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Abstract

Text-based games have emerged as an important test-bed for
Reinforcement Learning (RL) research, requiring RL agents
to combine grounded language understanding with sequen-
tial decision making. In this paper, we examine the problem
of infusing RL agents with commonsense knowledge. Such
knowledge would allow agents to efficiently act in the world
by pruning out implausible actions, and to perform look-
ahead planning to determine how current actions might affect
future world states. We design a new text-based gaming en-
vironment called TextWorld Commonsense (TWC) for
training and evaluating RL agents with a specific kind of
commonsense knowledge about objects, their attributes, and
affordances. We also introduce several baseline RL agents
which track the sequential context and dynamically retrieve
the relevant commonsense knowledge from ConceptNet. We
show that agents which incorporate commonsense knowledge
in TWC perform better, while acting more efficiently. We con-
duct user-studies to estimate human performance on TWC and
show that there is ample room for future improvement.

Introduction
Over the years, simulation environments have been used ex-
tensively to drive advances in reinforcement learning (RL).
A recent framework that has received much attention is
TextWorld (TW) (Côté et al. 2018), where an agent must in-
teract with an external environment to achieve a given goal
using only the modality of text. TextWorld and similar text-
based environments seek to bring advances in grounded lan-
guage understanding to a sequential decision making setup.

While existing text-based games are valuable for RL
research, they fail to test a key aspect of human intelli-
gence: common sense. Humans capitalize on commonsense
(background) knowledge about entities – properties, spa-
tial relations, events, causes and effects, and other social
conventions – while interacting with the world (Mccarthy
1960; Winograd 1972; Davis and Marcus 2015). Motivated
by this, we propose a novel text-based environment called
TextWorld Commonsense (or TWC), where the agent is
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Observation
You've entered a kitchen. You
see a dishwasher and a fridge.
Here's a dining table. You see a
dirty plate and a  red apple on the
table. 

Goal

Clean up the kitchen

ConceptNet

Agent

Best action trajectory

1. Take the red apple from the table
2. Take the dirty plate from the table
3. Open the fridge
4. Put the red apple in the fridge
5. Open the dishwasher
6. Put the dirty plate in the

dishwasher

Plausible Actions
1. Open the dishwasher
2. Put the dirty plate in the fridge
3. Put the red apple in the dishwasher
4. ...

Fridge
AtLocation

Plate Dishwasher
AtLocation

Apple

Figure 1: Illustration of a TWC game. The agent is given
an initial observation (top left) and has to produce the list
of actions (bottom right) that are necessary to achieve the
goal (bottom center) using relevant commonsense knowl-
edge from ConceptNet (bottom left).

expected to use commonsense knowledge stored in knowl-
edge bases such as ConceptNet (Liu and Singh 2004; Speer,
Chin, and Havasi 2017) to act efficiently. TWC is a sand-
box environment similar to TextWorld where the agent has
to clean up a house. Achieving goals in this environment re-
quires commonsense knowledge about objects, their proper-
ties, locations, and affordances. Efficient use of common-
sense knowledge would allow the agent to select correct
and applicable actions at each step: i.e., improve sample ef-
ficiency by reducing exploration. Moreover, commonsense
knowledge would help the agent to perform look-ahead
planning and determine how current actions might affect fu-
ture world states (Juba 2016). Fig 1 presents a running ex-
ample from TWC that illustrates how the agent can leverage
a commonsense knowledge base (KB).

Validating such environments is challenging, and re-
quires: (1) verifying the information used in the games; (2)
evaluating baseline agents that are capable of utilizing ex-
ternal commonsense knowledge against counterparts that do
not; and (3) providing empirical evidence to show that the
environment can drive future research. In this work, we ad-
dress each of these by first performing human annotations to
validate the correctness and completeness of the TWC envi-
ronment. Next, we design a framework of agents that com-
bine text-based agents with commonsense knowledge. The
agents can dynamically retrieve relevant knowledge from a
commonsense KB. Finally, based on human performance on
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the generated games and manual selection of commonsense
knowledge, we discuss and justify the importance of such an
environment in driving future research.
Contributions: The main contributions of this paper are
the following: (1) we propose a novel environment called
TWC to evaluate the use of commonsense knowledge by RL
agents; (2) we introduce baselines that use commonsense
knowledge from ConceptNet and show that common sense
indeed helps in decision making; (3) while our model with
common sense performs well, we show a pronounced gap
in performance between automated agents and humans in
the TWC environment. This substantiates our claim that TWC
provides a challenging test-bed for RL agents and can act as
a spur to further research in this area.

TextWorld Commonsense (TWC)
Existing text-based games (Adhikari et al. 2020; Côté et al.
2018) severely restrict the amount and variety of common-
sense knowledge that an agent needs to know and exploit.
Thus, in this paper, we create and present a new domain
– TextWorld Commonsense (TWC) – by reusing the
TextWorld (Côté et al. 2018) engine in order to generate text-
based environments where RL agents need to effectively
retrieve and use commonsense knowledge. Commonsense
can be defined very broadly and in various ways (Fulda
et al. 2017). In this paper, we mainly focus on commonsense
knowledge that pertains to objects, their attributes, and affor-
dances1.

Constructing TWC
We built the TWC domain as a house clean-up environment
where the agent is required to obtain knowledge about typi-
cal objects in the house, their properties, and expected loca-
tion from a commonsense knowledge base. The environment
is initialized with random placement of objects in various lo-
cations. The agent’s high level goal is to tidy up the house
by putting objects in their commonsense locations. This
high level goal may consist of multiple sub-goals requiring
commonsense knowledge. For example, for the sub-goal:
put the apple inside the refrigerator, commonsense knowl-
edge from ConceptNet such as (Apple → AtLocation →
Refrigerator) can assist the agent.
Goal Sources: While our main objective was to create envi-
ronments that require commonsense, we did not want to bias
TWC towards any of the existing knowledge bases. We addi-
tionally wanted to rule out the possibility of data leaks in
situations where both the environment as well as the exter-
nal knowledge came from the same part of a specific com-
monsense knowledge base (KB) like ConceptNet. For the
construction of the TWC goal instances, we picked sources
of information that were orthogonal to existing common-
sense KBs. Specifically, we used: (1) the picture dictionary
from 7ESL2; (2) the British Council’s vocabulary learning

1Gibson in his seminal work (Gibson 1978) refers to affordance
as “properties of an object [...] that determine what actions a human
can perform on them”.

2https://7esl.com/picture-dictionary

Count Examples
Rooms 8 kitchen, backyard

Supporters/Containers 56 dining table, wardrobe
Unique Objects 190 plate, dress
Total Objects 872 dirty plate, clean red dress
Total Entities 928 dirty plate, dining table

Table 1: Statistics on the number of entities, support-
ers/containers, and rooms in the TWC domain.

Correctness Completeness
Rated Commonsense 669 47

Rated NOT Commonsense 31 253

Table 2: Statistics from the human annotations to verify TWC

page3; (3) the English At Home vocabulary learning page4;
and (4) ESOL courses5. We collected vocabulary terms from
these sources and manually aggregated this content in order
to build a dataset that lists several kinds of objects that are
typically found in a house environment. For each object, the
dataset specifies a list of plausible and coherent locations.
Instance Construction: A TWC instance is sampled from
this dataset, which includes a configuration of 8 room types
and a total of more than 900 entities (Table 1). The environ-
ment includes three main kinds of entities: objects, support-
ers, and containers. Objects are entities that can be carried
by the agent, whereas supporters and containers are furniture
where those objects can be placed. Let o represent the ob-
ject or entity in the house; r represent the room that the en-
tity is typically found in; and l represent the location inside
that room where the entity is typically placed. In our run-
ning example, o:apple is an entity, l:refrigerator
is the container, and r:kitchen is the room. Via a manual
verification process (which we elucidate next in Section )
we ensure that the associations between entities, support-
ers/containers, and rooms reflect commonsense. As shown
in Table 1, we collected a total of 190 objects from the afore-
mentioned resources. We further expanded this list by manu-
ally annotating the objects with qualifying properties, which
are usually adjectives from a predefined set (e.g., a shirt may
have a color and a specific texture). This allows increasing
the cardinality of the total pool of objects for generating TWC
environments to more than 800.

Verifying TWC
In order to ensure that TWC reflects commonsense knowl-
edge, we set up two annotation tasks to verify the environ-
ment goals (i.e., goal triples of the form 〈o, r, l〉 , as defined
in Section ). The first task is meant to verify the correctness
of the goals and evaluate whether the goal 〈o, r, l〉 triples
make sense to humans. The second task is aimed at verify-
ing completeness, i.e. that other triples in the environment
do not make sense to humans.

3https://learnenglish.britishcouncil.org/vocabulary/beginner-
to-pre-intermediate

4https://www.english-at-home.com/vocabulary
5https://www.esolcourses.com/topics/household-home.html
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-= Corridor =-
You're now in the corridor.

You see a shoe cabinet. What a letdown! The shoe cabinet is empty! You see an umbrella stand. The umbrella stand is standard. Unfortunately,
there isn't a thing on it. You see a coat hanger. The coat hanger is usual. Looks like someone's already been here and taken everything off
it, though. You see a hat rack. But the thing is empty. Oh! Why couldn't there just be stuff on it? Oh, great. Here's a key holder. But there
isn't a thing on it.

There is a pair of climbing shoes, a brown cap and a white cap on the floor.

You are carrying nothing.

> take the climbing shoes

You pick up the climbing shoes from the ground.

> insert climbing shoes into shoe cabinet

You put the climbing shoes into the shoe cabinet.

Your score has just gone up by one point.

> take the brown cap

You pick up the brown cap from the ground.

> put the brown cap on the hat rack

You put the brown cap on the hat rack.

Your score has just gone up by one point.

> take the white cap

You pick up the white cap from the ground.

> put the white cap on the hat rack

You put the white cap on the hat rack.

Your score has just gone up by one point.

Figure 2: Sample game walkthrough for a game with medium difficulty level. Best viewed in colors. Highlights are not available
to the agents and are shown for illustrative purpose only.

Verifying Correctness: To test the correctness of our en-
vironments, we asked our human annotators to determine
whether they would consider a given room-location combi-
nation in the goal 〈o, r, l〉 to be a reasonable place for the
object o. If so, the instance was labeled as positive, and as
negative otherwise. We collected annotations from 10 anno-
tators, across a total of 205 unique 〈o, r, l〉 triples. Each
annotator labeled 70 of these triples, and each triple was as-
signed to at least 3 distinct annotators. The annotators were
not given any other biasing information, and all annotators
worked independently. We show the overall agreement of
the annotators with TWC’s goals in Table 2. The high agree-
ment from the annotators demonstrates that the goal 〈o, r,
l〉 triples reflect human commonsense knowledge.
Verifying Completeness: Similar to the above annotation
exercise, we also asked human annotators to determine if a
non-goal 〈o, r, l〉 triple made sense to them. In addition
to the 70 triples mentioned above, each of the M = 10 an-
notators were asked to label as either positive or negative
a set of 30 non-goal triples. In order to provide annotators
with an informative set of non-goal 〈o, r, l〉 triples, we used
GloVe (Pennington, Socher, and Manning 2014) to compute
embeddings for each location in TWC. For a given object o,
a non-goal location l’ was then selected among those most
similar to the goal location l, according to the cosine simi-
larity between the embeddings of l and l’. As before, each
non-goal triple was assigned to at least 3 annotators from a
set that comprises a total of 97 triples. As we see in Table
2, the annotators seldom find a hypothesized non-goal 〈o, r,
l〉 triple as commonsensical.
Annotator Reliability: For our overall annotation exercise,
we can report inter-annotator agreement statistics, as the
overall annotation is no longer imbalanced in terms of label
marginals. We report a Krippendorff’s alpha (Krippendorff
2018) ακ = 0.74. This number is over the accepted range for
agreement and shows that our annotators have strong agree-
ment when rating the triples.

#Objects #Objects to find #Rooms
Easy 1 1 1
Medium 2, 3 1, 2, 3 1
Hard 6, 7 5, 6, 7 1, 2

Table 3: Specification of TWC games

Generating TWC Games
We used the TextWorld engine to build a set of text-based
games where the goal is to tidy up a house by putting ob-
jects in the goal locations specified in the aforementioned
TWC dataset. The games are grouped into three difficulty lev-
els (easy, medium, and hard) depending on the total number
of objects in the game, the number of objects that the agent
needs to find (the remaining ones are already carried by the
agent at the beginning of the game) and the number of rooms
to explore. The values of these properties are randomly sam-
pled from the ones listed in Table 3. For each difficulty level,
we provide a training set and two test sets. The training sets
were built out of 2

3 of the unique objects reported in Table 1.
For the first test set, we used the same set of objects as the
training games. We call this set the in distribution test set.
For the second test set, we employed the remaining 1

3 ob-
jects to create the evaluation games. We call this set the out
of distribution test set. This allows us to investigate not only
the capability of the agents to generalize within the same dis-
tribution of the training data, but also their ability to achieve
generalization to unseen entities. Fig 2 shows a game walk-
through for a specific game in the medium difficulty level.

Benchmarking Human Performance
To complete our benchmarking of the TWC domain, we con-
ducted yet another human annotation task, focusing on the
performance of human game-players. Such an experiment is
essential to establishing the performance of human players,
who are generally regarded as proficient at exploiting com-
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monsense knowledge. We set up an interactive interface to
TWC via a Jupyter notebook, which was then used by play-
ers to interact with the same games that we evaluated all the
other RL agents on. We recorded all moves (steps) made by
players, as well as the reward collected. At each step, the
players were shown the current context of the game in text
format, and given a drop-down box with the full list of pos-
sible actions. Once the player picked an action, it was ex-
ecuted; and this process repeated until all possible goals in
the game had been accomplished. A total of 16 annotators
played 104 instances of TWC games, spread across the easy,
medium, and hard levels. Each difficulty level had 5 games,
each from the train and test distributions, for a total of 30
unique games. Each unique game was annotated by a min-
imum of 3 annotators. The results are presented in Table 4,
along with the experimental results in Section , to allow for
direct comparison with the TWC agents.

TWC Agents
Text-based games can be seen as partially observable
Markov decision processes (POMDP) (Kaelbling, Littman,
and Cassandra 1998) where the system dynamics are deter-
mined by an MDP, but the agent cannot directly observe the
underlying state. The agent receives a reward at every time
step and its goal is to maximize the expected discounted
sum of rewards. The TWC games allow the agent to per-
ceive and interact with the environment via text. Thus, the
observation at time step t, ot , is presented as a sequence of
tokens (ot = {o1

t , . . .o
N
t }). Similarly, each action a is also de-

noted as a sequence of tokens {a1, . . . ,aM}. The goal of this
project is to test RL agents with commonsense. Hence, the
agents also have access to a commonsense knowledge base;
and are allowed to use it while selecting actions. To model
TWC, we design a framework that can: (a) learn representa-
tions of various actions; (b) learn from sequential context;
(c) dynamically retrieve the relevant commonsense knowl-
edge; (d) integrate the retrieved commonsense knowledge
with the context; and (e) predict next action. A block dia-
gram of the framework is shown in Fig 3. We describe the
various components of our framework below.

Action and Observation Encoder
We learn representations of observations and actions by
feeding them to a recurrent network. Given the current ob-
servation ot , we use pre-trained word embeddings to repre-
sent ot as a sequence of d-dimensional vectors x1

t , . . . ,xN
t ,

where each xk
t ∈ Rd is the word embedding of the k-th ob-

served token ok
t , k = 1, . . . ,N. Then, a (bidirectional) GRU

encoder (Cho et al. 2014) is used to process the sequence
x1

t , . . . ,xN
t to get the representation of the current observa-

tion: ot = hN
t , where hk

t = GRU(hk−1
t ,xk

t ), for k = 1, . . . ,N.
In a similar way, given the set At of admissible actions at
time step t, we learn representations of each action a ∈ At .

Context Encoder
A key challenge for our RL agent is in modeling context, i.e.
the history of observations. We model the context using an-
other recurrent encoder over the observation representations

Figure 3: Overview of our framework’s decision making at
any given time step. The framework comprises of the fol-
lowing components (visually shown in color): (a) action
encoder which encodes all admissible actions a ∈ A , (b)
observation encoder which encodes the observation ot , (c)
context encoder, which encodes the dynamic context Ct , (d)
a dynamic common sense subgraph of ConceptNet Gt

C ex-
tracted by the agent, (e) a knowledge integration component,
which combines the information from textual observations
and the extracted common sense subgraph, and (f) an action
selection module. ⊕ denotes the concatenation operator.

ot . We use a GRU network to encode the sequence of pre-
vious observations up to ot into a vector st = GRU(st−1,ot).
We refer to st as the state vector, or the context encoding.
The context encoding will be used in addition to the com-
monsense knowledge in the final action prediction.

Dynamic Commonsense Subgraph
Our model retrieves commonsense knowledge from Con-
ceptNet in the form of a graph. The graph Gt

C is updated
dynamically at each time step t. Gt

C is constructed by map-
ping the textual observation ot at time t to ConceptNet and
combining it with the graph at previous time step Gt−1

C . We
used spaCy (https://spacy.io) to extract noun chunks, and
then performed a max sub-string match with all the concepts
in ConceptNet. This results in a set of entities et for the ob-
servation ot at time t. We then combine the concepts from
Gt−1

C and et to get Et . Et consists of all the concepts observed
by the agent until time step t, including the description of the
room, the current observation, and the objects in the inven-
tory. Given Et , we describe three different techniques that
automatically extract the commonsense graph Gt from ex-
ternal knowledge.
(1) Direct Connections (DC): This is the baseline approach
to construct Gt

C. We fetch direct links between each of the
concepts in Et from ConceptNet.
(2) Contextual Direct Connections (CDC): Since the goal
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of the agent is to clean up the house by putting objects
into its appropriate containers such as apple ⇒
refrigerator, we hypothesize that adding links only
between objects and containers may benefit the agent instead
of links between all concepts as done by Direct Connections,
as we might overwhelm the agent with noise. To accomplish
this goal, we split the entities Et into objects and containers.
Since we know the entities from the inventory in Et consti-
tutes objects, no explicit labelling is needed as we consider
the remaining entities as containers. We retain only the edges
between objects and containers from ConceptNet.
(3) Neighborhood (NG): Previous techniques only focus on
connecting links between observed concepts Et from exter-
nal knowledge. In addition to the direct relations, it may be
beneficial to include concepts from external knowledge that
are related to Et , but have not been directly observed from
the game. Therefore, for each concept in Et , we include all
its neighboring concepts and associated links.

Knowledge Integration
We enhance the text-based RL agent by allowing it to jointly
contextualize information from both the commonsense sub-
graph and the observation representation. We call this step
knowledge integration. We encode the commonsense graph
using a graph encoder followed by a co-attention layer.
Graph encoder: The graph Gt

C is encoded as follows:
First, we use pretrained KG embeddings (Numberbatch) to
map the set of nodes Vt to a feature matrix [e1

t , . . . ,e
|Vt |
t ] ∈

R f×|V t
∗ |. Here, ei

t ∈R f is the (averaged) embedding of words
in node i ∈ V t

∗ . Following (Lu et al. 2017), we also add
a sentinel vector to allow the attention modules to not at-
tend to any specific nodes in the subgraph. These node em-
beddings are updated at each time step by message passing
between the nodes of Gt

c with Graph Attention Networks
(GATs) (Veličković et al. 2018) to get {z1

t ,z2
t · · ·z

|Vt |
t } using

multi-head graph attention, resulting in a final graph rep-
resentation that better captures the conceptual relations be-
tween the nodes in the subgraph.
Co-Attention: In order to combine the observational con-
text and the retrieved commonsense graph, we consider a
bidirectional attention flow layer between these representa-
tions to re-contextualize the graph for the current state of
the game (Seo et al. 2016; Yu et al. 2018). Similar to (Yu
et al. 2018), we compute a similarity matrix S ∈ RN×|V t

C |

between the context and entities in the extracted common
sense subgraph using a trilinear function. In particular, the
similarity between ith token’s context encoding hi

t and jth

node encoding z j
t in the commonsense subgraph is com-

puted as: Si j = WT
0 [h

i
t ;z j

t ;hi
t ◦ z j

t ] where ◦ denotes element-
wise product, ; denotes concatenation and W0 is a learnable
parameter. We use the softmax function to normalize the
rows (columns) of S and get the similarity function for the
common-sense knowledge graph S̄G (context representation
S̄O). The commonsense-to-context attention is calculated as
A= S̄>G ·O and the context-to-common sense attention is cal-

culated as B = S̄>G S̄O ·G, where G = [z1
t ,z2

t , · · ·z
|V t

C |
t ]> and

O = [h1
t ,h2

t · · ·hN
t ]
> are the commonsense graph and obser-

vation encodings. The attention vectors are then combined
together and the final graph encoding vectors G are calcu-
lated as W>[G;A;G ◦A;G ◦B] where W is the learnable
parameter. Finally, we get the commonsense graph encod-
ing gt

i for each action ai ∈ At by applying a general attention
over the nodes using the state vector and the action encod-
ing [st ;at

i] (Luong, Pham, and Manning 2015). The attention
score for each node is computed as αi = [st ;at

i]WgG, and
the commonsense graph encoding for action at

i is given as
gt

i = α>i G.

Action Selection
The action score for each action ât

i is computed based on
the context encoding st , the commonsense graph encoding
gt

i and the action encoding at
i . We concatenate these encod-

ing vectors into a single vector rt
i = [st ;gt

i;at
i]. Then, we

compute probability score for each action ai ∈ At as pt =
so f tmax(W1 · ReLU(W2 · rt + b2) + b1); where W1,W2,b1,
and b2 are learnable parameters of the model. The final ac-
tion chosen by the agent is then given by the one with the
maximum probability score, namely ât = argmaxi pt,i.

Experiments
In this section, we report the results of our experiments
on the TWC games. Given that the quality (correctness and
completeness) of TWC has already been evaluated (c.f. Sec-
tion ), these experiments primarily focus on showing that:
(1) agents that utilize commonsense knowledge can achieve
better performance on TWC than their text-based counter-
parts; (2) TWC can aid research in the use of commonsense
knowledge because of the gap between human performance
and the commonsense knowledge agents.
Experimental Setup: We measure the performance of
the various agents using: (1) the normalized score (score
achieved ÷ maximum achievable score); and (2) the num-
ber of steps taken. Each agent is trained for 100 episodes
and the results are averaged over 10 runs. Following one
of the winning strategies in the FirstTextWorld Competi-
tion (Adolphs and Hofmann 2019), we use the Advantage
Actor-Critic framework (Mnih et al. 2016) to train the agents
using reward signals from the training games.

RL Agents in TWC
We evaluate our framework on the TWC cleanup games
(as described in Section ). For comparison, we consider a
random agent that randomly picks an action at each time
step. We consider two types of experiment settings based
on the type of information available to the RL agents: (1)
Text-based RL agents have access to the textual descrip-
tion (observation) of the current state of the game provided
by the TWC environment; and (2) Commonsense-based
RL agents have access to both the observation and Concept-
Net.
Text-only Baseline Agents: As baselines, we picked vari-
ous SOTA text-based agents that utilize observation only: (1)
LM-NSP uses language models such as BERT (Devlin et al.
2019) and GPT2 (Radford et al. 2019) with the observation
and the action pair as a Next Sentence Prediction (NSP)
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Figure 4: Performance evaluation (showing mean and standard deviation averaged over 10 runs) for the three difficulty levels:
Easy (left), Medium (middle), Hard (right) using normalized score and the number of steps taken.

task; (2) LSTM-A2C (Narasimhan, Kulkarni, and Barzi-
lay 2015) uses the observed text to select the next action;
(3) DRRN (He et al. 2016) utilizes the relevance between
the observation and action spaces for better convergence;
and (4) KG-A2C (Ammanabrolu and Hausknecht 2020)
uses knowledge of the game environment generated from
the observation to guide the agent’s exploration. For these
baselines, we use GloVe (Pennington, Socher, and Manning
2014) embeddings for text.

The results on these baselines are reported in Table 4. For
each difficulty level, we report: the agents’ performance; the
optimal number of steps to solve the game6; and the human
performance. The performance of GPT2-NSP and BERT-
NSP shows that even powerful pretrained models if not
tuned to this task have difficulty in these commonsense RL
games, as they do not capture commonsense relationships
between entities. Baselines such as LSTM-A2C, DRRN, and
KG-A2C have a competitive advantage over the LM-NSP
baselines, as they effectively adapt to the sequential interac-
tion with the environment to improve performance. Among
these baselines, DRRN and KG-A2C perform better than
LSTM-A2C as they utilize the structure of the state and ac-
tion spaces for efficient exploration of the environment.
Commonsense-based agents: We introduce commonsense
knowledge in two ways. The first is (Text + Number-
batch) by replacing GloVe embeddings in the LSTM-A2C
agent with Numberbatch (Nb) embeddings (Speer, Chin, and
Havasi 2017) which were trained on text and ConceptNet.

6The optimal number of steps were computed by considering
the objects already in the agent’s possession, the number of objects
to “put” (goals), and the number of rooms in the instance.

This is the naive approach to augment text information with
commonsense knowledge. The results in Table 4 show that
introducing Nb embeddings allows achieving a noticeable
gain (an average of 3 steps in easy and 7 steps in medium
level games) over GloVe embeddings.

In order to explicitly use commonsense knowledge, we
experiment with the three different mechanisms outlined in
Section for retrieving relevant information from Concept-
Net: (DC, CDC and NG). These methods retrieve both the
concepts and structure in the relevant sub-graphs from Con-
ceptNet, which are leveraged by our co-attention mechanism
(Section ). The comparison of the agents’ performance with
different retrieving mechanisms is shown in Fig 5. The re-
sults show that CDC performs the best among other mecha-
nisms, particularly compared to DC. Unlike DC that includes
all the links between observed concepts from ConceptNet,
CDC restricts links to those between observed objects and
containers. This selection of relevant links from Concept-
Net improves the performance of the agent.

Given that CDC performs best, we compare results on text-
based models with CDC-augmented commonsense knowl-
edge to other baselines. Table 4 shows results for text-
based agents initialized with GloVe or Nb embeddings, and
augmented with commonsense knowledge. We see that the
commonsense-based RL agents perform better than text-
based RL agents in the easy and medium level games. This
is not surprising, as these instances mostly involve picking
an object and placing it in a container in the same room.
Both the text-based and commonsense RL agents struggle
in the hard level, as these games have more than one room
and multiple objects and containers. We also notice that the
average number of steps taken by the commonsense-based
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Figure 5: Performance for the medium level (train-set) games (showing mean and standard deviation averaged over 3 runs) with
the different techniques for the commonsense sub-graph extraction.

RL agents are noticeably lower than the other agents as it
efficiently uses commonsense knowledge to rule out implau-
sible actions. This proves that TWC is a promising test-bed
where commonsense knowledge helps.

Our results show that TWC still has much room for im-
provement in terms of retrieving and combining knowledge
with observations and feedback from the environment in
a sample-efficient manner. As a starting point for showing
that there is headroom, we switched the retrieval mecha-
nism to manually selected information from ConceptNet.
We manually retrieved the relevant commonsense knowl-
edge by extracting the commonsensical paths between en-
tities in ConceptNet, corresponding to objects in the TWC
games and their goal locations. The manual subgraph in-
cludes all the relevant shortest paths between an object and
its location, within a 2-hop neighborhood expansion of both
nodes. Since the extracted subgraph can be very large even
for the easy games, further pruning was performed to re-
move noise. We emphasize that the manual annotation can
be error-prone or result in manual subgraphs that lack poten-
tially useful information. Thus, the manual graphs should
not be taken as a gold standard. However, we are explor-
ing other manual retrieval process to understand if better
commonsense retrieval approaches can bring improvements
in the future. In Table 4, agents that are augmented with
the manual graph perform better than the other automated
retrieval mechanisms (average reduction of 2− 5 steps on
easy and medium). Fig 4 shows training curves for the Text-
only, Text+Commonsense and Text+Manual agents on the
three difficulty levels. We notice that infusing common-
sense knowledge allows achieving faster convergence both
in terms of the number of steps taken by the agents and the
final score. We found that the extracted manual subgraphs is
not perfect as can be seen in the training curves for medium
and hard levels.
Human Performance on TWC: We also present the results
of human performance in TWC (outlined in Section ). The
O and H columns in Table 4 (two per condition) present
these results. A quick comparison of these numbers reveals
two major results: (1) human performance H is very close
to the optimal number of steps O in all 3 conditions; and
(2) there is significant headroom between H and all of the

other agents in the table, including the ones with the manual
graph. This confirms that there is still much progress to be
made in retrieving and encoding the commonsense knowl-
edge effectively to solve such problems; and that TWC can
spur further research.

Generalization
Table 4 reports the results both for test games that be-
long to the same distribution used at training time (IN),
and games that were generated from a different set of enti-
ties (OUT). We see a similar trend on both these settings.
The commonsense-enhanced agent outperforms the text-
only agent in all cases. However, all agents including those
that utilize commonsense knowledge show similar drop in
performance from IN to OUT distribution. This is in con-
trast to the use of the knowledge graphs in other NLP tasks
such as textual entailment where knowledge graphs have
shown to be robust to changes in the underlying (training and
testing) environment (Kapanipathi et al. 2020; Chen et al.
2018). The task of designing knowledge-enabled agents that
are robust to such changes is another open challenge for the
community that can be evaluated by TWC.
Results Summary: Our results establish that TWC is an
environment where agents augmented with commonsense
knowledge show better performance than their text-based
counterparts. Based on the experiments with manually re-
trieved sub-graphs, optimal steps, and the human perfor-
mance numbers, we show that TWC has enough head-
room for future research efforts to: (1) retrieve more rel-
evant commonsense knowledge for KBs; and (2) for new
agents/techniques to exploit such knowledge.

Related Work
RL Environments and TextWorld: Games are a rich do-
main for studying grounded language and how information
from text can be utilized in control. Recent work has ex-
plored text-based RL games to learn strategies for CivII
(Branavan, Silver, and Barzilay 2012), multi-user dungeon
games (Narasimhan, Kulkarni, and Barzilay 2015), etc. Our
work builds on the TextWorld (Côté et al. 2018) sandbox
learning environment. Since its introduction, there has been
a large body of work devoted to improving performance on
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Easy Medium Hard
O H #Steps Norm. Score O H #Steps Norm. Score O H #Steps Norm. Score

IN

GPT2-NSP

2.
00
±

0.
00

2.
12
±

0.
49 30.36 ± 0.00 0.64 ± 0.00

3.
60
±

0.
55

5.
33
±

2.
06 42.12 ± 0.00 0.70 ± 0.00

15
.0

0
±

2.
00

15
.0

0
±

3.
29 50.00 ± 0.00 0.36 ± 0.00

BERT-NSP 25.20 ± 0.00 0.76 ± 0.00 34.72 ± 0.00 0.88 ± 0.00 50.00 ± 0.00 0.52 ± 0.00
LSTM-A2C 17.59 ± 3.11 0.86 ± 0.04 37.99 ± 6.03 0.74 ± 0.11 49.21 ± 0.58 0.54 ± 0.04
DRRN . 18.88 ± 2.69 0.81 ± 0.08 33.41 ± 2.81 0.73 ± 0.06 46.20 ± 4.86 0.44 ± 0.01
KG-A2C 17.65 ± 3.62 0.85 ± 0.07 37.18 ± 4.86 0.72 ± 0.07 49.36 ± 7.50 0.46 ± 0.10
Text
+Commonsense 14.18 ± 6.47 0.89 ± 0.10 34.67 ± 6.65 0.78 ± 0.07 48.45 ± 2.50 0.51 ± 0.10
+Manual 13.70 ± 1.85 0.92 ± 0.03 29.26 ± 0.94 0.88 ± 0.03 46.43 ± 3.67 0.54 ± 0.04
+Numberbatch 11.79 ± 3.04 0.96 ± 0.03 27.10 ± 5.06 0.85 ± 0.06 44.22 ± 4.86 0.57 ± 0.00
+Nb+Commonsense 14.43 ± 3.08 0.93 ± 0.06 25.11 ± 2.33 0.87 ± 0.04 43.27 ± 0.70 0.45 ± 0.00
+Nb+Manual 13.37 ± 5.63 0.92 ± 0.07 23.51 ± 1.28 0.91 ± 0.06 42.87 ± 0.65 0.52 ± 0.01

O
U

T

GPT2-NSP

2.
00
±

0.
00

2.
24
±

0.
75 40.28 ± 0.00 0.46 ± 0.00

4.
40
±

1.
14

4.
40
±

1.
85 44.96 ± 0.00 0.38 ± 0.00

14
.6

0
±

2.
67

17
.6

7
±

3.
31 50.00 ± 0.00 0.14 ± 0.00

BERT-NSP 24.76 ± 0.00 0.72 ± 0.00 41.12 ± 0.00 0.55 ± 0.00 50.00 ± 0.00 0.27 ± 0.00
LSTM-A2C 19.89 ± 1.86 0.79 ± 0.01 43.70 ± 5.52 0.52 ± 0.18 50.00 ± 0.00 0.27 ± 0.01
DRRN . 19.49 ± 4.89 0.84 ± 0.08 40.49 ± 4.41 0.56 ± 0.07 50.00 ± 0.00 0.18 ± 0.10
KG-A2C 18.00 ± 3.24 0.87 ± 0.05 43.08 ± 4.13 0.54 ± 0.17 49.96 ± 0.00 0.22 ± 0.00
Text
+Commonsense 19.14 ± 3.32 0.83 ± 0.07 41.01 ± 6.97 0.56 ± 0.13 49.99 ± 0.01 0.28 ± 0.05
+Manual 16.86 ± 2.26 0.89 ± 0.04 39.95 ± 2.46 0.71 ± 0.06 49.97 ± 0.04 0.26 ± 0.11
+Numberbatch 19.77 ± 2.50 0.81 ± 0.15 34.54 ± 2.89 0.80 ± 0.04 49.95 ± 0.08 0.29 ± 0.02
+Nb+Commonsense 20.84 ± 1.13 0.83 ± 0.03 33.43 ± 2.11 0.71 ± 0.09 50.00 ± 0.00 0.25 ± 0.01
+Nb+Manual 18.24 ± 4.63 0.83 ± 0.09 30.12 ± 4.62 0.84 ± 0.03 49.99 ± 0.02 0.22 ± 0.05

Table 4: Generalization results for within distribution (IN) and out-of-distribution (OUT) games. O represents the optimal
#steps needed to accomplish the goals. H represents human-level performance. All agents were restricted to a max of 50 steps.

this benchmark. A recent line of work on TextWorld learns
symbolic representations of the agent’s belief. Notably, Am-
manabrolu and Riedl (2019) proposed KG-DQN and Ad-
hikari et al. (2020) proposed GATA. Both approaches rep-
resent the game state as a belief graph. This graph is used
to prune the action space, enabling efficient exploration, in
a different way from our work which uses common sense.
The LeDeepChef system (Adolphs and Hofmann 2019) is
also related to our work. They achieve transfer by addition-
ally supervising the model with a list of the most common
food items in FreeBase (Bollacker et al. 2008), allowing
their agent to generalize to hitherto unseen recipes and ingre-
dients. Zahavy et al. (2018) propose the Action-Elimination
Deep Q-Network (AE-DQN), which learns to predict invalid
actions in the text-adventure game Zork. This network al-
lows the model to efficiently handle the large action space.
The use of commonsense knowledge in our work potentially
has the same effect of down-weighting implausible actions.

External Knowledge for Efficient RL: There have been
few attempts on adding prior or external knowledge to RL
approaches. Notably, Garnelo, Arulkumaran, and Shanahan
(2016) proposed Deep Symbolic RL, which combines as-
pects of symbolic AI with neural networks and RL as a way
to introduce commonsense priors. There has also been work
on policy transfer (Bianchi et al. 2015), which studies how
knowledge acquired in one environment can be re-used in
another one; and experience replay (Wang et al. 2016; Lin
1992, 1993) which studies how an agent’s previous expe-
riences can be stored and then later reused. In this paper,
we use commonsense knowledge as a way to improve sam-
ple efficiency in text-based RL agents. To the best of our
knowledge, there is no prior work that practically explores
how commonsense can be used to make RL agents more effi-

cient. The most relevant prior work is by Martin, Sood, and
Riedl (2018), who use commonsense rules to build agents
that can play tabletop role-playing games. However, unlike
our work, the commonsense rules in this work are manually
engineered.
Leveraging Commonsense: Recently, there has been a lot
of work in NLP to utilize commonsense for QA, NLI, etc.
(Sap et al. 2019; Talmor et al. 2018). Many of these ap-
proaches seek to effectively utilize ConceptNet by reducing
the noise retrieved from it (Lin et al. 2019; Kapanipathi et al.
2020). This is also a key challenge in TWC.

Conclusion
We created a novel environment (TWC) to evaluate the per-
formance on RL agents on text-based games requiring com-
monsense knowledge. We introduced a framework of agents
which tracks the state of the world; uses the sequential con-
text to dynamically retrieve relevant commonsense knowl-
edge from a knowledge graph; and learns to combine the
two different modalities. Our agents equipped with common
sense achieve their goals with greater efficiency and less ex-
ploration when compared to a text-only model, thus show-
ing the value of our new environments and models. There-
fore, we believe that our TWC environment provides inter-
esting challenges and can be effectively used to fuel further
research in this area.

Reproducibility
To ensure the wide and unrestricted usage of the TWC envi-
ronment, we release the TWC environment (with anonymized
human annotations), code to generate text-based games, and
the sample agents used in this paper: https://github.com/
IBM/commonsense-rl.
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