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Abstract

The synthesis of materials using the principle of thermogravi-
metric analysis to discover new anticorrosive paints requires
several costly experiments. This paper presents an approach
combining empirical data and domain analytical models to
reduce the number of real experiments required to obtain the
desired synthesis. The main idea is to predict the behavior
of the synthesis of two materials with well-defined mass pro-
portions as a function of temperature. As no exact equational
model exists to predict the new material, we integrate a ma-
chine learning approach circumscribed by existing domain
analytical models such as heating equation in order to de-
rive a generative model of augmented experiments. Exten-
sive empirical evaluation shows that using machine learning
approach guided by analytic models, it is possible to sub-
stantially reduce the number of needed physical experiments
without losing the approximation quality. 1

Introduction
Many important engineering processes do not have an ex-
plicit and complete analytic description of the objective
function and consider the transformation processes as black-
box functions which result, for example, from experiments
or non-linear systems (Biegler, Lang, and Lin 2014). It is
particularly the case for material design industry, where the
core function is to accelerate the synthesis of new materi-
als with good properties (Aykol et al. 2019; Severson et al.
2019; Tabor et al. 2018). To this end, kinetics and thermo-
dynamics measurements of the thermal degradation for non-
charring polymers are performed (Li and Stoliarov 2013).
Despite the existence of several theoretical simulation mod-
els, it remains difficult to design rigorous physical models
including the information on the mechanisms of reactions
in all the cases with expensive and time-consuming experi-
ments (Zander, Dittmeyer, and Wagenhuber 1999).

This paper deals with combining known theoretical mod-
els on the pigments and dyes industry, particularly in the
synthesis of an anticorrosive paint, and machine learning
techniques in order to reduce the number of needed real ex-
periments and improve the quality of approximation models.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1Code and dataset to reproduce experiments are available at
https://github.com/nx-project/augmentedExperiments

The synthesis of an anticorrosive paint can be achieved by
using red pigments from iron ore deposits and the calamine,
a recycling of steel by-products. Calamine is formed by
high-temperature oxidation during the cooling of products
in continuous casting of steels and during heat treatment and
hot forming. It is a by-product in different mills (AbedGhars
2018). On the other hand, iron pigments are available in the
form of fine dry particles and are soluble in most solvents.
Their color is due to their absorption of a part of the wave-
lengths of the visible spectrum. Online analysis of material
properties in metals is a costly and time-consuming problem
in industry. Reducing the number of physical experiments
is critical. According to some physical characteristics like
so-called thermogravimetric analysis (TGA) (see Figure 1a)
used as a basic experiment to provide data, we propose a
data-driven approach guided by analytical models to predict
properties of a mixture of calamine/pigment while reducing
the number of needed costly real experiments. First, the sig-
natures of pigment and calamine are established separately.
Then, by varying the mixture proportions between calamine
and pigment, i.e. the quotient between the weight of pigment
and the total charge (weight of calamine plus the weight of
pigment), we establish the signature of the new material (See
Figure 1b and 1c). Our goal is to provide a model able to
predict the material signature for a mixture of pigment and
calamine using a minimal number of real experiments. To
guide the transformations between physical experiments, we
leverage known analytical models such as Arrhenius (Lai-
dler 1984) and Eyring (Eyring 1935) kinetic models which
describe the degradation kinetics of chemical reactants.

Combining the aforementioned approved a priori knowl-
edge leads to a hybrid model with fewer degrees of free-
dom and an improved extrapolation range. This approach
forces the model to realize certain conditions/equations that
are part of the prior knowledge. For example, a neural net-
work model without modification would have to approxi-
mate the mass conservation laws that apply to any chem-
ical conversion. If mass conservation is enforced, the er-
rors associated with this approximation are avoided (Zan-
der, Dittmeyer, and Wagenhuber 1999). Similarly, authors
in (Greydanus, Dzamba, and Yosinski 2019) draw inspira-
tion from Hamiltonian mechanics to train models that learn
exact conservation laws in an unsupervised manner by en-
dowing the models with better inductive biases.
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The aim of incorporating additional forms of supervi-
sion has been a popular theme recently in machine learn-
ing. For example, a priori knowledge in the form of def-
inite equations is used to pre-structure data-driven mod-
els (Zander, Dittmeyer, and Wagenhuber 1999; Overstall,
Woods, and Martin 2019). Another way of incorporating a
priori knowledge is to enforce fulfillment of certain con-
ditions/equations which are part of the a priori knowledge
by constraining the output layer of the models. In this
sense, a variety of methods for modifying the learning ob-
jective via additional regularization-like terms have been
proposed (Tarlow and Zemel 2012; Mann and McCallum
2010; Ganchev et al. 2010; Osmani, Hamidi, and Bouhouche
2019). In (Pathak, Krahenbuhl, and Darrell 2015), authors
used a series of additional linear constraints into the cost
function for weakly supervised semantic image segmenta-
tion. Authors in (Márquez-Neila, Salzmann, and Fua 2017)
explored the benefits and limitations of imposing hard con-
straints on 3D human pose estimation. In (Oktay et al. 2017),
prior knowledge about organ shape and location was used in
the form of constraints for image segmentation and analysis.
The reduced degree of freedom of these kinds of models has
a remarkable consequence of reducing the demand for mea-
surement data (Hamidi and Osmani 2020). Similarly, au-
thors in (Stewart and Ermon 2017), for example, proposed a
label-free setting where models are supervised by specifying
physics-derived constraints that should hold over the output
space, rather than direct examples of input-output pairs. The
need for regularization terms in these contexts, then, shifts
to ensuring that the models do not converge towards trivial
solutions.

Our contributions can be summarized as follows. (1) We
frame a real-world application of material engineering into a
setting under which we seek to reduce the number of real ex-
periments using domain analytical models; (2) we propose a
novel approach for incorporating domain analytical models
via regularization-like terms. We ensure that we converge to
Pareto-optimal solutions using conditional gradient descent;
(3) Extensive experimental analysis reveal that using our ap-
proach we achieve remarkable efficiency improvement (re-
ducing the number of real experiments while keeping high
approximation capability), which we attribute to the use of a
combination of analytical models in specific locations of the
chemical reaction’s state space.

Application Description
The present work is part of the objective of exploiting the
iron scale produced by the iron and steel industry in or-
der to obtain a rust-proof paint pigment. This raw material
will be used in a defined proportion mixed with a natural
iron oxide pigment. We are mainly interested in the study
of their physico-chemical characteristics (AbedGhars 2018),
and particularly, thermal and mass loss analysis as shown in
Figure 1.

In this section, we introduce some domain-specific no-
tions that are important to understand the rest of the paper.
We present the main materials used in our experiments: red
pigment and calamine oxide and their mixtures. Then, as
the theoretical framework used to control real experiments
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Figure 1: Simultaneous thermal and mass loss analysis of (a)
red pigment and (b, c) binary mixture of red pigment and ad-
ditional calamine percentages. The effect of the temperature
augmentation on the behavior of the red pigment is shown
via weight, derivative weight, temperature difference, and
heat flow curves. Further analysis of mass loss, variation of
the dissociation reaction enthalpy, and the formation of new
phases can be found in Section Thermal Analysis.

is based on thermal analysis and kinetics models, we will
give a short description of both of them.

Binary Mixture and Target Material
The application goal is to characterize and to synthesize a
new paint pigment based on the calamine oxide and red
pigment ensuring desired properties at some given temper-
atures. Red Pigment is a natural form of mineral com-
posed mainly of iron oxide; its individual thermal signature
is given in Figure 1a. This analysis shows a mass loss which
is attributed to the evaporation of water formation of iron
hydroxides corresponding to the dissolution of goethite FeO
(OH) (AbedGhars, Bouhouche, and Ghers 2017). Calamine
Oxide is a steel by-product obtained during continuous cast-
ing or heating of slabs and billets. This product is not a ster-
ile waste and may have a meaning of raw materials in its
own, which can be valued and marketed. The synthesis of
new materials is obtained by the contribution of the calamine
in this process by ensuring a sufficient quantity of Fe2O3

9252



and increasing the density of the synthesized pigment (Fig-
ures 1b and 1c). In parallel, the goal of this application is to
get materials with some desirable qualitative properties in-
cluding optical properties (the size of the pigment particles
may affect the final appearance of the coated surface: a paint
can be glossy, matte, or satiny, depending on the particles’
size which affect the phenomena of diffusion, reflection, and
refraction of light), ferromagnetic properties, etc.

The new material synthesis can be viewed from several
theoretical models. Each one uses approved knowledge of
the field and predicts the expected theoretical trajectories.
The most prominent models that we leverage in our pro-
posed method are thermal and kinetics models.

Thermal Analysis
Thermal analysis is a set of techniques used to measure the
evolution of physico-chemical quantity of a given material
as a function of temperature, time, and atmosphere. These
are mainly used in material characterization but also for
quality control/assurance and failure analysis in industry. In
our case, we focus on the thermogravimetric analysis (TGA)
and the differential scanning calorimetry (DSC).

TGA is often used in research and testing to determine the
characteristics of materials, such as polymers, in order to es-
timate the corrosion oxidation kinetics at high temperatures,
the degradation temperatures, the moisture absorbed by the
material, the amount of organic and inorganic compounds in
a material, the decomposition point of an explosive and sol-
vent residues. The DSC signal measures the differences in
heat exchange between a sample to be analyzed and a refer-
ence. The DSC signal reveals transitions associated with the
dehydration, a polymorphic phase transition, and the high-
temperature melt.

Our dataset is built from real experiments using the SDT-
Q600 version 20.9 thermogravimetric analyzer. Simultane-
ous thermal and mass loss analysis for calamine oxide shows
an increase in weight (3.602%) between 400 and 1000◦C,
which is attributed to the oxidation reaction of iron oxides
(new phase formation) according to the reaction 3 FeO +
1
2 O2 −−→ Fe3O4. Between 850 ◦C and 1150 ◦C, the sys-
tem remains stable, according to the reaction 2 Fe3O4 +
1
2 O2 −−→ 3 Fe2O3. This oxidation is accompanied by
weight gain and heat generation (exothermic reaction) re-
spectively of 3.602% and 1.128 W/g. For iron pigment (Fig-
ure 1a), this analysis shows a mass loss which is attributed
to the evaporation of water formation of iron hydroxides
(goethite FeOOH dissolution). This decrease is 11.05% be-
tween temperatures 289 ◦C and 349 ◦C. This dissolution is
accompanied by absorption of heat (endothermic) equal to
1.926 W/g as shown in Figure 1a. The transformation of
αFeOOH (goethite) to αFe2O3 (hematite) during the heat-
ing higher than 255 ◦C is evidenced by a loss of weight dur-
ing the TGA test. The dehydration mechanism involves the
elimination of H2O. Hematite begins to grow starting only
from a weight loss of 3.97% when we have the synthetic
goethite. The transformation of the product (dehydration)
is done starting from the surface towards the inside of the
grains by the formation of pores and the release of water
vapor.

Kinetics Models
Kinetic models describe the time evolution of the mass as
well as the temperature difference of the analyzed compo-
nents during the thermal degradation process. The complex-
ity of the chosen model depends on the desired objectives.

The simple method for obtaining kinetic parameters from
experimental data is based on the kinetic equation ∂α

∂t =

k(1 − α)n, where ∂α
∂t is the rate of the reaction (or decom-

position). The constant k is given by

k = Ae−Ea/RT (1)

where A is the pre-exponential factor, Ea is the activation
energy andR is the gas constant. This is the Arrhenius equa-
tion (Laidler 1984) which gives the dependence of the rate
constant of a chemical reaction on the absolute temperature
and the constants of the reaction.

In our case, we are more interested in the collision theory
underlying this model and in particular the pre-exponential
factor, which defines the frequency at which molecules col-
lide during a chemical reaction, and its link to the concentra-
tions of each of the considered components in our applica-
tion. Indeed, we exploit the variations of this parameter and
the related kinetic models in order to constrain the machine
learning models we build.

Alternatively, the Eyring equation (Eyring 1935) is based
on transition state theory (Lasaga 1981) and is used to de-
scribe the relationship between reaction rate and tempera-
ture. The Eyring equation is defined as follows:

k =
kBT

h
e−

4H‡
RT e

4S‡
R (2)

where ∆H‡ is the enthalpy of activation, ∆S‡ is the en-
tropy of activation, kB is Boltzmann’s constant, and h is
Planck’s constant. It is similar to the Arrhenius equation,
which also describes the temperature dependence of reaction
rates. However, whereas the Arrhenius equation can mainly
be applied to gas-phase kinetics, the Eyring equation is use-
ful in the study of gas, condensed, and mixed-phase reac-
tions that have no relevance to the collision model. In ad-
dition, the Arrhenius equation is theoretically derived while
the Eyring equation is based on empirical evidence. At very
high temperatures, the two models diverge significantly: ac-
cording to the Arrhenius model, the rate approaches an
asymptotic value, while according to the Eyring model, it
continues to rise (Peleg, Normand, and Corradini 2012).

In our model, the gas-phase kinetics are circumscribed to
the regions where the components undergo exothermic re-
actions (See thermal analysis). In the mixed-phase reactions
that appear in the remaining regions, we make use of the
Eyring equation in order to constrain the learning process.

Generative Model for Augmented Experiments
This section summarizes the problem setting and details the
model of augmented experiments including the evaluation
protocol, machine learning model, and the way domain ana-
lytical models are used to constrain the learning phase.
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Problem Setting
Let us consider a dataset D = {X 1, . . . ,Xn} consisting of
n sets of experiments conducted using a mixture of the red
pigment and calamine oxide at a specified calamine percent-
age pi, i ∈ {1, . . . , n}. All experiments in each set X i are
carried out in a predefined discrete range of temperature sig-
nal u(t) denoted: t1, . . . , tmax. In the case of TGA calcina-
tion process, for example, each single experiment xij ∈ X i,
corresponds to the process of calcination applied to a given
mixture of the red pigment and calamine oxide at a specific
pi calamine percentage and at a given temperature tj .

In addition to the percentage pi at which an experiment
is conducted, it is described by various scalar measures cap-
tured via different sensors which characterize the obtained
state of the system after applying the process of calcination.
The result of an experiment is referred to as a state of the
chemical reaction and is described (characterized) by what
we call state variables. The main state variables captured via
TGA include heat flow, sample purge flow, temperature of
the mixture, and mass of the mixture. In our setting, for each
experiment xij , we consider two important parameters: the
temperature and mass, as a function of the mixing percent-
age pi of calamine for temperature value tj .

We assume that within the regions where our model gen-
erates augmented experiments the phase transitions in the
new mixtures of the red pigment and calamine oxide are
those detected in each element of the mixture individually.
The set of all experimental results obtained for every mix-
ture percentage and every temperature input form what we
refer to as the state space.

Machine Learning Model
In order to train a given architecture, we frame the re-
construction of the state variables as a regression problem,
where the goal is to learn a function f : X −→ Y map-
ping inputs to outputs. As in the traditional regression set-
ting, performance of a learning model is quantified with a
loss function, L, and a mapping is found via

f∗ = argmin
f∈F

L(f) (3)

which can be optimized using a gradient descent algorithm
over a pre-defined class of functions F . In our case, F will
be neural networks parametrized by their weights and the
loss function will be L(f) = 1

2N

∑N
i=1(f(xi)−yi)2, where

N is the number of training examples. For a fixed architec-
ture, i.e., a particular instantiation of the hyperparameters,
the optimization process will tune the weights of the net-
work and, by the same occasion, the subsequent uni-modal
and multi-modal features extracted from the input signals.

Evaluation Protocol
As mentioned above, the goal is to recover the state space
using subsets of the real experiments conducted at particular
percentages of the calamine oxide composing the mixtures.
To overcome the inherent challenges, we propose to frame
the recovering of the state space from an evaluation proto-
col point of view, where one has to select, accordingly, the

u(t)

p

pi
pj

Ki,j

Figure 2: Representation of the state space and the subdivi-
sion into partitions Ki,j , i ∈ {1, n − 1}, delimited by the
sets of experiments X i and X j conducted at pi and pj per-
centages of additional calamine oxide, respectively.

appropriate sets of real experiments or individual windows
of experiments to feed a machine learning model. Figure 2
illustrates a representation of the state space and its subdiv-
sion into partitions.

Using the n sequences of real experiments X i (i ∈
{1, n}), given in the datasetD described previously, ordered
by the percentage pi (i ∈ {1, n}) of calamine in the mixture,
we divide the state space into n−1 contiguous partitions,Ki
with i ∈ {1, n − 1} such that ∀i ∈ {1, n − 1}, pi < pi+1.
Also, we define a partition with the percentage of calamine
greater than pj but obtained by the extension of the model
between two sets of real experiments X i and X j . We denote
this partition Ki,j (i, j ∈ {1, n} and i < j).

As a result, we consider two kinds of machine learning
models: (1) a model that approximates experiments in the
partition Ki,j circumscribed by two given sets training ex-
periments; (2) a model that approximates experiments for
the partition beyond a fixed partition Ki.

Recovering inside circumscribed regions. In this config-
uration, we try to recover the partition Ki,j from its delimit-
ing sets of experimentsX i andX j . For this we train a model
MKi,j

using all elements of these two sets and we perform
validation on the set of experiments X k, with i ≤ k ≤ j.

Recovering outside a circumscribed region. In this con-
figuration, we use sets of experiments X i in order to recover
partitions Kk that fall outside the sets of experiments con-
ducted with X i. In this case, we train a model Mk

Ki
using

all elements of partitions labeled by j such that j <= i and
we perform validation on the set of experiments X k such
that k > i. Here, we want to assess the ability of these mod-
els to extrapolate to other partitions and to what extent they
can do that.

Kinetic-Based Regularization
As we move far away from the set of real experiments or
increase the distance between them, reconstruction models
based exclusively on the real experiments tend to be very
unstable. In these regions, real experiments alone are not
sufficient to satisfactorily determine the values of the state
variables. In order to account for this instability, we instru-
ment our approach with the set of kinetics models described
in Section Kinetics Models.
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Here, we combine the kinetic models via regularization.
Our aim is not to reduce model complexity but leverage reg-
ularization as a mean for incorporating additional forms of
supervision: in our case, kinetic-based models. This addi-
tional regularization-like term is derived from the kinetic
models and allows the trained models to stay in a theoret-
ically bounded range. We derive from these models an ad-
ditional term, R : F −→ R, that is plugged to the original
optimization objective (Equation 3), which, then, becomes:

f∗ = argmin
f∈F

L(f) + λR(f) (4)

where λ ∈]0; 1] is a weight parameter used to control the im-
pact of the regularization term. This term is used precisely
at the interfaces between the various sets of experiments X i
that partition the state space. By adding this regularization
term to the standard loss function (Equation 3), the model
considers both the mean squared differences between model
prediction and real experiments as well as the divergence
from the governing kinetics models (as reflected by the sec-
ond term in Equation 4).

We leverage the pre-exponential factor and its variations
for small increments ∆p of the percentage of the two com-
ponents in the mixture. Additional concentrations of some
components imply more molecules collisions and thus an
increase in the pre-exponential factor. We compute numer-
ically the pre-exponential factor for these small variations
and use them to encode the desire for the continuity of state
variables values for variations of the mixture percentage.

At any given calamine percentage pi, we compute numer-
ically the kinetic constant k which defines the kinetic energy
of the reactants. This allows us to derive a series of penalty
bounds bj = [∆t1

j , . . . ,∆
tmax
j ] at each applied temperature

t1, . . . , tmax using the neighboring points pi+∆p, pi+2∆p,
pi + 3∆p, and so on. The regularization-like term becomes

R(f) =
1

P

P∑
j=1

1{|f(pi + j∆p)− bj | > ε} (5)

where P is the number of neighboring points and depends
on both the distance between the sets of experiments and the
extent of the small increments ∆p. This additional term pro-
vides a necessary constraint, which our model must satisfy.
We thus push our model in the direction of better satisfying
both terms of the cost function.

Finding Pareto-optimal solutions. Within the framework
of our application (and of the approximation capacities that
we are targeting), the regularization-like term that we graft
on the cost function (Equation 4) is essential in order to
force the model to take into account the continuum between
the different pi, and thus obtain optimal solutions. However,
during the optimization process, convergence towards a so-
lution satisfying both terms of the equation simultaneously
is not ensured. The optimality criterion for us corresponds to
finding so-called Pareto-optimal solutions such that none of
L(f) or R(f) can be made better without making the other
worse. Using the Langrangian interpretation, Equation 4 is

the same as the following constrained formulation,
f∗ = argmin

f∈F
L(f) s.t. R(f) ≤ µ (6)

where the soft-constraint problem of Equation 4 becomes
a hard-constraint one. Recent advances in neural networks
optimization demonstrated noticeable successes in many
fields using conditional gradient (CG) which leads to Pareto-
optimal solutions and eventually to improved generaliza-
tion (Ravi et al. 2019). Indeed, formulation (Equation 4)
falls under the category of “scalarization” technique whereas
(Equation 6) is ε-constrained technique. It is known that
when the problem is non-convex, ε-constrained technique
yields Pareto-optimal solutions whereas scalarization tech-
nique does not (Boyd and Vandenberghe 2004; Ravi et al.
2019). We ensure the fulfillment of the additional derived
constraints using CG where gradient steps rely on a linear
minimization oracle over the set of constraints defined by
the additional regularization term.

Experiments
In this section, we evaluate our approach on a real indus-
trial application dataset and demonstrate how it can reliably
reconstruct the state space of the experiments using vari-
ous configurations combining real experiments and analyt-
ical models. All of our experiments are implemented using
Tensorflow framework (Abadi et al. 2016) and the follow-
ing describes the details of experiments and obtained re-
sults. Code to reproduce experiments is publicly available
at https://github.com/nx-project/augmentedExperiments.

Dataset description. Dataset consists of thermal analy-
sis of raw materials. These were collected with an SDT-
Q600 industrial instrument that monitors the calcination of
the mixtures continuously. The instrument encompasses a
pair of thermocouples within the ceramic beams that pro-
vides direct sample, reference, and differential temperature
measurements from ambient to 1500 ◦C (using a ramp of 40
◦C/min). Specifically, various signals are monitored by the
instrument, including, weight (mg), heat flow (mW), tem-
perature difference (µV ), sample purge flow (mL/min), etc.
The dynamics of the Nitrogen gas, which constitutes the am-
bient atmosphere around the mixture, is set to 100 ml/min.
The acquisition of the various signals was carried at a sam-
pling rate of 2 Hz which is sensitive enough, in these kinds
of applications, for capturing temperature and mass trends
which may indicate regime changes. In total, 3000 measure-
ment points were obtained for each set of experiments. In ad-
dition to the theoretical curves of the red pigment (pig) and
the calamine oxide (cala) that were obtained separately, we
perform calcination of mixtures with various percentages,
pi ∈ {5, 10, 15, 20, 25, 35}, of additional calamine oxide.

Training details. We construct neural networks by stack-
ing 3 Fully Connected/ReLU layers with dropout probabil-
ity 0.5 and two regression outputs (for weight and temper-
ature). We optimize the neural architectures, including the
number of neurons in each layer, using Bayesian optimiza-
tion (Snoek, Larochelle, and Adams 2012) (The complete
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Figure 3: Obtained state space reconstructions for (a) weight
and (b) temperature. We report reconstructions averaged
over all evaluation setups and their corresponding perplexity.
As references, we also report the reconstructions obtained
(under the same evaluation setups) using the baseline.

list of hyperparameters and their range of values can be
found in the code repository). The networks are trained for
1000 epochs on the training data and evaluated on the test
set. The learning rate is set to 0.0001. We perform train-
test splits over different runs by stratifying the learning ex-
amples. The model is trained to reconstruct the weight and
the temperature state variables simultaneously by minimiz-
ing the mean squared loss between the original target signal
and the reconstruction provided by the network. In the case
of SGD, weights of the neural network are optimized using
the Adam algorithm (Kingma and Ba 2014). As a reference,
we also train a model (referred to as baseline) using the same
evaluation setup and a comparable number of parameters but
without any additional derived constraint.

Evaluation of the Reconstruction Process
In our first set of experiments, (1) we evaluate the recon-
structions obtained using different configurations of the real
experiments based on the setting described in Section Eval-
uation Protocol; (2) we assess the extent of reconstructions
as a function of the distance to the set of validation exper-
iments and the impact of using CG on the fulfillment of
the additional constraints; (3) we evaluate the reconstruction
performances at specific percentages of additional calamine.

Figures 3a and 3b show the obtained state space re-
constructions of weight and temperature, respectively. Ob-
tained reconstructions are averaged over all evaluation set-
tings. We additionally report their corresponding perplexity.
These two figures highlight in particular the perplexity of
the naive approach (baseline). Our approach contributes to
a substantial reduction of this perplexity (e.g. 2.76±0.09 vs
3.29±0.15 for weight; 55.7 vs 59.4 for temperature). The
perplexity here can be related to 2 factors: the spacing of the
real experiments; and the presence of phase transitions es-
pecially in the range [250; 1250] for temperature. To verify
the impact of experiment spacing, we measure the extent of
reconstructions as a function of the distance from the set of
training to the set of validation experiments. We provide nu-
merical evidence in Figure 4 with the evaluation protocol de-
fined above. We repeated the evaluation setup for 10 times.
We can see that until 20%, both inside and outside circum-
scribed regions, our approach provides controlled perplexity.

100 101 102 103
Epochs

0
5

10
15
20
25
30
35
40

M
ea

n
sq

ua
re

d
er

ro
r(

M
S

E
)

sgd
cg

(a) Training loss

5 10 15 20 25 30 35
0
1
2
3
4
5
6

M
S

E
(×

10
−
3
)

(b) Inside circumscribed regions

5 10 15 20 25 30 35
Distance to the set

of validation experiments (%)

0
1
2
3
4
5
6

M
S

E
(×

10
−
3
)

(c) Outside circumscribed regions

Figure 4: Comparing the performances of SGD vs. CG: (a)
evolution of the training loss as a function of the number of
training epochs; (b and c) extent of the reconstructions as a
function of the distance from the set of training to the set
of validation experiments (inside and outside circumscribed
regions of the state space, respectively). We repeat the evalu-
ation for 10 times with different random seeds and report the
median and the best validation performance of the models.

Furthermore, Figure 4 illustrates also the impact of us-
ing CG on the fulfillment of the constraints that are im-
posed on the models. We can see a noticeable effect of CG
on the reconstruction performances up to an extent of 25%
(Figure 4b) and 30% (Figure 4c). This translates the abil-
ity of CG to converge towards solutions that take into ac-
count the regularization-like terms whereas SGD tends to
push towards solely satisfying the first term of the cost func-
tion at the expense of providing constrained reconstructions.
After that extent, we can notice that performances of CG
and SGD are comparable for models trying to extrapolate
far away from the real experiments. This could be explained
by the fact that the penalty bounds are becoming loose from
that point, which does not help the model to reconstruct cor-
rectly. Despite the existence of many phase transitions that
span all over the state space, our approach is particularly
able to reconstruct the weight and temperature states. Even
when we reduce the number of real experimental points, the
obtained reconstruction quality remains high.

We further investigate the extent of reconstructions at spe-
cific percentages of additional calamine oxide. We report the
average reconstruction performances over all configurations
of the sets of training experiments. It is worth noticing that
for some percentages, e.g. reconstructions of temperature
curves at 15%, no matter how far apart the set of training
experiments are, the reconstructions are satisfactory with or
without the addition of analytical models. However, the an-
alytical models contribute substantially to reducing the ac-
companied perplexity (0.00192±.00081 vs. 0.0076±.0023).
On the other hand, for 35% for example, the reconstruction
errors are greater using the baseline model. This could also
be explained by the numerous phase transitions that exist
around this percentage. In this case, our approach is able to
significantly improve upon the baseline model and overall
in all percentages both in terms of approximation and per-
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Analytical Reconstruction error avg.±std. ×10−2 (best extent %)
model(s) λ = 0.001 λ = 0.01 λ = 0.1 λ = 1

Arrhenius (A) 0.933 ± .0073 (5) 0.988 ± .0023 (15) 0.39 ± .0157 (15) 0.776 ± .0027 (5)
Eyring (E) 0.57 ± .0145 (10) 0.385 ± .0031 (5) 0.228 ± .0079 (10) 0.587 ± .0037 (20)
pig (P) 2.408 ± .0034 (10) 0.408 ± .015 (5) 1.188 ± .0061 (5) 2.408 ± .0042 (10)
cala (C) 0.533 ± .0112 (15) 0.512 ± .0055 (20) 0.524 ± .0047 (5) 0.504 ± .0125 (10)
A+E 0.188 ± .0058 (5) 0.197 ± .0079 (20) 0.214 ± .0051 (10) 0.204 ± .0147 (15)
P+C 0.318 ± .0012 (5) 0.289 ± .0044 (10) 0.309 ± .0108 (10) 0.320 ± .0086 (10)
A+E+P+C 0.192 ± .0056 (15) 0.201 ± .0122 (5) 0.247 ± .0032 (10) 0.231 ± .0143 (15)

Table 1: Summary of the reconstruction errors obtained via kinetic-based regularization. We evaluated various domain analytical
models and different values for the parameter λ ∈ {0.001, 0.01, 0.1, 1} which controls the impact of the regularization-like
term. Results averaged over all possible percentages of additional calamine and evaluation configurations.
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Figure 5: Reconstruction performances at specific percent-
ages of additional calamine oxide. We compare the recon-
structions, of (a) weight and (b) temperature, obtained us-
ing the baseline vs. the regularized models. Results averaged
over all possible distances to the set of training experiments.

plexity (e.g. 0.00087±.00122 vs. 0.00477±.0021 at 15%;
0.00246±.002 vs. 0.00932±.0056 at 35%).

Trade-off between Real Experiments and Richness
of the Domain Models
In the previous experiments, we showed the ability of our ap-
proach to reconstruct precisely both the portions of the state
space delimited by and those falling outside sets of experi-
ments. Here, we evaluate the trade-off between richness of
the domain analytical models, which are plugged to the opti-
mization objective of the learning models via regularization,
and the granularity of real experiments.

For this, we compare reconstruction models trained us-
ing different configurations of the kinetic and thermal-based
regularization-like terms. Precisely, we use the Arrhenius
and Eyring models, as well as the theoretical curves, pig and
cala, to derive these terms. We distinguish a first configura-
tion where the analytical models are each plugged individu-
ally to guide the learning models and a second configuration
where we combine them together, i.e., Arrhenius and Eyring
models (A+E), pig and cala (P+C), and all these models
combined together (A+E+P+C). Additionally, we provide
the best extent of reconstruction (in %) that was achieved in
each configuration. Table 1 summarizes the obtained results.

In both configurations, the analytical models improve sig-

nificantly the performances of the reconstructions generated
by the learning models. Very interestingly, using the the-
oretical curve of the red pigment, the constructed models
are able to get a substantial gain in terms of reconstruction
losses. In particular, for λ = 0.01, we obtain an improve-
ment factor of 10 over the remaining values of λ of the same
configuration. On the other hand, the models guided by the
theoretical curve of the calamine outperform those guided
by the red pigment (except for λ = 0.01, but there the
difference is smaller than for the other values of λ). This
observation shows that some analytical models are more
adapted than others, which is further confirmed when we
compare the influence of the Arrhenius and Eyring models
on the generated reconstructions. Besides, we can observe
that models guided by a combination of A+E outperform
both A+E+P+C and, by far, P+C, while attaining a recon-
struction extent of over 20%.

Overall, these combinations have better reconstruction
performances than the baseline or analytical models taken
individually since their impact is adapted to different regions
of the state space. These results give additional insights into
the study of trade-offs between the richness and complex-
ity of domain analytical models and the amount of real ex-
perimental data (or sensor measurements in the case of real
sensors) needed to train learning models.

Conclusion
To reduce the number of costly real experiments in indus-
trial applications, we proposed a machine learning approach
guided by theoretical domain models and a minimum num-
ber of additional constraints to generate new experiments
with controlled approximation quality. In our practical case,
we generate synthesis materials to discover new anticorro-
sive paints under the constraint stating that the only phase
transitions in the mixtures are those existing in each mate-
rial. Intensive experiments show that our model which com-
bines the principle of thermogravimetric analysis and ma-
chine learning is able to augment the real experiments to
significant extents. Even if the proposed evaluation protocol
reduces the number of required experiments, we plan to in-
clude in future versions of the model additional theoretical
models to overcome the prediction approximation.
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