machine Learning
Research, 933–941. International Convention Centre, Syd-
ney, Australia: PMLR, URL http://proceedings.mlr.press/v70/
dauphin17a.html.

Demetrio, L.; Biggio, B.; Lagorio, G.; Roli, F.; and Armando,
A. 2019. Explaining Vulnerabilities of Deep Learning to
Adversarial Malware Binaries. In 3rd Italian Conference
on Cyber Security, ITASEC. URL http://arxiv.org/abs/1901.
03583.

Dzmitry Bahdana; Bahdanau, D.; Cho, K.; and Bengio, Y.
2015. Neural Machine Translation By Jointly Learning To
Align and Translate. In ICLR.

Faridi, H.; Srinivasagopalan, S.; and Verma, R. 2019. Param-
eter Tuning and Confidence Limits of Malware Clustering.
In CODASPY, 169–171.

Fleshman, W.; Raff, E.; Sylvester, J.; Forsyth, S.; and
McLean, M. 2019. Non-Negative Networks Against Adver-
sarial Attacks. AAAI-2019 Workshop on Artificial Intelligence
for Cyber Security URL http://arxiv.org/abs/1806.06108.

Fleshman, W.; Raff, E.; Zak, R.; McLean, M.; and Nicholas,
C. 2018. Static Malware Detection & Subterfuge: Quantify-
ing the Robustness of Machine Learning and Current Anti-

Virus. In 2018 13th International Conference on Malicious
and Unwanted Software (MALWARE), 1–10. IEEE.
Galinkin, E. 2019. What is the Shape of an Executable? In
Conference on Applied Machine Learning for Information
Security. URL https://www.camlis.org/2019/talks/galinkin.
Griewank, A.; and Walther, A. 2000. Algorithm 799: Re-
volve: An Implementation of Checkpointing for the Reverse
or Adjoint Mode of Computational Differentiation. ACM
Trans. Math. Softw. 26(1): 19–45.
Gruslys, A.; Munos, R.; Danihelka, I.; Lanctot, M.;
and Graves, A. 2016. Memory-Efficient Backpropa-
gation Through Time. In NeurIPS, 4125–4133. URL
http://papers.nips.cc/paper/6221-memory-efficient-
backpropagation-through-time.pdf.
Hasegawa, C.; and Iyatomi, H. 2018. One-dimensional con-
volutional neural networks for Android malware detection.
In 2018 IEEE 14th International Colloquium on Signal Pro-
cessing & Its Applications (CSPA), 99–102. IEEE.
Hayes, M.; Walenstein, A.; and Lakhotia, A. 2008. Evalu-
ation of malware phylogeny modelling systems using auto-
mated variant generation. Journal in Computer Virology 5(4):
335–343.
Jeong, Y.-S.; Woo, J.; and Kang, A. R. 2019. Malware De-
tection on Byte Streams of PDF Files Using Convolutional
Neural Networks. Security and Communication Networks .
Kantchelian, A.; Afroz, S.; Huang, L.; Islam, A. C.; Miller,
B.; Tschantz, M. C.; Greenstadt, R.; Joseph, A. D.; and Tygar,
J. D. 2013. Approaches to Adversarial Drift. In Proceedings
of the 2013 ACM Workshop on Artificial Intelligence and
Security, AISec ’13, 99–110. New York, NY, USA: ACM.
Kingma, D. P.; and Ba, J. L. 2015. Adam: A Method for
Stochastic Optimization. In ICLR.
Kitaev, N.; Kaiser, L.; and Levskaya, A. 2020. Reformer:
The Efficient Transformer. In ICLR.
Kolosnjaji, B.; Demontis, A.; Biggio, B.; Maiorca, D.; Giac-
into, G.; Eckert, C.; and Roli, F. 2018. Adversarial Malware
Binaries: Evading Deep Learning for Malware Detection in
Executables. In 26th European Signal Processing Conference
(EUSIPCO ’18). URL https://arxiv.org/pdf/1803.04173.pdf.

Krčál, M.; Švec, O.; Bálek, M.; and Jašek, O. 2018. Deep
Convolutional Malware Classifiers Can Learn from Raw Ex-
ecutables and Labels Only. In ICLR Workshop.
Kreuk, F.; Barak, A.; Aviv-Reuven, S.; Baruch, M.; Pinkas,
B.; and Keshet, J. 2018. Adversarial Examples on Discrete
Sequences for Beating Whole-Binary Malware Detection.
arXiv preprint URL http://arxiv.org/abs/1802.04528.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
ImageNet Classification with Deep Convolutional
Neural Networks. In NeurIPS, 1097–1105. URL
http://papers.nips.cc/paper/4824-imagenet-classification-
with-deep-convolutional-neural-networks.pdf.
Kumar, R.; Purohit, M.; Svitkina, Z.; Vee, E.; and Wang, J.
2019. Efficient Rematerialization for Deep Networks. In
NeurIPS, 15172–15181. URL http://papers.nips.cc/paper/
9653-efficient-rematerialization-for-deep-networks.pdf.

9393

Kusumoto, M.; Inoue, T.; Watanabe, G.; Akiba, T.; and
Koyama, M. 2019. A Graph Theoretic Framework
of Recomputation Algorithms for Memory-Efficient
Backpropagation. In NeurIPS, 1163–1172. URL
http://papers.nips.cc/paper/8400-a-graph-theoretic-
framework-of-recomputation-algorithms-for-memory-
efficient-backpropagation.pdf.

Li, M.; Chen, X.; Li, X.; Ma, B.; and Vitanyi, P. M. 2004.
The Similarity Metric. IEEE Transactions on Information
Theory 50(12): 3250–3264.

Liu, Y.; Wang, D.; He, F.; Wang, J.; Joshi, T.; and Xu, D.
2019. Phenotype Prediction and Genome-Wide Association
Study Using Deep Convolutional Neural Network of Soybean.
Frontiers in Genetics 10.

Loshchilov, I.; and Hutter, F. 2019. Decoupled Weight Decay
Regularization. In ICLR. URL https://github.com/loshchil/
AdamW-and-SGDW.

Menéndez, H. D.; Bhattacharya, S.; Clark, D.; and Barr, E. T.
2019. The arms race: Adversarial search defeats entropy used
to detect malware. Expert Systems with Applications 118:
246–260.

Raff, E.; Aurelio, J.; and Nicholas, C. 2019. PyLZJD: An
Easy to Use Tool for Machine Learning. In Proceedings of
the 18th Python in Science Conference, 97–102.

Raff, E.; Barker, J.; Sylvester, J.; Brandon, R.; Catanzaro,
B.; and Nicholas, C. 2018. Malware Detection by Eating a
Whole EXE. In AAAI Workshop on Artificial Intelligence for
Cyber Security. URL http://arxiv.org/abs/1710.09435.

Raff, E.; and Nicholas, C. 2017. An Alternative to NCD for
Large Sequences, Lempel-Ziv Jaccard Distance. In KDD,
1007–1015.

Raff, E.; Nicholas, C.; and McLean, M. 2020. A New Bur-
rows Wheeler Transform Markov Distance. In The Thirty-
Fourth AAAI Conference on Artificial Intelligence, 5444–
5453.

Raff, E.; and Nicholas, C. K. 2018. Lempel-Ziv Jaccard Dis-
tance, an effective alternative to ssdeep and sdhash. Digital
Investigation .

Rajab, M. A.; Ballard, L.; Jagpal, N.; Mavrommatis, P.;
Nojiri, D.; Provos, N.; and Schmidt, L. 2011. Trends in
CircumventingWeb-Malware Detection. Technical Report
July, Google, URL https://security.googleblog.com/2011/08/
four-years-of-web-malware.html.

Roberts, J.-M. 2011. Virus Share. URL https://virusshare.
com/. Last accessed 2020-01-07.

S. Resende, J.; Martins, R.; and Antunes, L. 2019. A Survey
on Using Kolmogorov Complexity in Cybersecurity. Entropy
21(12): 1196.

Spafford, E. C. 2014. Is Anti-virus Really Dead? Computers
& Security 44: iv.

Stokes, J. W.; Agrawal, R.; and McDonald, G. 2018. Neural
Classification of Malicious Scripts: A study with JavaScript
and VBScript. arXiv URL http://arxiv.org/abs/1805.05603.

van den Oord, A.; Dieleman, S.; Zen, H.; Simonyan, K.;
Vinyals, O.; Graves, A.; Kalchbrenner, N.; Senior, A.; and
Kavukcuoglu, K. 2016. WaveNet: A Generative Model for
Raw Audio URL http://arxiv.org/abs/1609.03499.
Voelker, A.; Kajić, I.; and Eliasmith, C. 2019. Legendre
Memory Units: Continuous-Time Representation in Recur-
rent Neural Networks. In NeurIPS, 15544–15553.
Votipka, D.; Rabin, S. M.; Micinski, K.; Foster, J. S.; and
Mazurek, M. M. 2019. An Observational Investigation of
Reverse Engineers ’ Processes. In USENIX Security Sympo-
sium.
Walenstein, A.; and Lakhotia, A. 2007. The Software Sim-
ilarity Problem in Malware Analysis. Duplication, Redun-
dancy, and Similarity in Software URL http://drops.dagstuhl.
de/opus/volltexte/2007/964.
Wehner, S. 2007. Analyzing Worms and Network Traffic
Using Compression. Journal of Computer Security 15(3):
303–320, URL http://dl.acm.org/citation.cfm?id=1370628.
1370630.
Wu, M. C.; Kraft, P.; Epstein, M. P.; Taylor, D. M.; Chanock,
S. J.; Hunter, D. J.; and Lin, X. 2010. Powerful SNP-set
analysis for case-control genome-wide association studies.
American journal of human genetics 86(6): 929–942.

9394

