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Abstract

We consider the Multi-Armed Bandit (MAB) problem, where
an agent sequentially chooses actions and observes rewards for
the actions it took. While the majority of algorithms try to min-
imize the regret, i.e., the cumulative difference between the
reward of the best action and the agent’s action, this criterion
might lead to undesirable results. For example, in large prob-
lems, or when the interaction with the environment is brief,
finding an optimal arm is infeasible, and regret-minimizing
algorithms tend to over-explore. To overcome this issue, al-
gorithms for such settings should instead focus on playing
near-optimal arms. To this end, we suggest a new, more le-
nient, regret criterion that ignores suboptimality gaps smaller
than some ε. We then present a variant of the Thompson Sam-
pling (TS) algorithm, called ε-TS, and prove its asymptotic
optimality in terms of the lenient regret. Importantly, we show
that when the mean of the optimal arm is high enough, the
lenient regret of ε-TS is bounded by a constant. Finally, we
show that ε-TS can be applied to improve the performance
when the agent knows a lower bound of the suboptimality
gaps.

Introduction
Multi-Armed Bandit (MAB) problems are sequential
decision-making problems where an agent repeatedly
chooses an action (‘arm’), out of K possible actions, and
observes a reward for the selected action (Robbins 1952). In
this setting, the agent usually aims to maximize the expected
cumulative return throughout the interaction with the prob-
lem. Equivalently, it tries to minimize its regret, which is the
expected difference between the best achievable total reward
and the agent’s actual returns.

Although regret is the most prevalent performance crite-
rion, many problems that should intuitively be ‘easy’ suf-
fer from both large regret and undesired behavior of regret-
minimizing algorithms. Consider, for example, a problem
where most arms are near-optimal and the few remaining
ones have extremely lower rewards. For most practical ap-
plications, it suffices to play any of the near-optimal arms,
and identifying such arms should be fairly easy. However,
regret-minimizing algorithms only compare themselves to
the optimal arm. Thus, they must identify an optimal arm
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with high certainty, or they will suffer linear regret. This leads
to two undesired outcomes: (i) the regret fails to characterize
the difficulty of such problems, and (ii) regret-minimizing
algorithms tend to over-explore suboptimal arms.

Regret fails as a complexity measure: It is well known
that for any reasonable algorithm, the regret dramatically
increases as the suboptimality gaps shrink, i.e., the reward
of some suboptimal arms is very close to the reward of an
optimal one (Lai and Robbins 1985). Specifically in our
example, if most arms are almost-optimal, then the regret
can be arbitrarily large. In contrast, finding a near-optimal
solution in this problem is relatively simple. Thus, the regret
falsely classifies this easy problem as a hard one.

Regret-minimizing algorithms over-explore: As previ-
ously stated, any regret-minimizing agent must identify an
optimal arm with high certainty or suffer a linear regret. To do
so, the agent must thoroughly explore all suboptimal arms. In
contrast, if playing near-optimal arms is adequate, identifying
one such arm can be done much more efficiently. Importantly,
this issue becomes much more severe in large problems or
when the interaction with the problem is brief.

The origin of both problems is the comparison of the
agent’s reward to the optimal reward. Nonetheless, not all
bandit algorithms rely on such comparisons. Notably, when
trying to identify good arms (‘best-arm identification’), many
algorithms only attempt to output ε-optimal arms, for some
predetermined error level ε > 0 (Even-Dar, Mannor, and
Mansour 2002). However, this criterion only assesses the
quality of the output arms and is unfit when we want the algo-
rithm to choose near-optimal arms throughout the interaction.

In this work, we suggest bringing the leniency of the ε-
best-arm identification into regret criteria. Inspired by the
ε-optimality relaxation in best-arm identification, we define
the notion of lenient regret, that only penalizes arms with
gaps larger than ε. Intuitively, ignoring small gaps alleviates
both previously-mentioned problems: first, arms with gaps
smaller than ε do not incur lenient regret, and if all other arms
have extremely larger gaps, then the lenient regret is expected
to be small. Second, removing the penalty from near-optimal
arms allows algorithms to spend less time on exploration of
bad arms. Then, we expect that algorithms will spend more
time playing near-optimal arms.

From a practical perspective, optimizing a more lenient
criterion is especially relevant when near-optimal solutions

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

8950



are sufficient while playing bad arms is costly. Consider, for
example, a restaurant-recommendation problem. For most
people, restaurants of similar quality are practically the same.
On the other hand, the cost of visiting bad restaurants is very
high. Then, a more lenient criterion should allow focusing
on avoiding the bad restaurants, while still recommending
restaurants of similar quality.

In the following sections, we formally define the lenient
regret and prove a lower bound for this criterion that dramati-
cally improves the classical lower bound (Lai and Robbins
1985) as ε increases. Then, inspired by the form of the lower
bound, we suggest a variant of the Thompson Sampling (TS)
algorithm (Thompson 1933), called ε-TS, and prove that its
regret asymptotically matches the lower bound, up to an ab-
solute constant. Importantly, we prove that when the mean of
the optimal arm is high enough, the lenient regret of ε-TS is
bounded by a constant. We also provide an empirical evalu-
ation that demonstrates the improvement in performance of
ε-TS, in comparison to the vanilla TS. Lastly, to demonstrate
the generality of our framework, we also show that our algo-
rithm can be applied when the agent has access to a lower
bound of all suboptimality gaps. In this case, ε-TS greatly im-
proves the performance even in terms of the standard regret.

Related Work
For a comprehensive review of the MAB literature, we refer
the readers to (Bubeck, Cesa-Bianchi et al. 2012; Lattimore
and Szepesvári 2020; Slivkins et al. 2019). MAB algorithms
usually focus on two objectives: regret minimization (Auer,
Cesa-Bianchi, and Fischer 2002; Garivier and Cappé 2011;
Kaufmann, Korda, and Munos 2012) and best-arm identifi-
cation (Even-Dar, Mannor, and Mansour 2002; Mannor and
Tsitsiklis 2004; Gabillon, Ghavamzadeh, and Lazaric 2012).
Intuitively, the lenient regret can be perceived as a weaker
regret criterion that borrows the ε-optimality relaxation from
best-arm identification. Moreover, we will show that in some
cases, the lenient regret aims to maximize the number of
plays of ε-optimal arms. Then, the lenient regret is the most
natural adaptation of the ε-best-arm identification problem to
a regret minimization setting.

Another related concept can be found in sample complex-
ity of Reinforcement Learning (RL) (Kakade 2003; Latti-
more et al. 2013; Dann and Brunskill 2015; Dann, Lattimore,
and Brunskill 2017). In the episodic setting, this criterion
maximizes the number of episodes where an ε-optimal pol-
icy is played, and can therefore be seen as a possible RL-
formulation to our criterion. However, the results for sample
complexity significantly differ from ours – first, the lenient
regret allows representing more general criteria than the num-
ber of ε-optimal plays. Second, in the RL settings algorithms
focus on the dependence in ε and in the size of the state and
action spaces, while we derive bounds that depend on the
suboptimality gaps. Finally, we show that when the optimal
arm is large enough, the lenient regret is constant, and to the
best of our knowledge, there is no equivalent result in RL. In
some sense, our work can be viewed as a more fundamen-
tal analysis of sample complexity that will hopefully allow
deriving more general results in RL.

To minimize the lenient regret, we devise a variant of

the Thompson Sampling algorithm (Thompson 1933). The
vanilla algorithm assumes a prior on the arm distributions, cal-
culates the posterior given the observed rewards and chooses
arms according to their probability of being optimal given
their posteriors. Even though the algorithm is Bayesian in na-
ture, its regret is asymptotically optimal for any fixed problem
(Kaufmann, Korda, and Munos 2012; Agrawal and Goyal
2013a; Korda, Kaufmann, and Munos 2013). The algorithm
is known to have superior performance in practice (Chapelle
and Li 2011) and has variants for many different settings,
i.e., linear bandits (Agrawal and Goyal 2013b), combinato-
rial bandits (Wang and Chen 2018) and more. For a more
detailed review of TS algorithms and their applications, we
refer the readers to (Russo et al. 2018). In this work, we
present a generalization of the TS algorithm, called ε-TS,
that minimizes the lenient regret when ignoring gaps smaller
than ε. Specifically, when ε = 0, our approach recovers the
vanilla TS.

As previously stated, we also prove that if all gaps are
larger than a known ε > 0, then our algorithm improves the
performance also in terms of the standard regret. Specifically,
we prove that the regret of ε-TS is bounded by a constant
when the optimal arm is larger than 1− ε. This closely relates
to the results of (Bubeck, Perchet, and Rigollet 2013), which
proved constant regret bounds when the algorithm knows
both the mean of the optimal arm and a lower bound on
the gaps. This was later extended in (Lattimore and Munos
2014) for more general structures. Notably, one can apply
the results of (Lattimore and Munos 2014) to derive constant
regret bounds when all gaps are larger than ε and the optimal
arm is larger than 1 − ε. Nonetheless, and to the best of
our knowledge, we are the first to demonstrate improved
performance also when the optimal arm is smaller than 1− ε.

Setting
We consider the stochastic multi-armed bandit problem with
K arms and arm distributions ν = {νa}Ka=1. At each round,
the agent selects an arm a ∈ [K] , {1, . . . ,K}. Then, it
observes a reward generated from a fixed distribution νa, in-
dependently at random of other rounds. Specifically, when
pulling an arm a on the nth time, it observes a reward
Xa,n ∼ νa. We assume that the rewards are bounded in
Xa,n ∈ [0, 1] and have expectation E[Xa,n] = µa. We de-
note the empirical mean of an arm a using the n first samples
by µ̂a,n = 1

n

∑n
k=1Xa,k and define µ̂a,0 = 0. We also de-

note the mean of an optimal arm by µ∗ = maxa µa and the
suboptimality gap of an arm a by ∆a = µ∗ − µa.

Let at be the action chosen by the agent at time t. For
brevity, we write its gap by ∆t = ∆at . Next, denote the
observed reward after playing at by Xt = Xat,Nat (t+1),
where Na(t) =

∑t−1
τ=1 1{aτ = a} is the number of times an

arm a was sampled up to time t − 1. We also let µ̂a(t) =
µ̂a,Na(t), the empirical mean of arm a before round t, and
denote the sum over the observed rewards of a up to time
t − 1 by Sa(t) =

∑Na(t)
k=1 Xa,k = Na(t)µ̂a(t). Finally, we

define the natural filtration Ft = σ(a1, X1, . . . , at, Xt).
Similarly to other TS algorithms, we work with Beta

priors. When initialized with parameters α = β = 1,
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Figure 1: Illustration of different ε-gap functions, in compari-
son to the standard regret f(∆) = ∆.

p ∼ Beta(α, β) is a uniform distribution. Then, if p is the
mean of N Bernoulli experiments, from which there were S
‘successes’ (ones), the posterior of p is Beta(S+1, N−S+1).
We denote the cumulative distribution function (cdf) of the
Beta distribution with parameters α, β > 0 by FBeta

α,β . Sim-
ilarly, we denote the cdf of the Binomial distribution with
parameters n, p by FBn,p and its probability density function
(pdf) by fBn,p. We refer the readers to Appendix A1 for further
details on the distributions and the relations between them
(i.e., the ‘Beta-Binomial trick’). We also refer the reader to
this appendix for some useful concentration results (Hoeffd-
ing’s inequality and Chernoff-Hoeffding bound).

Finally, we define the Kullback–Leibler (KL) divergence
between any two distributions ν and ν′ by KL(ν, ν′), and let

d(p, q) = p ln
p

q
+ (1− p) ln

1− p
1− q

(1)

be the KL-divergence between Bernoulli distributions with
means p, q ∈ [0, 1]. By convention, if p < 1 and q ≥ 1, or if
p > 0 and q = 0, we denote d(p, q) =∞.

Regret and Lenient Regret
Most MAB algorithms aim to maximize the expected cumu-
lative reward of the agent. Alternatively, algorithms mini-
mize their expected cumulative regret R(T ) = E

[∑T
t=1 ∆t

]
.

However, and as previously discussed, this sometimes leads
to undesired results. Notably, to identify an optimal arm, algo-
rithms must sufficiently explore all suboptimal arms, which is
sometimes infeasible. Nonetheless, existing lower bounds for
regret-minimizing algorithms show that any reasonable algo-
rithm cannot avoid such exploration (Lai and Robbins 1985).
To overcome this issue, we suggest minimizing a weaker
notion of regret that ignores small gaps. This will allow find-
ing a near-optimal arm much faster. We formally define this
criterion as follows:
Definition 1. For any ε ∈ [0, 1], a function f : [0, 1]→ R+

is called an ε-gap function if f(∆) = 0 for all ∆ ∈ [0, ε] and
f(∆) > 0 for all ∆ > ε. The lenient regret w.r.t. an ε-gap

function f is defined as Rf (T ) = E
[∑T

t=1 f(∆t)
]
.

While it is natural to require of f to increase with ∆, this
assumption is not required for the rest of the paper. Moreover,

1A full version can be found at http://arxiv.org/abs/2008.03959.

assuming that f(∆) > 0 for all ∆ > ε is only required for
the lower bound; for the upper bound, it can be replaced by
f(∆) ≥ 0 when ∆ > ε. There are three notable examples for
ε-gap functions (see also Figure 1 for graphical illustration).
First, the most natural choice for an ε-gap function is the
hinge loss f(∆) = max{∆ − ε, 0}, which ignores small
gaps and increases linearly for larger gaps.

Second, we are sometimes interested in maximizing the
number of steps where ε-optimal arms are played. In this case,
we can choose f(∆) = 1{∆ > ε}. This can be seen as the
natural adaptation of ε-best-arm identification into a regret
criterion. Importantly, notice that this criterion only penalizes
sampling of arms with gaps larger than ε. This comes with a
stark contrast to best-arm identification, where all samples
are penalized, whether they are of ε-optimal arms or not.

Finally, we can choose f(∆) = ∆ · 1{∆ > ε}. Impor-
tantly, when all gaps are larger than ε, then this function
leads to the standard regret. Thus, all results for ε-gap func-
tions also hold for the standard regret when ∆a > ε for all
suboptimal arms.

There are two ways for relating the lenient regret to the
standard regret. First, notice that the standard regret can be
represented through the 0-gap function f(∆) = ∆. Alterna-
tively, the standard regret can be related to lenient regret w.r.t.
the indicator gap-function:

Claim 1. Let R(T ) =E
[∑T

t=1 ∆t

]
be the standard regret

and define fε(∆)=1{∆>ε}. Then, R(T )=
∫ 1

ε=0
Rfε(T )dε.

The proof is in Appendix E.1. Specifically, it implies that
the standard regret aims to minimize the average lenient
regret over different leniency levels. In contrast, our approach
allows choosing which leniency level to minimize according
to the specific application. By doing so, the designer can
adjust the algorithm to its needs, instead of using an algorithm
that minimizes the average performance.

Lower Bounds
In this section, we prove a problem-dependent lower bound
for the lenient regret. Notably, when working with ε-gap
functions with ε > 0, we prove that the lower bound behaves
inherently different than the case of ε = 0. Namely, for some
problems, the lower bound is sub-logarithmic, in contrast to
the Ω(lnT ) bound for the standard regret.

To prove the lower bound, we require some additional
notations. Denote by D, a set of distributions over [0, 1] such
that νa ∈ D for all a ∈ [K]. A bandit strategy is called
consistent over D w.r.t. an ε-gap function f if for any bandit
problem with arm distributions in D and for any 0 < α ≤ 1,
it holds that Rf (T ) = o(Tα). Finally, we use Kinf , as was
defined in (Burnetas and Katehakis 1996; Garivier, Ménard,
and Stoltz 2019):

Kinf(ν, x,D) = inf{KL(ν, ν′) : ν′ ∈ D,E[ν′] > x} ,

and by convention, the infimum over an empty set equals∞.
We now state the lower bound:
Theorem 1. For any consistent bandit strategy w.r.t. an ε-
gap function f , for all arms k ∈ [K] such that ∆k > ε, it
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holds that

lim inf
T→∞

E[Nk(T + 1)]

lnT
≥ 1

Kinf(νk, µ∗ + ε,D)
. (2)

Specifically, the lenient regret w.r.t. f is lower bounded by

lim inf
T→∞

Rf (T )

lnT
≥

∑
a:∆a>ε

f(∆a)

Kinf(νa, µ∗ + ε,D)
. (3)

The proof uses the techniques of (Garivier, Ménard, and
Stoltz 2019) and can be found in Appendix B. Specifically,
choosing ε = 0 leads to the bound for the standard regret
(Burnetas and Katehakis 1996). As anticipated, both the le-
nient regret and the number of samples from arms with large
gaps decrease as ε increases. This justifies our intuition that
removing the penalty from ε-optimal arms enables algorithms
to reduce the exploration of arms with ∆a > ε.

The fact that the bounds decrease with ε leads to another
interesting conclusion – any algorithm that matches the lower
bound for some ε is not consistent for any ε′ < ε, since it
breaks the lower bound for ε′. This specifically holds for
the standard regret and implies that there is no ‘free lunch’ –
achieving the optimal lenient regret for some ε > 0 leads to
non-logarithmic standard regret.

Surprisingly, the lower bound is sub-logarithmic when
µ∗ > 1 − ε. To see this, notice that in this case, there is
no distribution ν ∈ D such that E[ν] > µ∗ + ε, and thus
Kinf(νa, µ

∗ + ε,D) = ∞. Intuitively, if the rewards are
bounded in [0, 1] and some arm has a mean µa > 1 − ε,
playing it can never incur regret. Identifying that such an
arm exists is relatively easy, which leads to low lenient re-
gret. Indeed, we will later present an algorithm that achieves
constant regret in this regime.

Finally, and as with most algorithms, we will focus on
the set of all problems with rewards bounded in [0, 1]. In
this case, the denominator in Equation (3) is bounded by
Kinf(νa, µ

∗ + ε,D) ≥ d(µa, µ
∗ + ε) (e.g., by applying

Lemma 1 of (Garivier, Ménard, and Stoltz 2019)), and equal-
ity holds when the arms are Bernoulli-distributed. Since our
results should also hold for Bernoulli arms, our upper bound
will similarly depend on d(µa, µ

∗ + ε).

Thompson Sampling for Lenient Regret
In this section, we present a modified TS algorithm that can
be applied with ε-gap functions. W.l.o.g., we assume that the
rewards are Bernoulli-distributed, i.e., Xt ∈ {0, 1}; other-
wise, the rewards can be randomly rounded (see (Agrawal
and Goyal 2012) for further details). To derive the algorithm,
observe that the lower bound of Theorem 1 approaches zero
as the optimal arm becomes closer to 1− ε. Specifically, the
lower bound behaves similarly to the regret of the vanilla TS
with rewards scaled to [0, 1 − ε]. On the other hand, if the
optimal arm is above 1− ε, we would like to give it a higher
priority, so the regret in this case will be sub-logarithmic.
This motivates the following ε-TS algorithm, presented in
Algorithm 1: denote by θa(t), the sample from the posterior
of arm a at round t, and recall that TS algorithm choose arms
by at ∈ arg maxa θa(t). For any arm with µ̂a(t) ≤ 1 − ε,
we fix its posterior to be a scaled Beta distribution, such that

Algorithm 1 ε-TS for Bernoulli arms

1: Initialize Na(1)=0, Sa(1)=0 and µ̂a(1)=0, ∀a∈ [K]
2: for t = 1, . . . , T do
3: for a = 1 . . . ,K do
4: if µ̂a(t) > 1− ε then
5: θa(t) = µ̂a(t)
6: else
7: αa(t) =

⌊
Sa(t)
1−ε

⌋
+ 1

8: βa(t) = Na(t) + 2− αa(t)
9: θa(t)=(1− ε)Y for Y ∼Beta(αa(t), βa(t))

10: end if
11: end for
12: Play at∈arg maxa θa(t) and observe the reward Xt

13: SetNat(t+1)=Nat(t)+1, Sat(t+1)=Sat(t)+Xt,
14: µ̂at(t+ 1)=

Sat (t+1)

Nat (t+1) (arms a 6=at are unchanged)
15: end for

the range of the posterior is [0, 1− ε], but its mean (approxi-
mately) remains µ̂a(t) (lines 7-9). If µ̂a(t) > 1 − ε, we set
the posterior to θa(t) = µ̂a(t) > 1− ε (line 5), which gives
this arm a higher priority than any arm with µ̂a(t) ≤ 1− ε.
Notice that ε-TS does not depend on the specific ε-gap func-
tion. Intuitively, this is since it suffices to match the number
of suboptimal plays in Equation (2), that only depends on ε.
The algorithm enjoys the following asymptotic lenient regret:

Theorem 2. Let f be an ε-gap function. Then, the lenient
regret of ε-TS w.r.t. f is

lim sup
T→∞

Rf (T )

lnT
≤

∑
a:∆a>ε

f(∆a)

d
(
µa
1−ε ,

µ∗

1−ε

) (4)

≤ 4(1− ε)
∑

a:∆a>ε

f(∆a)

d(µa, µ∗ + ε)
. (5)

Moreover, if µ∗ > 1− ε, then Rf (T ) = O(1).
The proof can be found in the following section. In our

context, the O notation hides constants that depend on the
mean of the arms and ε. Notice that Theorem 2 matches the
lower bound of Theorem 1 for the set of all bounded distribu-
tions (and specifically for Bernoulli arms), up to an absolute
constant. Notably, when µ∗ > 1 − ε, we prove that the re-
gret is constant, and not only sub-logarithmic, as the lower
bound suggests. Specifically in this regime, an algorithm can
achieve constant lenient regret by identifying an arm with a
mean greater than 1− ε and exploiting it. However, the algo-
rithm does not know whether such an arm exists, and if there
is no such arm, a best arm-identification scheme will perform
poorly. Our algorithm naturally identifies such arms when
they exist, while maintaining good lenient regret otherwise.
Similarly, algorithms such as of (Bubeck, Perchet, and Rigol-
let 2013) cannot be applied to achieve constant regret, since
they require knowing the value of the optimal arm, which is
even a stronger requirement than knowing that µ∗ > 1− ε.

Comparison to MAB algorithms: Asymptotically op-
timal MAB algorithms sample suboptimal arms accord-
ing to the lower bound, i.e., for any suboptimal arm a,
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Figure 2: Ratio between the asymptotic lenient regret bounds
of TS and ε-TS for two-armed problems with ε = 0.2, as a
function of the optimal arm µ1.

lim supT→∞
Na(T )
lnT ≤ 1

d(µa,µ∗) . This, in turn, leads to a
lenient regret bound of

lim sup
T→∞

Rf (T )

lnT
≤

∑
a:∆a>ε

f(∆a)

d(µa, µ∗)
(6)

that holds for both the vanilla TS (Kaufmann, Korda, and
Munos 2012) and KL-UCB (Garivier and Cappé 2011).
First notice that the bound of Equation (4), that depends
on d

(
µa
1−ε ,

µ∗

1−ε

)
, strictly improves the bounds for the stan-

dard algorithms (see Appendix E.4 for further details). More-
over, ε-TS achieves constant regret when µ∗ > 1 − ε, and
its regret quickly diminishes when approaching this regime.
This comes in contrast to standard MAB algorithms, that
achieve logarithmic regret in these regimes. To illustrate the
improvement of ε-TS, in comparison to standard algorithms,
we present the ratio between the asymptotic bounds of Equa-
tions (6) and (4) in Figure 2.

Before presenting the proof, we return to the ε-gap function
f(∆) = ∆ · 1{∆ > ε}. Recall that this function leads to the
standard regret when all gaps are larger than ε. Thus, our
algorithm can be applied in this case to greatly improve the
performance (from the bound of Equation (6) to the bound
of Equation (4)), even in terms of the standard regret.

Regret Analysis
In this section, we prove the regret bound of Theorem 2. For
the analysis, we assume w.l.o.g. that the arms are sorted in a
decreasing order and all suboptimal arms have gaps ∆a > ε,
i.e. µ∗ = µ1 ≥ µ1 − ε > µ2 ≥ · · · ≥ µK . If there are
additional arms with gaps ∆a ≤ ε, playing them will cause
no regret and the overall lenient regret will only decrease (see
Appendix D.1 or Appendix A in (Agrawal and Goyal 2012)
for further details). We also assume that ε < 1, as otherwise
f(∆a) = 0 for all a ∈ [K]. Under these assumptions, we
now state a more detailed bound for the lenient regret, that
also includes a finite-time behavior:

Theorem 3. Let f be an ε-gap function. If µ1 > 1 − ε,
there exists some constants b = b(µ1, µ2, ε) ∈ (0, 1), Cb =

Cb(µ1, µ2, ε) and L1 = L1(µ1, ε, b) such that

Rf (T ) ≤
K∑
a=2

f(∆a)

d(1− ε, µa)

+ max
a

f(∆a)

(
Cb + L1 +

π2/6

d(1− ε, µ1)

)
= O(1) . (7)

If µ1 ≤ 1 − ε, then for any c > 0, there exist additional
constants L2 = L2(b, ε) and xa,c = xa,c(µ1, µa, ε) such

that for η(t) = max
{
µ1 − ε, µ1 − 2

√
6 ln t
tb

}
,

Rf (T ) ≤ (1 + c)2
K∑
a=2

f(∆a) max
t∈[T ]

 ln t

d
(
µa
1−ε ,

η(t)
1−ε

)


+

K∑
a=2

f(∆a)

(
2 +

1

c
+

1

d(xa,c, µa)

)
+ max

a
f(∆a)(Cb + L2 + 6) . (8)

Proof. We decompose the regret similarly to (Kaufmann,
Korda, and Munos 2012) and show that with high probability,
the optimal arm is sampled polynomially, i.e., N1(t) = Ω(tb)
for some b ∈ (0, 1). Formally, let η(t) be some function such
that µ1 − ε ≤ η(t) < µ1 for all t ∈ [T ], and for brevity,
let fmax = maxa f(∆a). Also, recall that the lenient regret
is defined as Rf (T ) = E

[∑T
t=1 f(∆t)

]
. Then, the lenient

regret can be decomposed to

Rf (T ) =

T∑
t=1

E[f(∆t)(1{θ1(t) > η(t)}+ 1{θ1(t) ≤ η(t)})]

≤
T∑
t=1

E[f(∆t)1{θ1(t) > η(t)}]+fmax

T∑
t=1

E[1{θ1(t) ≤ η(t)}]

=

T∑
t=1

K∑
a=2

f(∆a)E[1{at = a, θ1(t) > η(t)}]

+ fmax

T∑
t=1

E[1{θ1(t) ≤ η(t)}] .

Replacing the expectations of indicators with probabilities
and dividing the second term to the case where a1 was suffi-
ciently and insufficiently sampled, we get

Rf (T ) ≤
K∑
a=2

f(∆a)

T∑
t=1

Pr{at = a, θ1(t) > η(t)}︸ ︷︷ ︸
(A)

+ fmax

T∑
t=1

Pr
{
θ1(t) ≤ η(t), N1(t) > (t− 1)b

}
︸ ︷︷ ︸

(B)

+ fmax

T∑
t=1

Pr
{
N1(t) ≤ (t− 1)b

}
︸ ︷︷ ︸

(C)

. (9)

The first part of the proof consists of bounding term (C), i.e.,
showing that the optimal arm is sampled polynomially with
high probability. We do so in the following proposition:
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Proposition 2. There exist constants b = b(µ1, µ2, ε) ∈
(0, 1) and Cb = Cb(µ1, µ2, ε) <∞ such that

T∑
t=1

Pr
{
N1(t) ≤ (t− 1)b

}
≤ Cb .

The proof follows the lines of Proposition 1 in (Kaufmann,
Korda, and Munos 2012) and can be found in Appendix C.
To bound (A) and (B), we divide the analysis into two cases:
µ1 > 1− ε and µ1 ≤ 1− ε.

First case: µ1 > 1− ε.
In this case, we fix η(t) = 1− ε. For (A), observe that if

at = a and θ1(t) > 1 − ε, then θa(t) > 1 − ε, which also
implies that µ̂a(t) > 1− ε (to see this, notice that if µ̂a(t) ≤
1−ε, then θa(t) = (1−ε)Y ≤ 1−ε). However, since ∆a > ε
for all a 6= 1, all suboptimal arms have means µa < 1 − ε.
Thus, when Na(t) becomes large, the probabilities in (A)
quickly diminish and this term can be bounded by constant.
Formally, we write

T∑
t=1

Pr{at = a, θ1(t) > 1− ε}

≤
T∑
t=1

Pr{at = a, θa(t) > 1− ε}

=
T∑
t=1

Pr{at = a, µ̂a(t) > 1− ε}

and bound this term using the following lemma (see Ap-
pendix D.2 for the proof):

Lemma 3. For any arm a ∈ [K], if x > µa, then
T∑
t=1

Pr{at = a, µ̂a(t) > x} ≤ 1

d(x, µa)
.

Similarly, in (B), θ1(t) ≤ 1−ε implies that µ̂1(t) ≤ 1−ε,
and since N1(t) is large, this event has a low probability. We
formalize this intuition in Lemma 4, whose proof can be
found in Appendix D.3.

Lemma 4. Assume that µ1 > 1− ε, and for any b ∈ (0, 1),
let L1(µ1, ε, b) such that for all t ≥ L1(µ1, ε, b), it holds that
(t− 1)b ≥ 2 ln t

d(1−ε,µ1) + 1. Then,

T∑
t=1

Pr
{
θ1(t) ≤ 1− ε,N1(t) > (t− 1)b

}
≤ L1(µ1, ε, b) +

π2/6

d(1− ε, µ1)
.

Substituting both lemmas and Proposition 2 into Equa-
tion (9) leads to Equation (7).

Second case: µ1 ≤ 1− ε.
For this case, we fix η(t) = max

{
µ1 − ε, µ1 − 2

√
6 ln t

(t−1)b

}
.

To bound (A), we adapt the analysis of (Agrawal and Goyal
2013a) and decompose this term into two parts: (i) the event
where the empirical mean µ̂a(t) is far above µa, and (ii) the
event where µ̂a(t) is close to µa and θa(t) is above η(t).
Doing so leads to Lemma 5, whose proof is in Appendix D.4:

Lemma 5. Assume that µ1 ≤ 1− ε and η(t) ∈ [µ1 − ε, µ1)
for all t ∈ [T ]. Then, for any c > 0,

T∑
t=1

Pr{at = a, θ1(t) > η(t)}≤(1 + c)2 max
t∈[T ]

 ln t

d
(
µa
1−ε ,

η(t)
1−ε

)


+ 2 +
1

c
+

1

d(xa,c, µa)
,

where xa,c∈(µa, µ1 − ε) is such that

d

(
xa,c
1− ε

,
µ1 − ε
1− ε

)
=

1

1 + c
d

(
µa

1− ε
,
µ1 − ε
1− ε

)
.

For (B), we provide the following lemma (see Appendix
D.5 for the proof):

Lemma 6. Assume that µ1 ≤ 1 − ε and let η(t) =

max
{
µ1 − ε, µ1 − 2

√
6 ln t

(t−1)b

}
. Also, let L2(b, ε) ≥ 2 such

that for all t ≥ L2(b, ε), it holds that η(t) > µ1 − ε. Then,

T∑
t=1

Pr
{
θ1(t) ≤ η(t), N1(t) > (t− 1)b

}
≤ L2(b, ε) + 6

Substituting both lemmas and Proposition 2 into (9) results
with Equation (8) and concludes the proof of Theorem 3.

Proof sketch of Theorem 2. It only remains to prove the
asymptotic rate of Theorem 2, using the finite-time bound of
Theorem 3. To do so, notice that the denominator in Equa-
tion (8) asymptotically behaves as d

(
µa
1−ε ,

µ1

1−ε

)
, which leads

to the bound of Equation (4). On the other hand, the denom-
inator of Equation (5) depends on d(µa, µ1 + ε). We prove
that when ∆a>ε, these two quantities are closely related:

Lemma 7. For any ε ∈
[
0, 1

2

)
, any p ∈ [0, 1− 2ε) and any

q ∈ [p+ ε, 1− ε),

d

(
p

1− ε
,

q

1− ε

)
≥ 1

4(1− ε)
d(p, q + ε) .

The proof of this lemma can be found in Appendix E.2.
This immediately leads to the desired asymptotic rate, but
for completeness, we provide the full proof of the theorem in
Appendix D.6.

Experiments
In this section, we present an empirical evaluation of ε-TS.
Specifically, we compare ε-TS to the vanilla TS on two dif-
ferent gap functions: f(∆) = ∆, which leads to the standard
regret, and the hinge function f(∆) = max{∆ − ε, 0}. All
evaluations were performed for ε = 0.2 over 50, 000 different
seeds and are depicted in Figure 3. We also refer the readers to
Appendix F, where additional statistics of the simulations are
presented, alongside additional tests that were omitted due to
space limits. We tested 4 different scenarios – when the opti-
mal arm is smaller or larger than 1−ε (left and right columns,
respectively), and when the minimal gap is larger or smaller
than ε (top and bottom rows, respectively). Importantly, when
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Figure 3: Evaluation of ε-TS and vanilla TS with ε = 0.2 and Bernoulli rewards. ‘Hinge’ is the ε-gap function f(∆) =
max{∆ − ε, 0} and ‘Standard’ is the 0-gap function f(∆) = ∆, which leads to the standard regret. Top row – the minimal gap
is ∆2 = 0.3 > ε; therefore, ε-TS enjoys performance guarantees also for the standard regret. Bottom row – the minimal gap is
∆2 = 0.05 < ε; thus, the standard regret f(∆) = ∆ is not an ε-gap function, and ε-TS has no guarantees for this case.

the minimal gap is larger than ε, the standard regret can be
written using the ε-gap function f(∆) = ∆ · 1{∆ > ε}. In-
deed, one can observe that when ∆a > ε for all suboptimal
arms, ε-TS greatly improves the performance, in comparison
to the vanilla TS. Similarly, when µ∗ > 1 − ε, the lenient
regret of ε-TS converges to a constant, as can be expected
from Theorem 2. On the other hand, the lenient regret of the
vanilla TS continues to increase.

Next, we move to simulations where the suboptimality gap
is smaller than ε. In such cases, the standard regret cannot
be represented as an ε-gap function, and ε-TS is expected to
perform worse on this criterion than the vanilla TS. Quite sur-
prisingly, when µ∗ = 0.5, ε-TS still surpasses the vanilla TS.
In Appendix F, we show that TS beats ε-TS only after 20, 000
steps. On the other hand, when µ∗ = 0.9, the standard regret
of ε-TS increases linearly. This is since with finite probability,
the algorithm identifies that µ2 = 0.85 > 1 − ε at a point
where the empirical mean of the optimal arm is smaller than
1− ε. Then, the algorithm only exploits a = 2 and will never
identify that a = 1 is the optimal arm. Nonetheless, we em-
phasize that ε-TS still outperforms the vanilla TS in terms of
the lenient regret, as can be observed for the hinge-function.

To conclude this section, the simulations clearly demon-
strate the tradeoff when optimizing the lenient regret: when
near-optimal solutions are adequate, then the performance
can be greatly improved. On the other hand, in some cases, it
leads to major degradation in the standard regret.

Summary and Future Work
In this work, we introduced the notion of lenient regret w.r.t.
ε-gap functions. We proved a lower bound for this setting and
presented the ε-TS algorithm, whose performance matches

the lower bound, up to a constant factor. Specifically, we
showed that the ε-TS greatly improves the performance when
a lower bound on the gaps is known. Finally, we performed
an empirical evaluation that demonstrates the advantage of
our new algorithm when optimizing the lenient regret.

We believe that our work opens up many interesting direc-
tions. First, while we suggest a TS algorithm for our settings,
it is interesting to devise its UCB counterpart. Moreover, there
are alternative ways to define ε-gap functions that should be
explored, e.g., functions that do not penalize arms with mean
larger than µ∗ ·(1−ε) (multiplicative leniency). This can also
be done by borrowing other approximation concepts from
best arm identification. For example, not penalizing arms that
exceed some threshold (as in good arm identification (Kano
et al. 2019)), or not penalizing the choice of any one of the
top m of the arms (Chaudhuri and Kalyanakrishnan 2017).

We also believe that the concept of lenient regret criteria
can be extended to many different settings. It is especially
relevant when problems are large, e.g., in combinatorial prob-
lems (Chen et al. 2016a), and can also be extended to rein-
forcement learning (Sutton and Barto 2018). Notably, and as
previously stated, there is some similarity between the ε-gap
function f(∆) = 1{∆ > ε} and the sample-complexity cri-
terion in RL (Kakade 2003), and our analysis might allow
proving new results for this criterion.

Finally, we explored the notion of lenient regret for stochas-
tic MABs. Another possible direction is adapting the lenient
regret to adversarial MABs, and potentially for online learn-
ing. In these settings, the convergence rates are typically
O(
√
T ), and working with weaker notions of regret might

lead to logarithmic convergence rates.

8956



Acknowledgments
This work was partially funded by the Israel Science Foun-
dation under ISF grant number 2199/20. Nadav Merlis is
partially supported by the Gutwirth Scholarship.

References
Agrawal, S.; and Goyal, N. 2012. Analysis of thompson
sampling for the multi-armed bandit problem. In Conference
on learning theory, 39–1.

Agrawal, S.; and Goyal, N. 2013a. Further optimal regret
bounds for thompson sampling. In Artificial intelligence and
statistics, 99–107.

Agrawal, S.; and Goyal, N. 2013b. Thompson sampling
for contextual bandits with linear payoffs. In International
Conference on Machine Learning, 127–135.

Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the multiarmed bandit problem. Machine learning
47(2-3): 235–256.

Bubeck, S.; Cesa-Bianchi, N.; et al. 2012. Regret analysis of
stochastic and nonstochastic multi-armed bandit problems.
Foundations and Trends® in Machine Learning 5(1): 1–122.

Bubeck, S.; Perchet, V.; and Rigollet, P. 2013. Bounded
regret in stochastic multi-armed bandits. In Conference on
Learning Theory, 122–134.

Burnetas, A. N.; and Katehakis, M. N. 1996. Optimal adap-
tive policies for sequential allocation problems. Advances in
Applied Mathematics 17(2): 122–142.

Chapelle, O.; and Li, L. 2011. An empirical evaluation of
thompson sampling. In Advances in Neural Information
Processing Systems, 2249–2257.

Chaudhuri, A. R.; and Kalyanakrishnan, S. 2017. PAC Iden-
tification of a Bandit Arm Relative to a Reward Quantile. In
AAAI, volume 17, 1977–1985.

Chen, W.; Wang, Y.; Yuan, Y.; and Wang, Q. 2016a. Combina-
torial multi-armed bandit and its extension to probabilistically
triggered arms. The Journal of Machine Learning Research
17(1): 1746–1778.

Dann, C.; and Brunskill, E. 2015. Sample complexity of
episodic fixed-horizon reinforcement learning. In Advances
in Neural Information Processing Systems, 2818–2826.

Dann, C.; Lattimore, T.; and Brunskill, E. 2017. Unifying
PAC and regret: Uniform PAC bounds for episodic reinforce-
ment learning. In Advances in Neural Information Processing
Systems, 5713–5723.

Even-Dar, E.; Mannor, S.; and Mansour, Y. 2002. PAC
bounds for multi-armed bandit and Markov decision pro-
cesses. In International Conference on Computational Learn-
ing Theory, 255–270.

Gabillon, V.; Ghavamzadeh, M.; and Lazaric, A. 2012. Best
arm identification: A unified approach to fixed budget and
fixed confidence. In Advances in Neural Information Pro-
cessing Systems, 3212–3220.
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Lattimore, T.; and Szepesvári, C. 2020. Bandit Algorithms.
Cambridge University Press.
Mannor, S.; and Tsitsiklis, J. N. 2004. The sample complexity
of exploration in the multi-armed bandit problem. Journal of
Machine Learning Research 5(Jun): 623–648.
Robbins, H. 1952. Some aspects of the sequential design of
experiments. Bulletin of the American Mathematical Society
58(5): 527–535.
Russo, D. J.; Van Roy, B.; Kazerouni, A.; Osband, I.; and
Wen, Z. 2018. A Tutorial on Thompson Sampling. Founda-
tions and Trends® in Machine Learning 11(1): 1–96.
Slivkins, A.; et al. 2019. Introduction to Multi-Armed Ban-
dits. Foundations and Trends® in Machine Learning 12(1-2):
1–286.
Sutton, R. S.; and Barto, A. G. 2018. Reinforcement learning:
An introduction. MIT press.
Thompson, W. R. 1933. On the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika 25(3/4): 285–294.
Wang, S.; and Chen, W. 2018. Thompson Sampling for
Combinatorial Semi-Bandits. In International Conference
on Machine Learning, 5114–5122.

8957


