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Abstract
Rehearsal, seeking to remind the model by storing old knowl-
edge in lifelong learning, is one of the most effective ways to
mitigate catastrophic forgetting, i.e., biased forgetting of pre-
vious knowledge when moving to new tasks. However, the
old tasks of the most previous rehearsal-based methods suffer
from the unpredictable domain shift when training the new
task. This is because these methods always ignore two sig-
nificant factors. First, the Data Imbalance between the new
task and old tasks that makes the domain of old tasks prone to
shift. Second, the Task Isolation among all tasks will make the
domain shift toward unpredictable directions; To address the
unpredictable domain shift, in this paper, we propose Multi-
Domain Multi-Task (MDMT) rehearsal to train the old tasks
and new task parallelly and equally to break the isolation
among tasks. Specifically, a two-level angular margin loss is
proposed to encourage the intra-class/task compactness and
inter-class/task discrepancy, which keeps the model from do-
main chaos. In addition, to further address domain shift of the
old tasks, we propose an optional episodic distillation loss on
the memory to anchor the knowledge for each old task. Exper-
iments on benchmark datasets validate the proposed approach
can effectively mitigate the unpredictable domain shift.

Introduction
Lifelong learning, also known as continual learning and in-
cremental learning, aims to continually learn new knowl-
edge from a sequence of tasks over a lifelong time. In con-
trast to traditional supervised learning, the lifelong setting
helps machine learning work like a more realistic human
learning by acquiring a new skill quickly with new training
data. All the while, catastrophic forgetting (French 1999;
Kirkpatrick et al. 2017) is the main challenge for lifelong
learning, which happens when the learner forgets the knowl-
edge of old tasks while learning a new task. To seek a bal-
ance between the old tasks and the new task, many methods
have been proposed to handle the catastrophic forgetting in
recent years. Following (De Lange et al. 2019), their meth-
ods can be categorized into Rehearsal (Lopez-Paz and Ran-
zato 2017; Chaudhry et al. 2018b; Guo et al. 2019), Regu-
larization (Li and Hoiem 2016; Chaudhry et al. 2018a; Dhar
et al. 2019) and Parameter Isolation (Mallya, Davis, and
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Figure 1: (a) Traditional rehearsal-based methods construct
single-task learning architecture for the new task (data from
training set D) and treat the old tasks (data from mem-
ory M) as the constraints of its training. (b) The proposed
MDMT rehearsal-based method trains old tasks and new
task equally and keep tasks from isolation via TAM loss.

Lazebnik 2018; Yoon et al. 2017). Regularization-based and
parameter isolation-based methods store no data from old
tasks and highly rely on extra regularizers or architectures,
resulting in their lower performance than the rehearsal-based
methods. Rehearsal-based methods store a small number of
samples in the training set, the model will retrain the saved
data when training the new task to avoid forgetting.

At each step of lifelong learning (see Fig. 1(a)), the
most existing rehearsal-based methods (Rebuffi et al. 2017;
Lopez-Paz and Ranzato 2017; Chaudhry et al. 2018b; Guo
et al. 2019) focus on training the new task while treating the
stored data from old tasks as the constraints to preserve their
performance. However, the old tasks in these methods may
suffer from unpredictable domain shift that arises from two
significant factors in the lifelong learning process: 1) The
Data Imbalance between old and new task. The shrinkage of
training data of old tasks leads to their domains will be prone
to shift that manifests as the catastrophic forgetting. 2) The
Task Isolation among all tasks (old and new), which makes
such domain shift toward unpredictable directions and the
boundary between any two tasks may become weak.

To address the unpredictable domain shift, in this paper,
we propose a Multi-Domain Multi-Task (MDMT) Rehearsal
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method inspired by the multi-domain multi-task learn-
ing (Yang and Hospedales 2014) that considers both mul-
tiple tasks w.r.t. multiple domains and trains them equally.
Specifically, as shown in Fig. 1(b), we first retrain the old
tasks along with new task training parallelly rather than set-
ting them as the constraints. We separate all these tasks by a
Cross-Domain Softmax, which extends the softmax for each
isolated task by combining the logits of all other seen tasks
and separates them from each other. Then, to further alle-
viate the unpredictable domain shift, we propose to lever-
age a Two-level Angular Margin (TAM) loss to encourage
the intra-class/task compactness and the inter-class/task dis-
crepancy on the basis of Cross-Domain Softmax. In addi-
tion, we present an optional Episodic Distillation (ED) loss
on all buffer memories for old tasks that suppress the domain
shift by storing the latent representations of each sample in
memories. We evaluate our MDMT rehearsal on four pop-
ular lifelong learning datasets for image classification and
achieve new state-of-the-art performance. The experimen-
tal results show the proposed MDMT rehearsal can signif-
icantly mitigate the unpredictable domain shift. Our con-
tributions are three-fold: (1) We propose a Multi-Domain
Multi-Task Rehearsal method for lifelong learning, which
parallelly and equally trains the old and new tasks and sepa-
rate them by a Cross-Domain Softmax function. (2) We pro-
pose a Two-level Angular Margin (TAM) loss for lifelong
learning to further boost the Cross-Domain Softmax for the
sake of intra-class/task compactness and the inter-class/task
discrepancy. (3) We build an optional Episodic Distillation
loss to reduce the domain shift in lifelong progress.

Related Work
Lifelong Learning
In contrast to static machine learning (He et al. 2016; Deng
et al. 2018; Lyu et al. 2019; Lyu, Feng, and Wang 2020),
Lifelong Learning (Ring 1998; Thrun 1998) seeks to im-
prove the self-learning ability of the machine that con-
tinually learns new knowledge. The previous solutions to
the catastrophic forgetting (French 1999; Kirkpatrick et al.
2017) in recent years can be categorized into regularization-
based, parameter isolation-based and rehearsal-based
methods (De Lange et al. 2019). Regularization-based meth-
ods (Li and Hoiem 2016; Chaudhry et al. 2018a; Dhar et al.
2019) store no data but explore extra regularization terms
in the loss function to consolidate previous knowledge. Pa-
rameter isolation-based methods (Mallya, Davis, and Lazeb-
nik 2018; Yoon et al. 2017) freeze the task-specific param-
eters and grow new branches for new tasks to bring in new
knowledge. Rehearsal-based methods store some knowledge
of old tasks to remind the model and often achieve bet-
ter performance. Existing methods can be categorized into
three groups. 1) by saving the raw data (Rehearsal, e.g.,
image) (Rebuffi et al. 2017; Lopez-Paz and Ranzato 2017;
Chaudhry et al. 2018b; Guo et al. 2019), the model can
retrain the saved data along with the current training; 2)
by saving the latent features for selected samples (Latent-
rehearsal) (Pellegrini et al. 2019), the model slows down
learning at the layers below the rehearsal layer and leaves the

layers above free to learn at full pace; 3) by building genera-
tive model to synthesize data (Pseudo-rehearsal) (Shen et al.
2020; van de Ven and Tolias 2018; Lesort et al. 2019), the
knowledge can be saved as parameters rather than data. In
this paper, we only consider the native rehearsal by storing
raw data in image classification.

Multi-domain Multi-task Learning
Multi-domain learning (Nam and Han 2016; Tang and Jia
2020) refers to sharing information about the same problem
across different contextual domains, while multi-task learn-
ing (Lin et al. 2019; Sener and Koltun 2018) addresses shar-
ing information about different problems in the same do-
main. By considering both multiple domains and multiple
tasks, Multi-domain multi-task (MDMT) learning was first
proposed in (Yang and Hospedales 2014), and has been ap-
plied to classification (Peng and Dredze 2016) and semantic
segmentation (Fourure et al. 2017), etc.. The common solu-
tion to MDMT problem is to construct parallel data streams
and seek to build the correlations among tasks. Here, we ex-
plain why we decide to formulate the lifelong learning prob-
lem into a MDMT learning problem. 1) By storing some
samples of a task into memory, MDMT learning can sig-
nificantly train them together, which helps mitigate the task
isolation in the traditional rehearsal-based lifelong learning.
2) MDMT learning can help suspending the domain shift to
some extent by making classifiers perceive each other.

Margin Loss And Distillation Loss
The margin based Softmax explicitly adds a margin to each
logit to improve feature discrimination. L-Softmax (Liu
et al. 2016) and SphereFace (Liu et al. 2017) add multiplica-
tive angular margin to squeeze each class. CosFace (Wang
et al. 2018b,a) and ArcFace (Deng et al. 2019) add addi-
tive cosine margin and angular margin, respectively, for eas-
ier optimization. Based on ArcFace, we propose a Two-level
Angular Margin loss to guarantee both inter-class/task com-
pactness and intra-class/task discrepancy. The knowledge
distillation (Hinton, Vinyals, and Dean 2015) transfers the
knowledge about smoothed probability distribution of the
output layer of the teacher network to the student network.
Inspired by this, we propose to build distillation loss be-
tween the old and new models on old tasks by storing the
latent representation of stored data.

Methodology
Multi-domain Multi-task Rehearsal
Suppose there are T different tasks with respect to
datasets {D1, · · · ,DT }. For the t-th dataset (task), Dt =
{(xt,1, yt,1), · · · , (xt,Nt , yt,Nt)}, where xt,i ∈ Xt is the i-
th input data, yt,i ∈ Yt is the corresponding label and Nt
is the number of samples. Dt can be split into a training set
Dtrn
t and a testing set Dtst

t , and we denote Dt as Dtrn
t in our

presentation for simple denotation. Lifelong learning aims
at learning a predictor ft : Xk → Yk, k ∈ {1, · · · , t},
which can predict tasks that have been learned at any time.
The rehearsal-based lifelong learning (Rebuffi et al. 2017;
Lopez-Paz and Ranzato 2017; Riemer et al. 2018; Chaudhry
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Figure 2: Training procedure of the proposed MDMT rehearsal based lifelong learning. At each step, a small number of samples
will be saved into memoryM and the corresponding latent representations will be saved into F . TAM loss guarantee the intra-
class/task compactness and inter-class/task discrepancy. Episodic Distillation loss helps further to reduce the domain shift of
the old tasks. The dashed elements mean the optional operation.

et al. 2018b; Guo et al. 2019) builds a memory buffer
Mk ⊂ Dk with small-size for each previous task k, i.e.,
|Mk| � |Dk|. Following (Lopez-Paz and Ranzato 2017),
when training a task t ∈ {1, · · · , T}, for allMk that k < t,
the rehearsal-based lifelong learning can be modeled as a
single objective optimizing problem:

argmin
θ,θt

`(fθ, fθt ,Dt),

s.t. `(fθ, fθk ,Mk) ≤ `(f t−1θ , f t−1θk
,Mk), ∀k < t,

(1)
where ` is the empirical loss. θ is the shared parameter across
all tasks while θk and θt are the task-specific parameters.
The constraints above are designed to prevent the perfor-
mance degradation of previous tasks. Then, the problem can
be reduced to find an optimal gradient that benefits all tasks.
To inspect the increase in old tasks’ loss, (Lopez-Paz and
Ranzato 2017; Chaudhry et al. 2018b; Guo et al. 2019) com-
pute the angle between the gradient of each old task and the
proposed gradient update on the current task.

However, such a single objective optimization on the
current task for rehearsal-based lifelong learning over-
emphasizes the new task while ignoring the difference
among tasks. In other words, the old tasks can only play
the role of source domain to be transferred into the current
training model. The domain of old tasks will significantly
shift because of the rectified gradient that the gradient norm
of new task is much larger than the old tasks’, which may
induce the domain overlap.

In contrast, this paper treats the problem as a Multi-
Domain Multi-Task (MDMT) learning problem to jointly
and equally improve the current task as well as the old tasks:

arg
θ,{θ1,··· ,θt}

{min `(fθ, fθt ,Dt),min `(fθ, fθk ,Mk), · · · ,

min `(fθ, fθ1 ,M1)},
s.t. d(fi, fj) ≥ d(f t−1i , f t−1j ), i, j ∈ [1, t], i 6= j,

(2)
where fi = fθ(Di) if i = t and fi = fθ(Mi) if i < t. d
means the distance between two domains. For the t tasks
w.r.t. datasets {D1, · · · ,Dt}, a MDMT rehearsal model
trains t tasks parallelly and equally. The constraints above
mean the domain distance between any two tasks should not
be smaller than the model trained on the last task. Note that

we only consider the situation that the tasks are irrelevant as
the common lifelong learning.

We make two key operations to solve the Eq.(2) effi-
ciently. First, we transform the multi-objective optimization
as a single-objective optimization problem by ensembling
all these objectives as the traditional solution to multi-task
learning (Lin et al. 2019; Sener and Koltun 2018).

argmin
θ

`(fθ, fθt ,Dt) +
t−1∑
k=1

`(fθ, fθk ,Mk), (3)

Second, it exists high memory-cost to calculate the distance
between any two domains and store old predictors f t−1θ , but
we can do this in a simple yet effective way by extending the
softmax function for each task as

`k = − 1

Nk

Nk∑
n=1

log
e(W

k
yn)

T
xn+byn

σn
, (4)

where

σn =

Ck∑
j=1

e(W
k
j )

T
xn+bj +

t∑
i=1,i6=k

Ci∑
j=1

e(W
i
j )

T
xn+bj . (5)

Nk is the batch size for task k and W k
j ∈ Rd denotes

the j-th column of the weight W k ∈ Rd×Ck in the last
fully-connected layer for task k and Ck is the class number.
We name this extension as Cross-Domain Softmax (CDS),
which combines the logits from other classifiers and is sim-
ilar to a native softmax to a classification problem with total∑t
k=1 Ck class. Here, we discuss the difference. For MDMT

rehearsal, different tasks never share a same classifiers as
common classification, i.e., the classifiers for different tasks
lack mutual perception. By combining the logits form other
tasks, the tasks can perceive and separate from each other.
The previous methods update the model by the optimal gra-
dient that highly rely on the angle between the gradients of
old and new tasks. In contrast, we directly obtain the hybrid
gradient for the shared layers by ensembling the gradients
from the new task and old tasks as g̃ ←

∑t
k=1 gk.

We compare our MDMT rehearsal with several well-
known rehearsal-based lifelong works:
iCaRL (Rebuffi et al. 2017) saves small number of samples
to make the model not to forget old class, but they classify
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Algorithm 1 MDMT rehearsal based lifelong learning.

Procedure TRAIN(fθ, fθ1:T , {Dtrn
1 , · · · ,Dtrn

T })
M,F ← {}, {}
for t = 1 to T do

for (x, y) ∈ Dtrn
t do

g, g1 ← ∇θ`(fθ(x, t), y)
if t = 1 then
g̃ ← g

else
gref, g1:t−1 ← ∇θ`(fθ, fθ1:t−1

,M)

gref ← gref +∇θ ˜̀(fθ,Fref)
g̃ ← g + gref

end if
θ ← θ − StepSize · g̃
θ1:t ← θ1:t − StepSize · g1:t

end for
M,F ← STOREMEM(M,F ,Dtrn

t , fθ)
end for

Procedure STOREMEM(M, F , D, f )
for i = 1 to |M|/T do
(x, y) ∼ D
M←M+ (x, y)
F ← F + f(x)

end for
ReturnM, F

Procedure EVAL(fθ, fθ1:T , {Dtst
1 , · · · ,Dtst

T })
a← 0 ∈ RT
for t = 1 to T do
at ← 0
for (x, y) ∈ Dtst

t do
at ← at + Accuracy(fθt(fθ(x, t)), y)

end for
at ← at/|Dtst

t |
end for
Return a

samples by the nearest prototype, which is not suitable for
task-incremental lifelong learning because the task-specific
parameters are ignored.
GEM/A-GEM (Lopez-Paz and Ranzato 2017; Chaudhry
et al. 2018b) propose to solve forgetting by finding the op-
timal gradient that saves the old tasks from being corrupt,
and they focus on training the new task with single objective
optimization while ignore the domain shift of old tasks.
ER (Chaudhry et al. 2019a) extends Experience Re-
play (Rolnick et al. 2019) for reinforcement lifelong learn-
ing and be proven better than A-GEM. However, they never
consider the relations among all tasks, which makes the do-
mains of old task may significantly shift.
PRD (Hou et al. 2018) proposes to treat lifelong learning as
a multi-task learning problem and proposes to build a dis-
tillation module with one saved CNN expert as teacher for
each old task. Differently, we would like to build a MDMT
rehearsal that leverage the expanded softmax without saving
many extra models.

A-GEM MEGA TAMCDS
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Figure 3: On Permuted MNIST, (a) the changes of angle
range between feature and the target weight center of task
1 along the lifelong learning; (b) the angulars relations of
class centers of task 1, 9 and 17 after trained on task 17.

Two-level Angular Margin Loss
The proposed MDMT rehearsal helps to jointly and equally
train the new task and retrain the old tasks, making all tasks
perceive each other. Nonetheless, the softmax loss is not
efficient enough because it does not explicitly encourage
intra-class compactness and inter-class discrepancy, in cop-
ing with which, large margin based softmax is widely used
in recent discriminative problems (Deng et al. 2019; Liu
et al. 2016). However, these methods cannot be directly ap-
plied to MDMT rehearsal based lifelong learning because
these methods place the large margin only to single task and
can not be applied to multiple tasks scenario.

In this paper, we propose two levels margin, i.e., class
level and task level, on softmax for each task (Eq. (4)). Our
work is based on the popular large margin based softmax
method Arcface (Deng et al. 2019) where the large mar-
gin is added to the angle between weight and feature, which
has been proven effective and efficient. Specifically, Arcface
deletes the bias and transforms the logit fed into the soft-
max as WT

j xi = ‖Wj‖ ‖xi‖ cos θj , where θj is the angle
between the weight Wj and the feature xi, then an angular
margin m is placed between different classes

` = − 1

N

N∑
i=1

log
es·cos(θyi+m)

es·cos(θyi+m) +
∑n
j=1,j 6=yi e

s·cos θj
, (6)

where the individual weight ||Wj || is fixed to 1 by l2 nor-
malization and the embedding feature ||xi|| is fixed to s by
l2 normalization and rescale. The normalization on features
and weights makes the predictions only depend on the an-
gle between them. Such a geodesic distance margin between
the sample and centers makes the prediction gain more intra-
class compactness and inter-class discrepancy.

Based on Eq. (6), we propose our Two-level Angular Mar-
gin (TAM) loss for the task k ∈ [1, t]

`k = − 1

Nk

Nk∑
n=1

log
es·cos((θ

k
yn

+mc)+mt)

σn
, (7)
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where

σn =es·cos((θ
k
yi

+mc)+mt) +

Ck∑
j=1,j 6=yi

es·cos(θ
k
j +m

t)+

t∑
i=1,i6=k

Ci∑
j=1

es·cos θ
i
j .

(8)

In Eq. (7), we add class-level margin mc and task-level
margin mt on the angular. mc is similar to m in Eq. (6),
which controls the intra-task class compactness and discrep-
ancy (Deng et al. 2019). mt controls the task compactness
and discrepancy, which ensures the knowledge of each task
not to mix up with others.

As shown in Fig. 3, the proposed TAM loss produces
two advantages for MDMT rehearsal based lifelong learn-
ing. First, TAM helps the model to better discriminate into a
task. Although the CDS has a better angle between feature
and its target weight, TAM loss even reduce the angle to a
smaller than CDS, which expresses the effect ofmc. Second,
TAM loss mitigates the domain overlap caused by the do-
main shift by forcing tasks to separate. We can also see that
for the angles among weights center, TAM loss can signifi-
cantly separate old and new tasks, which expresses the effect
of mt. However, it is still difficult to omit the domain shift
because of the extreme data imbalance between old tasks
and new task. Thus, we construct an optional Episodic dis-
tillation loss for the MDMT rehearsal based lifelong process.

Episodic Distillation
In this paper, we propose a simple yet effective solution
to further mitigate the domain shift for old task named
Episodic Distilllation (ED) loss. The main role the ED loss
played is to reduce the feature distribution change along
with the lifelong process as far as possible. First, apart from
the sampled training data stored in memory, i.e., Mk =
{(xk,1, yk,1), · · · , (xk,|Mk|, yk,|Mk|)} ⊂ Dk, we also store
the corresponding latent representations when they are first
trained, denoted asFk = {fk,1, · · · , fk,|Mk|}. Then, we train
the model with an updated objective:

argmin
θ

`(fθ, fθt ,Dt)+
t−1∑
k=1

[
`(fθ, fθk ,Mk) + ˜̀(fθ,Fk)

]
,

(9)
where

˜̀(fθ,Fk) ,
1

Nk

∑
i

˜̀
i(fθ(xk,i), fk,i). (10)

˜̀
i is the ED loss that can be in many formats, and we choose

the Mean Square Error (MSE). By training with Eq. (9) in
each step, we can ease the shift effectively.

ED loss is an optional loss function and builds extra mem-
ory buffers to save the latent representation for each sam-
ple in memories. The extra memory buffers do increase the
memory cost to some extent, but still very small in com-
pared with the whole training set. In our implementation, we
save the representation from the fc layer before the last one,
which is a vector with length from 256 to 2048 for different
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Figure 4: Average accuracy trend (from A1 to AT ) on four
datasets in the lifelong process.

network. That means the cost of the representation memory
is even smaller than the data memory.

Total Algorithm
We follow A-GEM (Chaudhry et al. 2018b) that unite mem-
ory of all old tasks for efficient training. LetM = ∪k<tMk

and F = ∪k<tFk be the united data and representation
memory for old tasks. For each step, we will sample a batch
of data from the united memory. In this way, the previous
tasks will be optimized by an average gradient instead of all
gradients for previous tasks, which speeds up the training.

We show the detailed process in Algorithm 1 including
training and evaluation procedure. First, the storage of mem-
ory feature in STOREMEM to be as the anchor of old task in
current task training. Second, the gradient to be updated de-
pends not only the gradient on old and current tasks using
TAM loss, but the gradient on feature difference by ED loss.
The evaluation procedure is similar with the previous works.

Experiments
Experimental Settings
We evaluate the proposed method on four image recogni-
tion datasets. (1) Permuted MNIST. (Kirkpatrick et al. 2017):
this is a variant of standard MNIST dataset of handwritten
digits with 20 tasks. Each task has a fixed random permu-
tation of the input pixels which is applied to all the images
of that task. (2) Split CIFAR. (Zenke, Poole, and Ganguli
2017): this dataset consists of 20 disjoint subsets of CIFAR-
100 dataset (Krizhevsky, Hinton et al. 2009), where each
subset is formed by randomly sampling 5 classes without
replacement from the original 100 classes. (3) Split CUB.
(Chaudhry et al. 2018b): the CUB dataset (Wah et al. 2011)
is split into 20 disjoint subsets by randomly sampling 10
classes without replacement from the original 200 classes.
(4) Split AWA. (Chaudhry et al. 2018b): this dataset consists
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Method Permuted MNIST Split CIFAR
AT(%) FT LCA10 LTR AT(%) FT LCA10 LTR

Joint 95.30 - - - 68.30 - - -
VAN 47.55± 2.37 0.52± 0.026 0.259± 0.005 5.375± 0.194 40.44± 1.02 0.27± 0.006 0.309± 0.011 2.613± 0.174
EWC 68.68± 0.98 0.28± 0.010 0.276± 0.002 3.292± 0.135 42.67± 4.24 0.26± 0.039 0.336± 0.010 2.493± 0.427
MAS 70.30± 1.67 0.26± 0.018 0.298± 0.006 - 42.35± 3.52 0.26± 0.030 0.332± 0.010 -
RWalk 85.60± 0.71 0.08± 0.007 0.319± 0.003 - 42.11± 3.69 0.27± 0.032 0.334± 0.012 -
MER - - - - 37.27± 1.68 0.03± 0.030 0.051± 0.101 -
GEM 89.50± 0.48 0.06± 0.004 0.230± 0.005 - 61.20± 0.78 0.06± 0.007 0.360± 0.007 -
A-GEM 89.32± 0.46 0.07± 0.004 0.277± 0.008 0.716± 0.048 61.28± 1.88 0.09± 0.018 0.350± 0.013 0.643± 0.124
ER 90.47± 0.14 0.03± 0.001 0.184± 0.004 0.367± 0.013 63.97± 1.30 0.06± 0.006 0.349± 0.105 0.451± 0.333
MEGA 91.21± 0.10 0.05± 0.001 0.283± 0.004 0.524± 0.017 66.12± 1.94 0.06± 0.015 0.375± 0.012 0.356± 0.114
MDMT-R 94.33± 0.04 0.02± 0.000 0.298± 0.003 0.247± 0.009 69.20± 1.60 0.04± 0.010 0.334± 0.008 0.283± 0.099

Method Split CUB Split AWA
AT(%) FT LCA10 LTR AT(%) FT LCA10 LTR

Joint 65.60 - - - 64.80 - - -
VAN 53.89± 2.00 0.13± 0.020 0.292± 0.008 0.976± 0.215 30.35± 2.81 0.04± 0.013 0.214± 0.008 0.202± 0.090
EWC 53.56± 1.67 0.14± 0.024 0.292± 0.009 1.021± 0.210 33.43± 3.07 0.08± 0.021 0.257± 0.011 0.675± 0.214
MAS 54.12± 1.72 0.13± 0.013 0.293± 0.008 - 33.83± 2.99 0.08± 0.022 0.257± 0.011 -
RWalk 54.11± 1.71 0.13± 0.013 0.293± 0.009 - 33.63± 2.64 0.08± 0.023 0.258± 0.011 -
PI 55.04± 3.05 0.12± 0.026 0.292± 0.010 - 33.86± 2.77 0.08± 0.022 0.259± 0.011 -
A-GEM 61.82± 3.72 0.08± 0.021 0.302± 0.011 0.456± 0.174 44.95± 2.97 0.05± 0.014 0.287± 0.012 0.178± 0.082
ER 73.63± 0.52 0.01± 0.005 0.265± 0.004 0.001± 0.001 54.27± 4.05 0.02± 0.030 0.293± 0.009 0.014± 0.015
MEGA 80.58± 1.94 0.01± 0.017 0.311± 0.010 0.002± 0.002 54.28± 4.84 0.05± 0.040 0.305± 0.015 0.070± 0.114
MDMT-R 84.27± 1.63 0.01± 0.015 0.337± 0.013 0.017± 0.014 61.56± 3.36 0.02± 0.027 0.298± 0.008 0.002± 0.002

Table 1: Comparison with different state-of-the-arts. The numbers are averaged across 5 runs using a different seed each time.
mt mc ED AT(%) FT LCA10 LTR

- - - 65.44± 1.13 0.052± 0.006 0.371± 0.008 0.377± 0.076

- - X 66.44± 2.22 0.050± 0.009 0.370± 0.014 0.307± 0.066

0.0 0.0 - 67.15± 2.02 0.053± 0.012 0.353± 0.006 0.411± 0.097
0.1 0.0 - 67.49± 1.55 0.049± 0.010 0.354± 0.005 0.369± 0.096
0.0 0.01 - 67.45± 1.09 0.059± 0.008 0.354± 0.005 0.483± 0.064
0.1 0.01 - 67.68± 1.72 0.052± 0.008 0.350± 0.007 0.390± 0.062
0.4 0.01 - 67.28± 0.97 0.053± 0.012 0.347± 0.006 0.394± 0.106
0.4 0.05 - 66.68± 1.23 0.063± 0.005 0.333± 0.005 0.473± 0.077
0.4 0.1 - 64.97± 1.13 0.084± 0.009 0.324± 0.008 0.680± 0.086

0.1 0.01 X 68.64± 1.35 0.059± 0.016 0.334± 0.008 0.297± 0.103

Table 2: Ablation study on Split CIFAR.

of 20 subsets of the AWA dataset (Lampert, Nickisch, and
Harmeling 2009). Each subset is constructed by sampling 5
classes with replacement from a total of 50 classes and the
same class can appear in different subsets.

We leverage four existing metrics to evaluate the per-
formance and catastrophic forgetting. (1) Average Accu-
racy (At ∈ [0, 1]) after the model has been trained con-
tinuously done till task t ∈ {1, · · · , T}. In particular,
AT is the average accuracy on all the tasks after the last
task has been learned. (2) Forgetting Measure (Chaudhry
et al. 2018a) (Ft ∈ [−1, 1]) is the average forgetting af-
ter the model has been trained continuously with all the
mini-batches for task t ∈ {1, · · · , T}. (3) Learning Curve
Area (Chaudhry et al. 2018a). (LCA ∈ [0, 1]) is the area
of the convergence curve for any average b-shot perfor-
mance after the model has been trained for all the T tasks,
where b ∈ [0, β]. (4) Long-Term Remembering (Guo et al.
2019). (LTR ≥ 0) LTR quantifies the accuracy drop on
each task relative to the accuracy just right after the task has
been learned. The detailed descriptions and the formulas can
be shown in the supplementary materials.

Following the previous works (Lopez-Paz and Ranzato
2017; Chaudhry et al. 2018b; Guo et al. 2019), for Per-
muted MNIST we adopt a standard fully-connected net-

work with two hidden layers, where each layer has 256 units
with ReLU activation. For Split CIFAR we use a reduced
ResNet18 (He et al. 2016). For Split CUB and Split AWA,
we use a standard ResNet18.

Comparison With The State-of-the-arts
We compare the proposed method with the state-of-the-
art methods including EWC (Kirkpatrick et al. 2017),
MAS (Aljundi et al. 2018), RWalk (Chaudhry et al. 2018a),
PI (Zenke, Poole, and Ganguli 2017), GEM (Lopez-Paz and
Ranzato 2017), MER (Riemer et al. 2018), ER (Chaudhry
et al. 2019b) A-GEM (Chaudhry et al. 2018b) and
MEGA (Guo et al. 2019). Specifically, EWC, MAS, RWalk
and PI are regularization-based methods that prevent the im-
portant weights from changing too much. GEM, MER, ER,
AGEM and MEGA are rehearsal-based methods that recti-
fies the gradient guided by the stored data. VAN is a single
supervised model trained continuously on the sequence of
tasks. We also compare with the baseline that jointly trains
all datasets with different classifiers together.

First, as shown in Tab. 1, the quantitative results of
the proposed method outperform other state-of-the-arts. For
AT , the performances of our method show the superiority
on all four datasets. This indicates the less forgetting on old
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Task 1 Task 9 Task 17

A-GEM MEGA MDMT-RMDMT-R w/o ED

Figure 5: Final t-SNE of the features extracted from task 1, 9 and 17 on Permuted MNIST after the training on task 17.

10 2 3 4 5 6 7 8 9

Task 1 after 1 Task 1 after 9 Task 1 after 17

A-GEM

MEGA

MDMT-R

MDMT-R

w/o ED

Figure 6: t-SNE of the features from task 1 on Permuted
MNIST after the lifelong learning on task 1, 9 and 17.

tasks and better learning on new tasks through the lifelong
training by reducing unpredictable domain shift. FT evalu-
ates the fine-grained batch-level forgetting on all tasks and
never cares the Acc value. We get good FT except on Split
CIFAR with slight worse (0.04 vs. 0.03) than MER. MER
has a better FT but poor AT because it adopts a complex
meta learning strategy. For LCA10, it evaluates the train-
ing speed on the first 10 training batches for each task, our
method has the best LCA10 only on Split CUB. This is
because the TAM and ED losses may slow the early train-
ing to mitigate domain overlap, but the following training
will be improved significantly. LTR focuses on long-term re-
membering and our method outperforms other methods on
these datasets except Split CUB. We think this is because the
dataset CUB contains similar classes of birds, which means
less impact of TAM and ED losses because of similar repre-
sentations. In Fig. 4, we show the average accuracy trends in
the continual process (from A1 to AT ), which also indicate
the better performance of the MDMT-R.

In Tab. 2, we then analyze the importance of the main
components including TAM and ED loss on Split CIFAR.

The first row is the results with only vanilla softmax. By
adding ED loss, the average accuracy gets a little improve-
ment. By adding TAM loss, the performance obtains larger
gains, and we select the best mt and mc as the hyperparam-
eters where mt = 0 and mc = 0 means the Cross-Domain
Softmax. By adding both TAM and ED loss, we obtain a dra-
matic improvement in performance compared to the vanilla
softmax and the state-of-the-art methods, which means the
TAM and ED loss can significantly reduce the forgetting.

Domain Shift Observation
In this section, we would like to show some observations
of domain shift using t-distributed Stochastic Neighbor Em-
bedding (t-SNE) (Maaten and Hinton 2008) on Permuted
MNIST. First, in order to intuitively reflect the task rela-
tion of the proposed method during the training process, we
visualize the final feature distribution, i.e., trained after the
task 17, of task 1, 9 and 17 in Fig. 5. A-GEM and MEGA
cannot guarantee the task boundaries, which means generat-
ing some mix area and makes the task easy to misclassify.
The proposed MDMT rehearsal separates each class in three
task while obtain explicit task boundary, which means the
proposed method is able to encourage the intra-class/task
compactness and inter-class/task discrepancy. As shown in
Fig. 6, we also show the domain shift of task 1 after the
model trained on task 1, 9 and 17, respectively. The previous
methods A-GEM and MEGA cannot reduce the domain shift
at all, which makes them sustainable to forget. The proposed
MDMT rehearsal method can significantly mitigate the un-
predictable domain shift. Without ED loss, our MDMT re-
hearsal still gets some unpredictable domain shift (such as
task 1 after 1 and 9) because of the shrink of training data.

Conclusion
In this paper, we address catastrophic forgetting by consid-
ering the unpredictable domain shift of old tasks in the train-
ing sequence. To this end, we proposed a Multi-Domain
Multi-Task rehearsal method, which effectively makes all
tasks perceive each other. Then we proposed a Two-level
Angular Margin loss to further encourage the intra-class/task
compactness and inter-class/task discrepancy. Finally, an op-
tional Episodic Distillation loss was proposed to mitigate
domain shift. We have tested the proposed approach on four
image classification benchmark datasets. Extensive experi-
ments show the superiority of our approach over state-of-
the-art methods.
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