
Revisiting Co-Occurring Directions: Sharper Analysis and Efficient Algorithm for
Sparse Matrices

Luo Luo1, Cheng Chen2*, Guangzeng Xie3, Haishan Ye4

1 Department of Mathematics, The Hong Kong University of Science and Technology
2 Department of Computer Science and Engineering, Shanghai Jiao Tong University

3 Academy for Advanced Interdisciplinary Studies, Peking University
4 School of Management, Xi’an Jiaotong University

luoluo@ust.hk, jack chen1990@sjtu.edu.cn, smsxgz@pku.edu.cn, hsye cs@outlook.com

Abstract

We study the streaming model for approximate matrix multi-
plication (AMM). We are interested in the scenario that the al-
gorithm can only take one pass over the data with limited mem-
ory. The state-of-the-art deterministic sketching algorithm for
streaming AMM is the co-occurring directions (COD), which
has much smaller approximation errors than randomized algo-
rithms and outperforms other deterministic sketching methods
empirically. In this paper, we provide a tighter error bound for
COD whose leading term considers the potential approximate
low-rank structure and the correlation of input matrices. We
prove COD is space optimal with respect to our improved
error bound. We also propose a variant of COD for sparse
matrices with theoretical guarantees. The experiments on real-
world sparse datasets show that the proposed algorithm is
more efficient than baseline methods.

1 Introduction
A large scale machine learning system usually receives data
sequentially and it is often impossible to exactly store the
entire data set. Thus, the approximate matrix multiplication
(AMM) in the streaming fashion is an important and funda-
mental task for scientific computation and big data analy-
sis. For example, the product of matrices from multi-modal
datasets captures the correlation between different modali-
ties. In addition, many classical algorithms including canoni-
cal correlation analysis (Hotelling 1992), generalized eigen-
vector decomposition (Golub and Loan 1996), partial least
squares (Wegelin 2000), spectral co-clustering (Dhillon 2001)
require to perform approximate matrix multiplication when
the data set is very large. On the other hand, data matrices
from real-world are usually low-rank and sparse, which moti-
vated us to design efficient and effective sparse algorithms.

This paper considers streaming AMM problem as follows.
Give two large matrices X ∈ Rn×dx and Y ∈ Rn×dy , we
are interested in finding a low-rank estimator A>B to ap-
proximate X>Y, where A ∈ Rm×dx , B ∈ Rm×dy and m
is much smaller than n, dx and dy. We focus on the row
update model, that is, the algorithm receives rows of X and
Y sequentially and it only takes one pass over input matrices

*Corresponding Author
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

with limited memory. The key challenge for this problem is
to reduce the space/time complexity while maintaining the
approximation error.

Inspired by the idea of finding frequent items (Misra and
Gries 1982), Liberty (2013) proposed frequent directions al-
gorithm (FD), which considers the symmetric case of AMM
such that X = Y (a.k.a., the covariance sketching). FD
achieves optimal tradeoffs between space cost and approxima-
tion error (Woodruff 2014a; Ghashami et al. 2016; Ghashami
and Phillips 2014). Moreover, we can combine FD with sub-
space power iteration (Woodruff 2014b; Musco and Musco
2015) to design an algorithm which is efficient for sparse
matrix multiplication (Ghashami, Liberty, and Phillips 2016),
called sparse frequent directions (SFD). Recently, Huang
(2019) integrated random sampling (Drineas, Kannan, and
Mahoney 2006) into FD to reduce its time complexity. Luo
et al. (2019) introduced a regularization term for FD, which
makes the estimator is more friendly to inverse operation.
FD technique can also be used to accelerate many popular
machine learning models, such as convex online optimiza-
tion (Luo et al. 2016, 2019), factorization machine (Luo et al.
2018), linear contextual bandits (Kuzborskij, Cella, and Cesa-
Bianchi 2019; Chen et al. 2020) and ridge regression (Shi
and Phillips 2020; Dickens 2020).

Mroueh, Marcheret, and Goel (2017) proposed a variant
of FD called co-occurring directions (COD) for streaming
AMM. COD shrinks the singular values of input matrices X
and Y simultaneously at each iteration. It is shown that COD
has significantly better performance than other sketching
algorithms (Ye, Luo, and Zhang 2016; Drineas, Kannan, and
Mahoney 2006; Clarkson and Woodruff 2017; Sarlos 2006)
on AMM problem empirically. However, the existing spectral
error bound of COD can not completely explain its high
performance. It depends on the Frobenius norm of X and
Y, which ignores the potential low-rank structure of the data
matrix. Specifically, in the case of X = Y, the procedure of
COD degrades to FD, but its error bound is worse than that
of FD. Another deterministic sketching method for AMM,
which we call FD-AMM (Ye, Luo, and Zhang 2016), directly
adopts FD to sketch the concatenated matrix Z = [X,Y].
The output of the algorithm is an approximation of Z>Z,
whose sub-matrix corresponds to an estimator of X>Y.

In this paper, we provide a sharper analysis for co-

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

8793

occurring directions (COD). We give a new spectral norm
error bound which considers the potential low-rank struc-
ture of the target matrix. Our bound could be much tighter
than Mroueh, Marcheret, and Goel’s (2017) results when the
spectrum of the exact matrix product is dominated by its top
singular values. In addition, we prove that the space complex-
ity of COD is optimal to attain our improved error bound.
Furthermore, in the case of X = Y, our result matches the
error bound of FD.

We further propose sparse co-occurring directions (SCOD)
and provide an error bound matches our improved analysis
on standard COD while the running time of the algorithm
mainly depends on the non-zero entries of input matrices. We
conduct numerical experiments on cross-language datasets
to show that SCOD has better performance than state-of-
the-art algorithms empirically. Concurrent to our work, Wan
and Zhang (2020) have also proposed a similar COD based
algorithm to address streaming AMM with sparse inputs
but their error bound does not consider the potential low-
rankness.

The rest of the paper is organized as follows. In Section 2,
define the notation used in this paper and introduce the back-
ground of related algorithms for streaming AMM. In Sec-
tion 3, we provide our new error bound for COD algorithm
and show the corresponding space lower bound. In Section 5,
we propose SCOD and give its theoretical guarantees. In Sec-
tion 6, we conduct the numerical experiments to show the
superiority of SCOD. We defer detailed proof of some lem-
mas and theorems into supplementary materials. We conclude
our work in Section 7.

2 Notations and Preliminaries
In this section, we first introduce the notation will be used
in this paper. Then we give the backgrounds of frequent
directions and related algorithms for AMM.

2.1 Notations
We let Ip be the p × p identity matrix and 0p×q be the
p × q matrix of all zeros. For an p × q matrix A = [Aij],
we denote (a(i))> be its i-th row, nnz(A) be the number
of non-zero entries of A. The condensed singular value
decomposition (SVD) of A is defined as UΣV> where
U ∈ Rm×r and V ∈ Rm×r are column orthogonal, Σ =
diag(σ1(A), σ2(A), . . . , σr(A)) with σ1(A) ≥ σ2(A) ≥
· · · ≥ σr(A) > 0 places the nonzero singular values on its
diagonal entries and r is the rank of A. We have σi(A) = 0

for any i > r. Additionally, we let ‖A‖F =
√∑

i,j A
2
ij =√∑r

i=1 σ
2
i (A) be the Frobenius norm, ‖A‖2 = σ1(A) be

the spectral norm, ‖A‖∗ =
∑r
i=1 σi(A) be the nuclear norm

and ‖A‖k =
∑k
i=1 σi(A) be the Ky Fan k-norm. We also

denote Ak as the best rank-k approximation to A for any uni-
tary invariant norms, that is, Ak =

∑k
i=1 σi(A)uiv

>
i , where

ui and vi are the i-th column of U and V respectively.

2.2 Frequent Directions
Frequent directions (Liberty 2013; Ghashami et al. 2016) is a
deterministic algorithm for covariance sketching. Given any

matrix X ∈ Rn×d and sketch size m that is much smaller
than n and d, FD processes the rows of X one by one and
produces a sketch matrix A ∈ R2m×d to approximate X>X
by A>A. We present the details of FD in Algorithm 1, which
requires O(md) space and O(mnd) time complexity. The
algorithm has the following theoretical guarantees.

Lemma 1 (Ghashami and Phillips 2014; Ghashami et al.
2016). The output A of Algorithm 1 satisfies∥∥X>X−A>A

∥∥
2
≤ 1

m− k

(
‖X‖2F − ‖Xk‖2F

)
(1)

for any k < m.

Ghashami et al. (2016) also prove FD is space optimal
with respect to the guaranteed accuracy in Lemma 1. Note
that the shrinking step in line 8 of the algorithm is necessary
because the output could be extremely worse without this
operation (Desai, Ghashami, and Phillips 2016; Luo et al.
2019).

Algorithm 1 Frequent Directions (FD)

1: Input: X ∈ Rn×d and sketch size m
2: A← 02m×d

3: for t = 1, 2, . . . , n

4: insert (x(t))> into a zero valued row of A

5: if A has no zero valued rows then
6: [U,Σ,V]← SVD(A)

7: δ ← σ2
m(A)

8: Σ̂←
√

max (Σ2 − δI2m,02m×2m)

9: A← Σ̂V>

10: end if
11: end for
12: Output: A

2.3 Sketching Algorithms for AMM
It is natural to exploit the idea of FD to solve general AMM
problem (Ye, Luo, and Zhang 2016). We can concatenates
the input matrix X ∈ Rn×dx and Y ∈ Rn×dy to construct
a larger matrix Z = [X,Y] ∈ Rn×(dx+dy), and then apply
FD on Z to approximate Z>Z by C>C, where C = [A,B],
A ∈ Rn×dx and B ∈ Rn×dy . The top right sub-matrix of
the C>C, i.e.,the matrix A>B is an approximation of X>Y.
Intuitively, this algorithm wastes a large proportion of cost
to approximate X>X and Y>Y (the other sub-matrices of
Z>Z), which is unnecessary for the AMM task.

Mroueh, Marcheret, and Goel (2017) proposed the co-
occurring directions (COD) for AMM. We present its detailed
procedure in Algorithm 2. Each iteration of COD constructs
the column basis of A and B by QR factorization indepen-
dently and executes the shrinkage step on the small interac-
tion matrix RxR

>
y . We point out that both COD and FD-

AMM requires O(m(dx + dy)) space and O(mn(dx + dy))
time complexity. However, COD looks more reasonable than

8794

FD-AMM since all of its operations surrounds approximating
X>Y. The numerical experiments (Mroueh, Marcheret, and
Goel 2017) show that COD performs significantly better than
FD-AMM (Ye, Luo, and Zhang 2016) and other AMM algo-
rithms (Drineas, Kannan, and Mahoney 2006; Clarkson and
Woodruff 2017; Sarlos 2006) when input matrices is dense.
We can prove that COD holds the guaranteed accuracy as
follows.
Lemma 2 (Mroueh, Marcheret, and Goel 2017). The output
A and B of Algorithm 2 satisfies∥∥X>Y −A>B

∥∥
2
≤
‖X‖F ‖Y‖F

m
. (2)

Unfortunately, the result of Lemma 2 does not reveal the
advantage of COD entirely. Consider that case of X = Y,
the procedure of COD will reduce to FD, but the error bound
of (2) becomes a special case of (1) in Lemma 1 with k = 0.
The real-world dataset typically enjoys some approximate
low-rank structure, which leads to the right-hand side of
bound (1) could be much smaller than the one of (2). Hence
although COD has better empirical performance, the existing
error bounds are not tight enough.

Algorithm 2 Co-Occurring Directions (COD)

1: Input: X ∈ Rn×dx , Y ∈ Rn×dy and sketch size m
2: A← 02m×dx
3: B← 02m×dy
4: for t = 1, 2, . . . , n

5: insert (x(t))> into a zero valued row of A

6: insert (y(t))> into a zero valued row of B

7: if A or B has no zero valued rows then
8: (Qx,Rx)← QR

(
A>
)

9: (Qy,Ry)← QR
(
B>
)

10: [U,Σ,V]← SVD(RxR
>
y)

11: δ ← σm(RxR
>
y)

12: Σ̂← max (Σ− δI2m,02m×2m)

13: A← Σ̂1/2U>Q>x

14: B← Σ̂1/2V>Q>y
15: end if
16: end for
17: Output: A and B

3 Sharper Analysis for COD
In this section, we provide a tighter error bound for COD. We
let δ(t) be the value of δ at time step t. If the algorithm does
not enter the “then” section in the t-th step, then we have
δ(t) = 0. Similarly, let A(t), B(t), Q

(t)
x , Q

(t)
y , U(t), Σ(t),

V(t) and Σ̂(t) be the corresponding variables after the main
loop has been executed for t times. Additionally, we use Â(t)

and B̂(t) to represent the matrices after insert operations (line

5-6) have been executed at the t-th iteration. We need the
following two lemmas for proving our main results.
Lemma 3 (Mroueh, Marcheret, and Goel 2017). The output
matrices A and B of Algorithm 2 satisfy∥∥X>Y −A>B

∥∥
2
≤

n∑
t=1

δ(t) (3)

and ∥∥A>B
∥∥
∗ ≤

∥∥X∥∥
F

∥∥Y∥∥
F
−m

n∑
t=1

δ(t). (4)

Lemma 4. The output of Algorithm 2 holds that

∥∥X>Y∥∥∗ − ∥∥A>B∥∥∗ ≤ d∑
i=k+1

σi(X
>Y) + k

n∑
t=1

δ(t). (5)

Lemma 4 is the key lemma of our proof. It improves the
result in analysis of COD (Mroueh, Marcheret, and Goel
2017). The term

∑d
i=k+1 σi(X

>Y) on the right-hand side
of (5) considers the potential approximate low-rank structure
of X>Y, which leads to a tighter error bound of COD as
follows.
Theorem 1. The output of Algorithm 2 holds that∥∥X>Y −A>B

∥∥
2
≤ 1

m− k

(
‖X‖F ‖Y‖F −

∥∥X>Y
∥∥
k

)
.

for any k < m.

Proof. Let ∆ =
∑n
t=1 δ

(t). Connecting inequality (4) in
Lemma 3 and the result of Lemma 4, we have

m∆ +
∥∥X>Y

∥∥
∗ − ‖X‖F ‖Y‖F

≤
∥∥X>Y

∥∥
∗ −

∥∥A>B
∥∥
∗ ≤

d∑
i=k+1

σi(X
>Y) + k∆,

that is ∆ ≤ 1
m−k

(
‖X‖F ‖Y‖F −

∥∥X>Y
∥∥
k

)
. Substituting

above bound of ∆ into inequality (4) of Lemma 3, we finish
the proof of this theorem.

To achieve the accuracy that
∥∥X>Y −A>B

∥∥
2
≤ ε, the

previous error bound (Lemma 2) requires the sketch size to be
at leastm1 = 1

ε ‖X‖F ‖Y‖F , while Theorem 1 only requires
the sketch size m2 = k + 1

ε

(
‖X‖F ‖Y‖F −

∥∥X>Y
∥∥
k

)
.

When input matrices X and Y have strong correlation and
approximate low-rank structure, m2 could be much smaller
than m1.

In addition, the error bound of Theorem 1 matches that of
FD (Lemma 1) when X = Y:∥∥∥X>X−A>A

∥∥∥
2
≤ 1

m− k
(
‖X‖F ‖X‖F −

k∑
i=1

σi(X
>X)

)
=

1

m− k
(
‖X‖2F −

k∑
i=1

σ2
i (X)

)
=

1

m− k
(
‖X‖2F − ‖Xk‖2F

)
.

On the other hand, the previous error bound (Lemma 2) is
worse than that of FD (Lemma 1) in the symmetric case of
X = Y.

8795

4 Space Lower Bounds Analysis
In this section, we show that COD is space optimal with re-
spect to our new error bound in Theorem 1. We first introduce
the following lemma for low-rank matrices.
Lemma 5 (Kapralov and Talwar 2013). For each δ > 0
there exits a set of matrices Q = {Q1, · · · ,QN} and N =
2Ω(`(d−`) log(1/δ)), where Qi ∈ R`×d with QiQ

>
i = I`, such

that
∥∥QiQ

>
j

∥∥
2
< 1− δ.

By using Lemma 5, we can construct a sets contains ex-
ponential number of matrices that each pair of them are not
“too close”. The formalized result is shown in Lemma 6.
Lemma 6. For each δ > 0 and dx ≤ dy there exits a set of
matrices Ẑ` = {(X̂(1), Ŷ(1)), · · · , (X̂(N), Ŷ(N))}, where
N = 2Ω(`(dy−`) log(1/δ)) and X̂(i) ∈ R`×dx , Ŷ(i) ∈ R`×dy
satisfy X̂(i)X̂(i)> = I` and Ŷ(i)Ŷ(i)> = I` for any i =
1, . . . , n and∥∥X̂(i)>Ŷ(i)> − X̂(j)>Ŷ(j)>∥∥

2
>
√

2δ

for any j 6= i.

Proof. Based on Lemma 5, there exist a set of matrices Y =

{Ŷ(1), · · · , Ŷ(N)}, where N = 2Ω(`(d−`) log(1/δ)); and
Ŷ(i) ∈ R`×d satisfies Ŷ(i)Ŷ(i)> = I` and

∥∥Ŷ(i)Ŷ(j)>
∥∥ <

1− δ. We further set X̂(i) = [I`,0`×(dx−`)]. We have∥∥X̂(i)>Ŷ(i) − X̂(j)>Ŷ(j)
∥∥2

2
=
∥∥Ŷ(i) − Ŷ(j)

∥∥2

2

=
∥∥(Ŷ(i) − Ŷ(j))(Ŷ(i)> − Ŷ(j)>)

∥∥
2

≥2−
∥∥Ŷ(j)Ŷ(i)> + Ŷ(i)Ŷ(j)>∥∥

2
≥ 2δ,

where we use the definition of X̂(i), Ŷ(i) and the fact∥∥A>A
∥∥

2
= ‖A‖22.

Then we present a lower bound of space complexity for ap-
proximate matrix multiplication, which matches the memory
cost of COD. Hence, we can conclude that COD is space op-
timal with respect to the guaranteed accuracy in Theorem 1.
Theorem 2. We consider any matrix sketching algorithm
with inputs as X ∈ Rn×dx and Y ∈ Rn×dy and outputs
A ∈ Rm×dx and B ∈ Rm×dy with guarantee∥∥X>Y −A>B

∥∥
2
≤ 1

m− k

(
‖X‖F ‖Y‖F −

∥∥X>Y
∥∥
k

)
for any k < m. Assuming that a constant number of bits is

required to describe a word (i.e., a unit of memory), then the
algorithm requires at least Ω(m(dx + dy)) bits of space.

Proof. Without loss of generality, we suppose that dy ≥
dx. Let Ẑ` = {(X̂(1), Ŷ(1)), · · · , (X̂(N), Ŷ(N))} be the
set of matrices defined in Lemma 6 with ` = m/4,
δ = 1/8 and N = 2Ω(m

4 ·(dy−m/4) log(8)). We construct
matrices X(i) = [X̂(i); 0(n−m/4)×dx] ∈ Rn×dx and
Y(i) = [Ŷ(i); 0(n−m/4)×dy] ∈ Rn×dy for i = 1, . . . , N .
Then we have Z` = {(X(i),Y(i))}Ni=1 which satisfies∥∥X(i)>Y(i) −X(j)>Y(j)

∥∥
2
> 1/2 for each i 6= j. Let

(A,B) be the output of the matrix sketching algorithm with
input (X(i),Y(i)). The guarantee of the algorithm indicates∥∥X(i)>Y(i) −A>B

∥∥
2
≤ 1

m− k

(m
4
− k
)
≤ 1

4
.

Hence, each (A,B) only encodes one matrix pencil in Z`
(the product of the matrices), which means that the lower
bound of space complexity to attach the desired accuracy is
log2N = Ω(mdy) = Ω(m(dx + dy)) bits.

5 Sparse Co-Occurring Directions
In this section, we proposed a variant of COD for sparse
AMM. We also prove its error bound is similar to our im-
proved result of COD.

5.1 The Algorithm
We describe details of our sparse co-occurring directions
(SCOD) in Algorithm 4. The procedure of SCOD maintains
the sparse data in two buffer matrices X′ and Y′. The al-
gorithm restricts the non-zero entries in buffers to be less
than m(dx + dy) and the number of rows of each buffer
is at most dx + dy. When the buffers are full, we perform
subspace power method (SPM) (Woodruff 2014b; Musco
and Musco 2015) to approximate the data in the buffers by
low-rank matrices X̃ ∈ Rm×dx and Ỹ ∈ Rm×dy such that
X′>Y′ ≈ X̃>Ỹ. We present the procedure of SPM in Algo-
rithm 3.

Let X̃(i) and Ỹ(i) be the results of X̃ and Ỹ after Al-
gorithm 4 has executed “then” section for i-times. Define
C = [X̃(1); · · · ; X̃(T)] and D = [Ỹ(1); · · · ; Ỹ(T)] where
T is the number of total times we enter “then” section of
the algorithm. Then C and D are the estimators of X and
Y respectively and the procedure of SCOD can be regarded
as as running standard COD on input matrices C and D in
streaming fashion. Since the row numbers of buffers X′ and
Y′ could be much larger than m, the operations on dense
matrices (line 14-20) will not be executed frequently. Hence,
SCOD is much more efficient than COD for sparse inputs.

Algorithm 3 Subspace Power Method (SPM)

1: Input: M ∈ Rd1×d2 , target rank m and integer q > 0

2: G = [Gij] ∈ Rd2×m, where Gij ∼ N (0, 1) i.i.d

3: K =
(
MM>)q MG ∈ Rd1×m

4: Z← orthonormal column basis of K

5: Output: Z

5.2 Analysis of Error Bound
The analysis of SCOD is more challenging than sparse fre-
quent directions (SFD) (Ghashami, Liberty, and Phillips
2016) which only addresses the case of X = Y. The reason
is the “mergeability property” of FD (Ghashami et al. 2016;
Desai, Ghashami, and Phillips 2016; Ghashami, Liberty, and
Phillips 2016) only works for Frobenius norm and it is not
applicable to COD.

8796

Algorithm 4 Sparse Co-Occurring Directions (SCOD)

1: Input: X ∈ Rn×dx , Y ∈ Rn×dy , sketch size m, failure
probability δ and sequence {qi}i=1,2...

2: i = 0

3: A← 0m×dx , B← 0m×dy
4: X′ ← empty, Y′ ← empty

5: for t = 1, 2, . . . , n

6: X′ ← [X′; (x(t))>], Y′ ← [Y′; (y(t))>]

7: if nnz(X′) + nnz(Y′) > m(dx + dy) or t = n

or rows(X′) = dx + dy or rows(Y′) = dx + dy
then

8: Z = SubspacePowerMethod(X′>Y′,m, qi)

9: [Ũ, Σ̃, Ṽ] = SVD
(
Z>X′>Y′

)
10: X̃← Σ̃1/2Ũ>Z>

11: Ỹ ← Σ̃1/2Ṽ>

12: A← [A; X̃]

13: B← [B; Ỹ]

14: (Qx,Rx)← QR
(
A>
)

15: (Qy,Ry)← QR
(
B>
)

16: [U,Σ,V]← SVD(RxR
>
y)

17: δ ← σm(RxR
>
y)

18: Σ̂← max (Σ− δIm,0m×m)

19: A← Σ̂1/2U>Q>x

20: B← Σ̂1/2V>Q>y

21: X′ ← empty, Y′ ← empty

22: i← i+ 1

23: end if
24: end for
25: Output: A and B

The approximation error of SCOD comes from two parts:
the compressing error from sub-routine SPM and the merge
error from estimating C>D by A>B. We first consider a sin-
gle call of SPM, which approximation error can be bounded
as follows.

Lemma 7. Let q = Θ̃(log(md1/p)/ε) for Algorithm 3, then
the output Z satisfies

∥∥M− ZZ>M
∥∥

2
≤ (1 + ε)σm+1(M)

with probability at least 1− p.

Based on Lemma 7, we can bound the total compressing
error of SOCD by the following lemma.

Lemma 8. Setting qi = Θ̃(log(md1/pi)/ε) and pi = δ/2i2,
then we have then Algorithm 4 holds that∥∥X>Y −C>D

∥∥
2
≤ 1 + ε

m− k
(
‖X‖F ‖Y‖F −

∥∥X>Y
∥∥
k

)
,

for any k < m and ε > 0 with probability 1− δ.

Proof. Let X′(i) and Y′(i) be the value of X′ and Y′ when
we execute subspace power methods at i-th time in line 8 of
Algorithm 4, then we have

X = [X′(1); . . . ; X′(T)] and Y = [Y′(1); . . . ; Y′(T)].

Using Lemma 7 with M = X̃(i)>Ỹ(i) and q = qi, then with
probability 1− pi, we have∥∥∥X̃(i)>Ỹ(i) −X′(i)>Y′(i)

∥∥∥
2
≤ (1 + ε)σm+1

(
X′(i)>Y′(i)

)
≤ 1 + ε

m− k

(∥∥X′(i)∥∥
F

∥∥Y′(i)∥∥
F
−
∥∥X′(i)>Y′(i)∥∥

k

)
, (6)

where the last step use Srebro, Rennie, and Jaakkola’s (2005)
Lemma 1 such that ‖X′(i)>Y′(i)‖∗ ≤ ‖X′(i)‖F ‖Y′(i)‖F .

Summing over inequality (6) with i = 1, . . . , T , we have

∥∥X>Y −C>D
∥∥
2
≤

T∑
t=1

∥∥X′(i)Y′(i) − X̃(i)>Ỹ(i)
∥∥
2

≤ 1 + ε

m− k

T∑
t=1

(∥∥X′(i)∥∥
F

∥∥Y′(i)∥∥
F
−
∥∥X′(i)>Y′(i)∥∥

k

)
≤ 1 + ε

m− k

(∥∥X∥∥
F

∥∥Y∥∥
F
−
∥∥X>Y∥∥

k

)
with probability 1 − δ. The last inequality is based on the

Cauchy–Schwarz inequality and the triangle inequality of Ky
Fan k-norm. Note that the failure probability is no more than
p1 + · · ·+ pT = δ

2

∑T
i=1 1/i2 ≤ δ.

Unlike SFD (Ghashami et al. 2016) which introduces a
verifying step to boost the success probability, our method
instead requires qi to be increased logarithmically to ensure
the error bound of SCOD holds with probability at least
1 − δ for given δ ∈ (0, 1). Another important property of
SCOD is that the compression step shrink the magnitude
of the product of input matrices. The steps in line 10-11 of
Algorithm 4 balance the singular values of X̃ and Ỹ, which
leads to the following lemma:
Lemma 9. Algorithm 4 holds that∥∥X̃(i)

∥∥
F

∥∥Ỹ(i)
∥∥
F
≤
∥∥X′(i)∥∥

F

∥∥Y′(i)∥∥
F
.

Since the analysis of merging error is similar to standard
COD, we can establish the error bound of SCOD by using
above lemmas.
Theorem 3. Setting qi = Θ̃(log(md1/pi)/ε) with constant
ε > 0 and pi = δ/2i2, with probability 1− δ, the outputs A
and B of Algorithm 4 hold that∥∥X>Y −A>B

∥∥
2

≤
(

2 + ε

m− k
+

(1 + ε)k

(m− k)2

)(
‖X‖F ‖Y‖F −

∥∥X>Y
∥∥
k

)
for all k < m.

Proof. Consider that A and B can be viewed as the output
of running Algorithm 2 with input matrices

C = [X̃(1); · · · ; X̃(T)] and D = [Ỹ(1); · · · ; Ỹ(T)].

8797

Following the proof of Theorem 1, we have∥∥∥C>D−A>B
∥∥∥
2

≤ 1

m− k

(
T∑

i=1

∥∥X̃(i)
∥∥
F

∥∥Ỹ(i)
∥∥
F
−
∥∥C>D∥∥

k

)

≤
∑T

i=1

∥∥X̃(i)
∥∥
F

∥∥Ỹ(i)
∥∥
F
−
∥∥X>Y∥∥

k
+
∥∥X>Y −C>D

∥∥
k

m− k

≤
∑T

i=1

∥∥X̃(i)
∥∥
F

∥∥Ỹ(i)
∥∥
F
−
∥∥X>Y∥∥

k
+ k
∥∥X>Y −C>D

∥∥
2

m− k

≤ 1

m− k

(
T∑

i=1

∥∥X′(i)∥∥
F

∥∥Y′(i)∥∥
F
−
∥∥X>Y∥∥

k

)

+
(1 + ε)k

(m− k)2
(
‖X‖F ‖Y‖F −

∥∥X>Y∥∥
k

)
≤
(

1

m− k +
(1 + ε)k

(m− k)2

)(
‖X‖F ‖Y‖F −

∥∥X>Y∥∥
k

)
where we use Lemma 8, 9 and triangle inequality.

Combing above results and Lemma 8, we have∥∥∥X>Y −A>B
∥∥∥
2

≤
∥∥∥X>Y −C>D

∥∥∥
2
+
∥∥∥C>D−A>B

∥∥∥
2

≤
(

2 + ε

m− k +
(1 + ε)k

(m− k)2

)(
‖X‖F ‖Y‖F −

∥∥X>Y∥∥
k

)
,

with probability at least 1− δ.

5.3 Complexity Analysis
We use the constant-word-size model for our analysis like
that of sparse FD (Ghashami et al. 2016). We suppose floating
point numbers are represented by a constant number of bits,
random access into memory requiresO(1) time and multiply-
ing a sparse matrix M by a dense vector requiresO(nnz(M))
time and storing M requires O(nnz(M)) space.

The procedure of SCOD (Algorithm 4) implies the buffer
X′ and Y′ is sparse and contains at mostm(dx+dy) non-zero
entries and it is not difficult to verify that all dense matrices
in the algorithm cost no more than O(m(dx + dy)) space.
Hence, the space complexity of SCOD is O(m(dx + dy)) in
total which is the same as COD (Algorithm 2).

Then we analyze the time complexity of SCOD. The con-
straints on buffer size means we have

T ≤ nnz(X) + nnz(Y)

m(dx + dy)
+

n

dx + dy
.

Since each QR factorization or SVD on m × d matrix
cost O(m2d) time, the operation on dense matrices of Algo-
rithm 4 from line 9-20 requires at most

O(m2(dx + dy)T) = O(m(nnz(X) + nnz(Y)) +m2n).

Note that SCOD calls SPM with input M = X′>Y′. Since
both X′ and Y′ are sparse, it is unnecessary to construct M
explicitly and we can multiply X′ and Y′ on G separately in
line 3 of Algorithm 3. Then the time complexity of executing
SPM needsO(mqi(nnz(X′(i))+nnz(Y′(i)))+m2dx) when
the algorithm enters “then” section at the i-th time. Following

the upper bound of T and the setting of qi in Theorem 3, the
calls of SPM in Algorithm 3 entirely takes at most

O

(
T∑

i=1

(
mqi(nnz(X

′(i)) + nnz(Y′(i))) +m2dx
))

≤O
(
mqT (nnz(X) + nnz(Y)) + Tm2dx

)
=Õ

(
m(nnz(X) + nnz(Y)) +m2n

)
.

Hence, the total time complexity of proposed SCOD is
Õ
(
m(nnz(X) + nnz(Y)) +m2n

)
.

6 Numerical Experiments
In this section, we empirically compare the proposed sparse
co-occurring directions (SCOD) with frequent direction
based AMM (FD-AMM) (Ye, Luo, and Zhang 2016), co-
occurring directions (COD) (Mroueh, Marcheret, and Goel
2017) and sparse frequent direction based AMM algorithm
(SFD-AMM)1. Instead of increasing qi logarithmically as the
analysis of Theorem 2, we fix qi = 5 in our experiment since
the empirical error arise from subspace power method is very
small in practice.

We evaluate performance of all algorithms on cross-
language datasets: Amazon Product Reviews (APR), PAN-
PC-11 (PAN), JRC Acquis (JRC) and Europarl (EURO)
which contain millions of English (EN), French (FR) and
Spanish (ES) sentences (Prettenhofer and Stein 2010; Pot-
thast et al. 2010, 2011; Koehn 2005). We use bag-of-words
feature for our experiments. All of input matrices are large
but very sparse and we summary the parameters in Table 1.

We demonstrate sketch-error and time-error comparisons
in Figure 1 and 2 respectively. It is apparently that SCOD
always performs better than all baseline algorithms. We do
not include the curve of FD-AMM and COD in time-error
comparison because these two algorithms take much more
time than others. Due to the limit of space, we defer the
result of sketch-time comparison and detailed computing
infrastructure in appendix.

7 Conclusion
In this paper, we first improved the error bound of a determin-
istic sketching algorithm COD for streaming AMM problem.
In symmetric case, our result matches the error bound of
classical algorithm FD. We also proved COD matches the
space lower bound complexity to achieve our error bound.
In addition, we proposed a sparse variant of COD with a
reasonable error bound. The experimental results show that
the proposed algorithm has better performance than baseline
methods in practice.

It would be interesting to borrow the idea of this paper to es-
tablish better theoretical guarantees and streaming algorithms
for more classical machine learning and statistical models
such as canonical correlation analysis (Hotelling 1992; Avron
et al. 2013; Ye, Luo, and Zhang 2016), generalized eigenvec-
tor decomposition (Bhatia et al. 2018; Golub and Loan 1996)
and spectral co-clustering (Dhillon 2001).

1SFD-AMM refers to the method simply replacing FD step in
FD-AMM with sparse frequent directions (Ghashami et al. 2016).
We provide more detailed discussion about SFD-AMM in appendix.

8798

Dataset n dx dy density(X) density(Y)

APR (EN-FR) 2.32× 104 2.80× 104 4.28× 104 6.31× 10−4 4.53× 10−4

PAN (EN-FR) 8.90× 104 5.12× 104 9.96× 104 4.38× 10−4 2.43× 10−4

JRC (EN-FR) 1.50× 105 1.72× 105 1.87× 105 1.65× 10−4 1.64× 10−4

JRC (EN-ES) 1.50× 105 1.72× 105 1.92× 105 1.65× 10−4 1.60× 10−4

JRC (FR-ES) 1.50× 105 1.87× 105 1.92× 105 1.64× 10−4 1.60× 10−4

EURO (EN-FR) 4.76× 105 7.25× 104 8.77× 104 3.46× 10−4 3.65× 10−4

EURO (EN-ES) 4.76× 105 7.25× 104 8.80× 104 3.46× 10−4 3.47× 10−4

EURO (FR-ES) 4.76× 105 8.77× 104 8.80× 104 3.65× 10−4 3.47× 10−4

Table 1: We present the size and density of datasets used in our experiments, where density(X) = nnz(X)/ndx and
density(Y) = nnz(Y)/ndy . All of these datasets are publicly available (Ferrero et al. 2016).

0 100 200 300 400
sketch size

-8

-7

-6

-5

-4

-3

-2

-1

lo
g

re
la

tiv
e

er
ro

r

FD-AMM
COD
SFD-AMM
SCOD

0 100 200 300 400
sketch size

-9

-8

-7

-6

-5

-4

-3

-2

lo
g

re
la

tiv
e

er
ro

r

FD-AMM
COD
SFD-AMM
SCOD

0 100 200 300 400
sketch size

-9

-8

-7

-6

-5

-4

-3

lo
g

re
la

tiv
e

er
ro

r

FD-AMM
COD
SFD-AMM
SCOD

0 100 200 300 400
sketch size

-9

-8

-7

-6

-5

-4

-3

lo
g

re
la

tiv
e

er
ro

r

FD-AMM
COD
SFD-AMM
SCOD

(a) APR (EN-FR) (b) PAN (EN-FR) (d) JRC (EN-FR) (e) JRC (FR-ES)

0 100 200 300 400
sketch size

-9

-8

-7

-6

-5

-4

-3

lo
g

re
la

tiv
e

er
ro

r

FD-AMM
COD
SFD-AMM
SCOD

0 100 200 300 400
sketch size

-9

-8

-7

-6

-5

-4

-3

lo
g

re
la

tiv
e

er
ro

r

FD-AMM
COD
SFD-AMM
SCOD

0 100 200 300 400
sketch size

-8

-7

-6

-5

-4

-3

lo
g

re
la

tiv
e

er
ro

r

FD-AMM
COD
SFD-AMM
SCOD

0 100 200 300 400
sketch size

-9

-8

-7

-6

-5

-4

-3

lo
g

re
la

tiv
e

er
ro

r

FD-AMM
COD
SFD-AMM
SCOD

(f) JRC (FR-ES) (g) EURO (EN-FR) (j) EURO (EN-ES) (i) EURO (FR-ES)

Figure 1: The plot of sketch size against relative spectral norm error

0 2 4 6 8 10 12
time(s)

-8

-7

-6

-5

-4

-3

lo
g

re
la

tiv
e

er
ro

r

SFD-AMM
SCOD

0 10 20 30 40 50
time(s)

-9

-8

-7

-6

-5

-4

-3

lo
g

re
la

tiv
e

er
ro

r

SFD-AMM
SCOD

0 20 40 60 80 100
time(s)

-9

-8

-7

-6

-5

lo
g

re
la

tiv
e

er
ro

r

SFD-AMM
SCOD

0 20 40 60 80 100
time(s)

-9

-8

-7

-6

-5

-4

lo
g

re
la

tiv
e

er
ro

r

SFD-AMM
SCOD

(a) APR (EN-FR) (b) PAN (EN-FR) (d) JRC (EN-FR) (e) JRC (FR-ES)

0 20 40 60 80 100
time(s)

-9

-8

-7

-6

-5

lo
g

re
la

tiv
e

er
ro

r

SFD-AMM
SCOD

0 50 100 150 200 250 300
time(s)

-8

-7.5

-7

-6.5

-6

-5.5

-5

lo
g

re
la

tiv
e

er
ro

r

SFD-AMM
SCOD

0 50 100 150 200 250 300
time(s)

-8

-7.5

-7

-6.5

-6

-5.5

-5

-4.5

lo
g

re
la

tiv
e

er
ro

r

SFD-AMM
SCOD

0 50 100 150 200 250 300
time(s)

-8.5

-8

-7.5

-7

-6.5

-6

-5.5

-5

lo
g

re
la

tiv
e

er
ro

r

SFD-AMM
SCOD

(f) JRC (FR-ES) (g) EURO (EN-FR) (j) EURO (EN-ES) (i) EURO (FR-ES)

Figure 2: The plot of time (s) against relative spectral norm error

8799

Acknowledgements
Luo Luo is supported by GRF 16201320.

References
Avron, H.; Boutsidis, C.; Toledo, S.; and Zouzias, A. 2013.
Efficient dimensionality reduction for canonical correlation
analysis. In ICML.
Bhatia, K.; Pacchiano, A.; Flammarion, N.; Bartlett, P. L.; and
Jordan, M. I. 2018. Gen-Oja: Simple & efficient algorithm
for streaming generalized eigenvector computation. In NIPS.
Chen, C.; Luo, L.; Zhang, W.; Yu, Y.; and Lian, Y. 2020.
Efficient and Robust High-Dimensional Linear Contextual
Bandits. In IJCAI.
Clarkson, K. L.; and Woodruff, D. P. 2017. Low-rank approx-
imation and regression in input sparsity time. Journal of the
ACM 63(6): 1–45.
Desai, A.; Ghashami, M.; and Phillips, J. M. 2016. Im-
proved practical matrix sketching with guarantees. IEEE
Transactions on Knowledge and Data Engineering 28(7):
1678–1690.
Dhillon, I. S. 2001. Co-clustering documents and words
using bipartite spectral graph partitioning. In SIGKDD.
Dickens, C. 2020. Ridge Regression with Frequent Di-
rections: Statistical and Optimization Perspectives. arXiv
preprint:2011.03607 .
Drineas, P.; Kannan, R.; and Mahoney, M. W. 2006. Fast
Monte Carlo algorithms for matrices I: Approximating matrix
multiplication. SIAM Journal on Computing 36(1): 132–157.
Ferrero, J.; Agnes, F.; Besacier, L.; and Schwab, D. 2016.
A multilingual, multi-style and multi-granularity dataset for
cross-language textual similarity detection. In LREC.
Ghashami, M.; Liberty, E.; and Phillips, J. M. 2016. Effi-
cient frequent directions algorithm for sparse matrices. In
SIGKDD.
Ghashami, M.; Liberty, E.; Phillips, J. M.; and Woodruff, D. P.
2016. Frequent directions: Simple and deterministic matrix
sketching. SIAM Journal on Computing 45(5): 1762–1792.
Ghashami, M.; and Phillips, J. M. 2014. Relative errors for
deterministic low-rank matrix approximations. In SODA.
Golub, G. H.; and Loan, C. F. V. 1996. Matrix computations.
Johns Hopkins Universtiy Press, 3rd edtion .
Hotelling, H. 1992. Relations between two sets of variates.
In Breakthroughs in statistics, 162–190. Springer.
Huang, Z. 2019. Near optimal frequent directions for sketch-
ing dense and sparse matrices. Journal of Machine Learning
Research 20(56): 1–23.
Kapralov, M.; and Talwar, K. 2013. On differentially private
low rank approximation. In SODA.
Koehn, P. 2005. Europarl: A parallel corpus for statistical
machine translation. In MT summit, volume 5, 79–86. Cite-
seer.
Kuzborskij, I.; Cella, L.; and Cesa-Bianchi, N. 2019. Efficient
linear bandits through matrix sketching. In AISTATS.

Liberty, E. 2013. Simple and deterministic matrix sketching.
In SGIKDD.
Luo, H.; Agarwal, A.; Cesa-Bianchi, N.; and Langford, J.
2016. Efficient second order online learning by sketching. In
NIPS.
Luo, L.; Chen, C.; Zhang, Z.; Li, W.-J.; and Zhang, T. 2019.
Robust Frequent Directions with Application in Online Learn-
ing. Journal of Machine Learning Research 20(45): 1–41.
Luo, L.; Zhang, W.; Zhang, Z.; Zhu, W.; Zhang, T.; and Pei,
J. 2018. Sketched follow-the-regularized-leader for online
factorization machine. In SIGKDD.
Misra, J.; and Gries, D. 1982. Finding repeated elements.
Science of computer programming 2(2): 143–152.
Mroueh, Y.; Marcheret, E.; and Goel, V. 2017. Co-Occuring
directions sketching for approximate matrix multiply. In
AISTATS.
Musco, C.; and Musco, C. 2015. Randomized block Krylov
methods for stronger and faster approximate singular value
decomposition. In NIPS.
Potthast, M.; Barrón-Cedeño, A.; Stein, B.; and Rosso, P.
2011. Cross-language plagiarism detection. Language Re-
sources and Evaluation 45(1): 45–62.
Potthast, M.; Stein, B.; Barrón-Cedeño, A.; and Rosso, P.
2010. An evaluation framework for plagiarism detection. In
COLING.
Prettenhofer, P.; and Stein, B. 2010. Cross-language text
classification using structural correspondence learning. In
ACL.
Sarlos, T. 2006. Improved approximation algorithms for large
matrices via random projections. In FOCS.
Shi, B.; and Phillips, J. M. 2020. A deterministic streaming
sketch for ridge regression. arXiv preprint:2002.02013 .
Srebro, N.; Rennie, J.; and Jaakkola, T. S. 2005. Maximum-
margin matrix factorization. In NIPS.
Wan, Y.; and Zhang, L. 2020. Approximate Multipli-
cation of Sparse Matrices with Limited Space. arXiv
preprint:2009.03527 .
Wegelin, J. A. 2000. A survey of Partial Least Squares (PLS)
methods, with emphasis on the two-block case. University of
Washington, Technical Report .
Woodruff, D. P. 2014a. Low rank approximation lower
bounds in row-update streams. In NIPS.
Woodruff, D. P. 2014b. Sketching as a Tool for Numeri-
cal Linear Algebra. Foundations and Trends in Theoretical
Computer Science 10(1-2): 1–157.
Ye, Q.; Luo, L.; and Zhang, Z. 2016. Frequent direction
algorithms for approximate matrix multiplication with appli-
cations in CCA. In IJCAI.

8800

