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Abstract
Few-Shot Learning (FSL) is essential for visual recognition.
Many methods tackle this challenging problem via learning
an embedding function from seen classes and transfer it to
unseen classes with a few labeled instances. Researchers re-
cently found it beneficial to incorporate task-specific feature
adaptation into FSL models, which produces the most repre-
sentative features for each task. However, these methods ig-
nore the diversity of classes and apply a global transforma-
tion to the task. In this paper, we propose Global and Local
Feature Adaptor (GLoFA), a unifying framework that tailors
the instance representation to specific tasks by global and lo-
cal feature adaptors. We claim that class-specific local trans-
formation helps to improve the representation ability of fea-
ture adaptor. Global masks tend to capture sketchy patterns,
while local masks focus on detailed characteristics. A strat-
egy to measure the relationship between instances adaptively
based on the characteristics of both tasks and classes endow
GLoFA with the ability to handle mix-grained tasks. GLoFA
outperforms other methods on a heterogeneous task distribu-
tion and achieves competitive results on benchmark datasets.

Introduction
Modern deep learning systems have achieved unprecedented
success in various fields. Their requirements for a large
amount of labeled data impedes deep models’ applica-
tions when limited examples are available. Few-shot learn-
ing (FSL) aims to endow a learner with the ability to gener-
alize well from a small number of training examples. In FSL,
we often assume that a sizeable related dataset which con-
tains SEEN classes is available. After extracting some trans-
ferable knowledge from this dataset, the model can identify
UNSEEN classes with only a few labeled instances.

Many FSL methods try to learn a generalizable em-
bedding function from SEEN classes (Koch, Zemel, and
Salakhutdinov 2015; Vinyals et al. 2016; Snell, Swersky, and
Zemel 2017; Ye, Lu, and Zhan 2020). The main limitation
of these methods is that a single embedding space shared by
all tasks may not work well when target tasks differ a lot
from each other. We should emphasize different feature di-
mensions when solving different tasks, which is the reason
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Figure 1: Different effects of global and local masks on
a coarse-grained task and a fine-grained task. In this ex-
periment, we train our model on the meta-training set of
miniImageNet. We sample two tasks from the meta-testing
set. One task is differing a lion from a bee, and another is dif-
fering a husky from a dalmatian. We apply global masks and
local masks generated by GLoFA to the instances. Masks
are normalized to [0, 1], and highlight warm-colored regions.
We can see that global masks tend to focus on sketchy pat-
terns, e.g., the whole body of lion and bee. These patterns are
enough to discriminate two classes when there is a large se-
mantic gap between them. Local masks catch detailed char-
acteristics, e.g., ear of the husky and leg of the dalmatian. For
a fine-grained task, local masks separate two similar con-
cepts. For each task, we calculate the euclidean distance be-
tween two masked instances. Global masks push the bee far
from the lion, while local masks work better to distinguish
two dogs. Since global and local masks have different ef-
fects, we combine them in GLoFA and fuse them adaptively
based on the target task so that GLoFA emphasizes appro-
priate masks for different tasks.

that many recent methods, including our proposed GLoFA,
focus on task-specific features. Given tasks sampled from
a latent distribution p(T ), we can learn a feature adaptor
p(M|T ), which captures the characteristics of T and out-
puts the most relevant featuresM to this task. Researchers
implement the feature adaptor in different ways, such as cat-
egory traversal module (Li et al. 2019), task encoding net-
work (Oreshkin, López, and Lacoste 2018), set-to-set func-
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tion (Ye et al. 2020), and dynamic subspaces (Simon et al.
2020).

Whatever the task descriptor is implemented as, existing
methods apply a shared transformation to the entire task. As
indicated by (kyun Noh, tak Zhang, and Lee 2018; Wang,
Kalousis, and Woznica 2012), the discriminatory power of
the features might vary between different classes, and a
global metric space may not fit the distance over the data
manifold. Inspired by this, we propose global and local fea-
ture adaptors to capture the characteristics of both entire task
and each class. We generate task-level and class-level feature
masks for each task. Class-wise masks project instances of
each class into several local spaces. In GLoFA, global spaces
and class-wise local spaces are learned simultaneously and
fused adaptively. In Figure 1, we show that different masks
are emphasized by GLoFA for different tasks.

GLoFA contains three components. Firstly, there is an em-
bedding network to extract vector features from raw data.
All the downstream operations are performed on these ex-
tracted features. Secondly, there are two feature adaptors
for tailoring embeddings to heterogeneous tasks at task-level
and class-level. At each level, the feature adaptor is imple-
mented as a permutation-invariant function. Thirdly, a mask
combiner automatically fuses global and local masks based
on the target task context. The outputs of feature adaptors
are balanced by this mask combiner.

On tasks with mixed granularity, GLoFA outperforms ex-
isting methods because global and local feature masks are
optimized, and the importance of general patterns and details
is appropriately adjusted. GLoFA also achieves competitive
performance on several FSL benchmark datasets.

In summary, our contributions are threefold:
• Different from existing methods, we consider classes’ di-

versity, and apply local transformations to each class.
• We investigate different effects of global and local masks,

and propose a mask combiner to adjust their importance.
• We empirically demonstrate the effectiveness of GLoFA

on heterogeneous tasks and benchmark datasets.

Related Work
Meta-learning (Thrun and Pratt 2012) aims at extract-
ing task-level experience (so-called meta-knowledge) from
seen data, while generalizing the learned meta-knowledge
to unseen tasks efficiently. It acts as one main tool
for few-shot learning (Dai et al. 2017; Liu, Wang, and
Zhang 2019), where the few-shot facilitated external mem-
ory (Graves, Wayne, and Danihelka 2014; Santoro et al.
2016; Munkhdalai et al. 2019), shared embedding (Vinyals
et al. 2016; Snell, Swersky, and Zemel 2017; Lee et al.
2019) or optimization strategy (Finn, Abbeel, and Levine
2017) are meta-learned and reused. Among these algo-
rithms, metric-based meta-learning achieves promising per-
formance in FSL. This line of works projects instances into
a task-specific embedding space by feature adaptation (Ore-
shkin, López, and Lacoste 2018; Ye et al. 2020; Li et al.
2019; Ravichandran, Bhotika, and Soatto 2019). Although
the feature adaptors are implemented differently in exist-
ing methods, the learned transformation is shared by all the
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Figure 2: An illustration of the episodic training protocol.

classes in a task. It is natural to emphasize different feature
dimensions for each class, and a local feature mask may
be beneficial for capturing detailed characteristics. Differ-
ent from existing methods, GLoFA selects global and local
features simultaneously in a unifying framework.

Preliminary
FSL means learning from limited examples. In classification
scenario, an N -way K-shot task is composed of N classes
and K training examples per class. Another testing set sam-
pled from the same N classes is provided to evaluate the
classifier. In FSL literature, the small training set of each
task is referred as support set S = {(xi, yi)}NKi=1 and the
testing set is called query set Q = {(xi, yj)}NMj=1 . That is, a
task T is defined as T = (S,Q).

Researchers often utilize meta-learning to tackle FSL
problems. A key idea in meta-learning is to mimic meta-
testing process in meta-training phase. Since the learned
meta-model is intended for N -way K-shot classification
tasks, we sample episodic N -way K-shot tasks from meta-
training set Dtr (composed of SEEN classes) to optimize
our model. The main target is to extract knowledge from
sampled tasks and reuse them when a new task comes. In
meta-testing phase, N -way K-shot tasks are sampled from
a meta-testing setDts (composed of UNSEEN classes). Fig-
ure 2 gives an illustration of this episodic training protocol.

A simple solution is to meta-learn an embedding function
φ, which maps an input object x to a d-dimensional vector.
In a meta-training task T tr sampled from Dtr, the label of
a query instance xj could be determined by its distance to
each class center in the support set Str as shown in the fol-
lowing two equations. [N ] means {1, 2, . . . , N}. dis(·, ·) is
some distance function like euclidean distance.

p(ŷj = n|xj) =
exp {−dis(φ(xj), cn)}∑N

n′=1 exp {−dis(φ(xj), cn′)}
(1)

cn =
1

K

∑
(xi,yi)∈Str∧yi=n

φ(xi), n ∈ [N ] (2)

Cross-entropy loss is optimized on all sampled tasks.
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Figure 3: Necessity of local masks on a synthetic task. (a) Support and query instances sampled from two Gaussian distributions
P1 andP2. Two empirical class centers are close to each other. (b) A global mask m is learned on support set. m fails to separate
two class centers and accuracy drops to 47.5%. (c) Two local masks m1 and m2 are learned on support set. Query instances
are projected into class-specific spaces to compute their distances to the corresponding class center.

min
φ

∑
T tr∼Dtr

∑
(xj ,yj)∈Qtr

− log p(ŷj = yj |xj) (3)

We apply the learned embedding function φ to N -way K-
shot tasks T ts sampled from Dts. In this simple approach,
all that we can learn from seen tasks is an embedding func-
tion. Learning such an embedding to estimate the class pro-
totype in Equation (1) neglects the diversity of tasks. It
is natural to emphasize different feature dimensions when
solving different tasks, so many recent methods (Oreshkin,
López, and Lacoste 2018; Li et al. 2019; Ye et al. 2020) fo-
cus on task-specific features.

Main Approach
Existing methods seek task-specific features by applying a
shared transformation to all the instances in a task, ignoring
the diversity of classes. We claim that each class should be
treated differently to capture local characteristics. This sec-
tion introduces global and local feature adaptors, and then
presents a mask combiner to fuse two masks’ effects. Next,
we describe the implementation of these modules.

Feature Adaptor
In GLoFA, feature masks at two levels, namely task-level
and class-level, are simultaneously learned. Corresponding
important features are emphasized to adapt the embedding
function when dealing with a specific task. Denote F =
{f task(·), f cls(·)} be the set of feature adaptors.

Task-level feature adaptation. Embedding function φ(·)
is not ideal because the representation output by it dose
not necessarily highlight the most discriminative feature di-
mensions. To this end, we set mtask = f task({φ(xi)}NKi=1 )
where f task(·) is the task-level feature adaptor. mtask is a d-
dimensional vector and encodes the excess importance of
each dimension, i.e., 1+mtask will be multiplied to φ(x) to

highlight important dimensions and eliminate irrelevant di-
mensions. Based on the support set S ,1 the task-level feature
mask mtask is output and applied to both support instances
and query instances, making our feature adaptor inductive
rather than transductive.

Class-level feature adaptation. Class-specific local mod-
eling is the main difference of GLoFA from existing meth-
ods. We set mcls

n = f cls({φ(xi)|yi = n}NKi=1 ), n ∈ [N ]
where f cls(·) is the class-level feature adaptor. Class-level
masks encode excess importance of each dimensions within
the scope of corresponding class. The n-th class-level mask
is computed based on the support instances of n-th class.

How to apply class-level masks to query instances? For
a query instance xj , although its class label is not avail-
able, we can project it into the class-specific space by n-th
local mask when computing its distance to n-th class cen-
ter. Let {en}Ni=n be the N empirical class centers masked
by corresponding feature masks, for a query instance xj ,
its distance to the n-th class center is computed as dn =
dis(φ(xj) � (1 + mcls

n ), en). � means element-wise multi-
plication. xj will be classified into the same category of its
nearest center. In meta-training phase, these distances are
normalized to a label posterior probability, which is then op-
timized using cross-entropy loss. The training procedure au-
tomatically adjusts the scale of each class-specific space, and
makes {dn}Nn=1 comparable to each other.

Importance of class-level masks. To seize the hetero-
geneity of tasks, existing methods project instances into
task-specific spaces and use some distance function to de-
termine the label posterior probability. We can view these
methods as finding a metric space shared by all the in-
stances. However, a global metric does not necessarily fit
well the distance over the data manifold. Consider a simple

1We omit the super-script tr and ts when the notation applies
to both meta-training set and meta-testing set.
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task where instances are sampled from two Gaussian dis-
tributions. Let P1 = N (µ1,Σ1) and P2 = N (µ2,Σ2)
be the distributions of two classes where µ1,µ2 ∈ R2 and
Σ1,Σ2 ∈ R2×2. For each class, we sample 100 instances
as support set, {x1

s}100s=1
i.i.d.∼ P1, {x2

s}100s=1
i.i.d.∼ P2, and

20 instances as query set, {x1
u}20u=1

i.i.d.∼ P1, {x2
u}20u=1

i.i.d.∼
P2. Nearest Center Mean (NCM) classifier is used to
predict the label of an instance, i.e., p(ŷ = n|x) =

exp{−dis(x,en)}
exp{−dis(x,e1)}+exp{−dis(x,e2)} where en is the empirical
class center of n-th class. We set µ1,µ2,Σ1,Σ2 as follows:

µ1 = µ2 =

[
5
5

]
,Σ1 =

[
0.2 0
0 2

]
,Σ2 =

[
2 0
0 0.2

]
In this task, the two class means µ1 and µ2 are equal, mak-
ing it difficult for the NCM classifier to distinguish them
in raw feature space. As shown in Figure 3a, directly us-
ing NCM to predict the labels of query instances achieves
an accuracy of 52.5%. Next, we optimize a global mask m
to minimize the cross-entropy loss on the support set. We
then apply m to both support and query instances in the in-
ference phase. Figure 3b is a visualization of the instances
masked by m. Two class centers are still close to each other,
and accuracy drops to 47.5%. The feature mask encodes the
importance of each dimension and projects instances into a
new space. But in this case, whichever dimension we focus
on, the two class centers cannot be separated, which is the
reason that the global mask fails. As an alternative, we opti-
mize two local masks m1 and m2 for each class and project
instances into class-specific spaces. For each query instance
xu, we mask it by mn when computing its distance to n-
th class center. In Figure 3c, we show the two class-specific
spaces. Two class centers are far from each other, and accu-
racy rises to 72.5%. Local masks significantly improve the
representation ability of feature adaptors.

Mask Combiner

As is indicated before, different masks should be empha-
sized for different tasks. Thus, we propose a mask combiner
to balance the strengths of two feature adaptors.

Mask fusion by smoothing parameter. Since both task-
level masks and class-level masks encode excess impor-
tance, we can divide them by two positive scalar param-
eters αtask and αcls to adjust their strengths. For a mask
m, we have limα→∞ φ(x) �

(
1 + m

α

)
= φ(x) and large

α tends to eliminate the effect of m. As indicated before,
which mask should be amplified depends on the task itself.
Thus, we learn from the task two smoothing parameters, i.e.,
[αtask;αcls] = g({φ(xi)}NKi=1 ) where g(·) is the task-adaptive
balance module. αtask and αcls play the role of mask bal-
ancer. When α is small, the effect of corresponding mask
m is amplified because the differences between values in m
are enlarged, making the distribution over excess importance
sharper and more informative.

GLoFA Framework
Main objective. We compute masked class center en as
Equation (4) and Equation (5).

en =
1

K

∑
(xi,yi)∈Str∧yi=n

zi, n ∈ [N ] (4)

zi = φ(xi)�
(

1 +
mtask

αtask

)
�

(
1 +

mcls
yi

αcls

)
(5)

To infer the class label of query instance xj , we need to com-
pute the posterior probability p(ŷj = n|xj), as shown in
Equation (6) and Equation (7).

p(ŷj = n|xj) =
exp

{
−dis(znj , en)

}∑N
n′=1 exp

{
−dis(zn′

j , en′)
} (6)

znj = φ(xj)�
(

1 +
mtask

αtask

)
�
(

1 +
mcls
n

αcls

)
(7)

znj is the masked representation of query instance xj for
computing its distance to the n-th class center. This class-
specific operation makes it possible to use class-level masks
for query instances without knowing their class labels. αtask

and αcls are two balance parameters conditioned on the task
context, as shown in Equation (8).

[αtask, αcls] = g({φ(xi)}NKi=1 ) (8)

The main objective of our GLoFA framework is:

min
φ,F,g

∑
T tr∼Dtr

∑
(xj ,yj)∈Qtr

− log p(ŷj = yj |xj) (9)

Figure 4 shows the whole framework of GLoFA. There re-
main two details in our framework, i.e., how to generate
masks with F and how to implement g(·). We instantiate the
feature adaptors and the balance module as set functions.

Implementation. In this part we specify the concrete im-
plementation of F and g(·). In GLoFA, we generate masks
as excess importance to highlight relevant features. Whether
a particular dimension is important is jointly related to the
task or class context. Hence we use a set function to imple-
ment F , where the outputs are permutation invariant w.r.t
the context elements. According to (Zaheer et al. 2017), we
denote the set to determine the feature masks as A, then im-
plement f ∈ F as a deep-set function:

f(A) = hδ

(
MLP

(∑
x∈A

[MLP (φ(x)) ;φ(x)]

))
(10)

MLP(·) is a multi-layer linear network with tanh(·) activa-
tion. hδ(·) = min(δ,max(0, ·)) is a function that projects its
input to [0, δ], ensuring that the excess importance is positive
but not too large. After transforming the embedding φ(x) by
first MLP(·), we concatenate it with φ(x), and then input
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Figure 4: An illustration of GLoFA framework. We take a
2-way 1-shot classification task as an example. In Global
Adaptation, GLoFA generates 1 task-level mask mtask. mtask

is shared by two classes. In Local Adaptation, GLoFA gener-
ates 2 class-level masks mcls

1 and mcls
2 for each class. Based

on the task context, GLoFA outputs two smoothing param-
eters αtask and αcls, which adjust the strengths of global and
local masks. For each class, mtask and the corresponding
mcls induce a class-specific space. The support instances of
each class are projected into the corresponding space. For
a query instance, it is projected into the n-th class-specific
space when computing its distance to n-th class center.

the joint representation to the second transformation func-
tion. This can be seen as a kind of residual operation which is
beneficial to training process. At task-level,A consists of all
the support instances of a task. At class-level,A is composed
of the support instances from a specific class. We implement
the mask combiner as a set function too. As indicated before,
whether global features or local features should be empha-
sized depends on the task. Equation (11) defines the mask
combiner. S is the support set of a task. ε is a small positive
value that prevents αtask and αcls from being 0.[
αtask;αcls

]
= ReLU

(
MLP

(∑
x∈S

[MLP (φ(x)) ;φ(x)]

))
+ε

(11)

Experiments
There are three parts of experiments in this section. In the
first part, we construct a mixed dataset and sample het-
erogeneous tasks from it. We show that global and lo-
cal masks can capture the heterogeneity better than exist-
ing methods. In the second part, we test our method on
two widely used benchmark datasets miniImageNet and
tieredImageNet. GLoFA achieves competitive performances
with recent state-of-the-art methods. The third part presents
further analyses of GLoFA.

Heterogeneous Tasks
Datasets. We construct a dataset mixed by 5 fine-grained
classification sub-datasets, namely AirCraft (Maji et al.
2013), Car-196 (Krause et al. 2013), CUB-200-2011 (Wah
et al. 2011), Stanford Dog (Khosla et al. 2011), and Indoor

G ProtoNet TADAM CTM GLoFA

1 49.92±0.29 50.04±0.29 50.45±0.38 53.14±0.46
2 57.83±0.40 58.17±0.40 58.34±0.33 61.07±0.34
3 59.55±0.38 60.46±0.39 60.28±0.42 62.49±0.40
4 75.43±0.34 75.92±0.41 76.47±0.36 76.56±0.32
5 77.82±0.29 78.37±0.33 79.03±0.34 79.92±0.33

# 67.46±0.32 67.99±0.37 68.42±0.22 70.60±0.29

Table 1: Average test accuracies (%) with 95% confidence
intervals on tasks sampled from the constructed heteroge-
neous dataset. G is the granularity factor defined in experi-
ment settings. # means randomly sampling classes from the
whole meta-testing set.

Scenes (Quattoni and Torralba 2009). For each sub-dataset,
we randomly extract 20 classes from it, and then split the 20
classes into 3 parts: 10 classes for meta-training, 5 classes
for meta-validating, and 5 classes for meta-testing.

Settings. Since these sub-datasets have different seman-
tics, it is easy to distinguish classes from different sub-
datasets. If classes in a task are all from a common sub-
dataset, the task will be fine-grained and extremely hard.
In this experiment, we sample 5-way 1-shot tasks from the
whole heterogeneous dataset with different granularity. Here
we define granularity G as the number of sub-datasets in-
volved in a task. The smaller G is, the more fine-grained
the task is. In meta-training phase, we sample tasks from
the whole meta-training set randomly, which means train-
ing the model on heterogeneous tasks with different G val-
ues. In meta-testing phase, we sample tasks with specific
G values to check whether our methods can maintain good
performance on tasks with different granularity. Some other
metric-based few-shot learning methods are compared, e.g.,
ProtoNet (Snell, Swersky, and Zemel 2017), TADAM (Ore-
shkin, López, and Lacoste 2018) and CTM (Li et al. 2019).

Implementation details. We take the commonly used
ResNet-12 as the embedding network. After training the
model, we sample 600 episodes for each G in {1, 2, 3, 4, 5}
to evaluate it. We also randomly sample 600 episodes from
the whole meta-testing set to evaluate our model on het-
erogeneous tasks. We reimplement ProtoNet, TADAM, and
CTM with ResNet-12 embedding network for a fair compar-
ison. More details can be found in the supplement.

Results. Table 1 shows experiment results on the hetero-
geneous dataset. DifferentG values are used to sample meta-
testing tasks. As expected, all methods achieve better perfor-
mance whenG is larger since coarse-grained tasks are easier
to solve. We can see that GLoFA outperforms other methods
on smallG values. Unlike these compared methods that only
perform global transformations to the task, GLoFA incor-
porates local feature masks, which tend to capture detailed
characteristics and are most helpful in fine-grained tasks.
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(a) Coarse-grained task. (b) Fine-grained task.

Figure 5: Visualization of support instances’ feature masks. Raw images, images with global masks, and images with local
masks are arranged in the first, the second, and the third row respectively. Task-level masks focus on sketchy patterns while
class-level masks pick out detailed characteristics. (a) Visualization of a 5-way 1-shot coarse-grained task. (b) Visualization of
a 5-way 1-shot fine-grained task.

Visualization of feature masks. For an instance x and its
d-dimensional feature mask m, we keep 10 largest values
in m and set all other values to zero. After that, m is mul-
tiplied to the penultimate layer’s outputs, which contains d
semantic feature maps. The weighted sum of feature maps
is then applied to the raw image to show what part of an im-
age is highlighted by m. In Figure 5, we can see that global
feature masks focus on sketchy patterns while local feature
masks catch detailed characteristics.

Effect of α. In this part, we investigate the behaviour of
g(·). ForG in {1, 2, 3, 4, 5}, we sample 600 tasks from meta-
testing set and check the mean and standard deviation of
αtask and αcls. In Figure 6a, we can see that αtask tends to
be large on fine-grained tasks. The trend of αcls is opposite
to αtask. This means the mask combiner trusts local masks
more on fine-grained tasks because detailed characteristics
are more discriminative. In Figure 6b, we check whether the
mask combiner can improve the accuracy. It is shown that
the mask combiner improves the model accuracy.

Benchmark Evaluations
Datasets. In this part, we test our method on two bench-
mark dataset, i.e., miniImageNet (Vinyals et al. 2016)
and tieredImageNet (Ren et al. 2018). We follow (Ravi
and Larochelle 2017) and (Ren et al. 2018) to split
miniImageNet and tieredImageNet respectively. More de-
tails about these two dataset can be found in the supplement.

Implementation details. We use ResNet-12 as embed-
ding network. We pre-train the embedding network on the
meta-training set of miniImageNet with cross-entropy loss
function. Refer to the supplement for more details.

Results. We compare GLoFA to some classic few-shot
learning methods and recent state-of-the-art methods. We
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(b) Improvement in accuracy.

Figure 6: (a) Mean and standard deviation of αtask and αcls

for different granularity of tasks. αcls tends to be small for
fine-grained tasks because detailed characteristics are more
important. The trend of αtask is opposite to αcls. (b) Average
testing accuracies on different granularity of tasks without
mask combiner. Global masks and local masks are directly
applied to the instance embedding. The model suffers a loss
in accuracy on fine-grained tasks and coarse-grained tasks.

summarize test accuracies in Table 2. GLoFA achieves com-
petitive performance to state-of-the-art methods.

Evaluation of embedding quality. In this part, we take
a closer look at GLoFA to investigate why GLoFA can
achieve promising performance on miniImageNet. Since we
use NCM classifier, an embedding-based method, to predict
the label of each query instance, embedding quality may be
a key factor to the model accuracy. We perform K-means
clustering in the embedding space and use Normalized Mu-
tual Information (NMI) as the criterion to measure the em-
bedding quality. We randomly sample 600 5-way 20-shot
tasks from the meta-testing set of miniImageNet and per-
form clustering on their support sets. Results are shown in
Table 3. GLoFA significantly improves the embedding qual-
ity, which results in an increase in model accuracy. The tSNE
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method miniImageNet tieredImageNet
5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

MatchNet (Vinyals et al. 2016) 63.08 ± 0.80 75.99 ± 0.60 68.50 ± 0.92 80.60 ± 0.71
ProtoNet (Snell, Swersky, and Zemel 2017) 60.37 ± 0.83 78.02 ± 0.57 65.65 ± 0.92 83.40 ± 0.65

TADAM (Oreshkin, López, and Lacoste 2018) 58.50 ± 0.30 76.70 ± 0.30 63.74 ± 0.45 80.35 ± 0.40
MetaOptNet (Lee et al. 2019) 62.64 ± 0.61 78.63 ± 0.46 65.99 ± 0.72 81.56 ± 0.53

ClassModel (Ravichandran, Bhotika, and Soatto 2019) 60.71 77.26 - -
CTM∗ (Li et al. 2019) 62.05 ± 0.55 78.63 ± 0.06 64.78 ± 0.11 81.05 ± 0.52
AFHN (Li et al. 2020) 62.38 ± 0.72 78.16 ± 0.56 - -

DSN (Simon et al. 2020) 64.60 ± 0.72 79.51 ± 0.50 67.39 ± 0.82 82.85 ± 0.56
MetaVRF∗∗ (Zhen et al. 2020) 63.80 ± 0.05 77.97 ± 0.28 - -

GLoFA 66.12 ± 0.42 81.37 ± 0.33 69.75 ± 0.33 83.58 ± 0.42

Table 2: Average test accuracies (%) with 95% confidence intervals on tasks sampled from meta-testing set of miniImageNet and
tieredImageNet. All these methods use ResNet-12 as embedding network except CTM and MetaVRF. (*) CTM uses ResNet-18
as backbone. (**) MetaVRF uses WRN-28-10 as backbone. These two backbones are deeper than ResNet-12.

embedding no mask global local GLoFA

NMI 0.61±0.08 0.64±0.09 0.65±0.09 0.66±0.09

Table 3: Average NMI with 95% confidence intervals on
tasks sampled from the meta-testing set of miniImageNet.
Global masks and local masks both improve the embedding
quality. Combing the two masks in GLoFA will further im-
prove the embedding quality.

Model f task f cls g 1-shot 5-shot

0 × × × 60.42±0.38 77.29±0.54
1 X × × 65.88±0.29 80.30±0.32
2 × X × 65.72±0.48 80.94±0.35

GLoFA X X X 66.12±0.42 81.37±0.33

Table 4: Average test accuracies (%) with 95% confidence
intervals of several variants on miniImageNet.

NMI = 0.618

(a) w/o masks.

NMI = 0.645

(b) Global mask.

NMI = 0.652

(c) Local mask.

Figure 7: Visualization of a randomly sampled task. Each
color represents a class. ? indicates the class center. (a) tSNE
result without any feature masks. (b) tSNE result with global
feature mask. (c) tSNE result with local feature mask.

results of a randomly chosen task is shown in Figure 7. We
can see that feature masks improve embedding quality.

Further Analyses
Ablation study. In this part, we evaluate the effective-
ness of each module in GLoFA. We sample tasks from
miniImageNet to train and test several variants of GLoFA.
We summarize experiment results in Table 4. By removing
global and local feature adaptors in GLoFA, our model de-
generates to ProtoNet (Snell, Swersky, and Zemel 2017) and
we achieve similar accuracy to that in Table 2. Equipped
with feature adaptors and mask combiner, our model out-
performs the baseline models by a noticeable margin.

Conclusion
In this paper, we propose GLoFA, a new framework that tai-
lors embedding function to heterogeneous few-shot tasks by
global and local feature adaptors. Unlike existing methods
that apply a global transformation to all the instances in a
task, GLoFA treats each class differently and generates local
feature masks. We verify that global masks capture general
patterns while local masks focus on detailed characteristics.
An adaptive combination of two masks makes GLoFA suc-
ceed in learning tasks with mixed granularity. GLoFA also
achieves competitive performance on benchmark datasets.

Broader Impact
In this work, we study the problem of few-shot learning,
which means extracting concepts from limited labeled ex-
amples. The investigation of few-shot learning may ease the
model’s requirement for large labeled dataset, which ex-
pands the application field of deep learning systems. We
have not found any negative influences of this technology
on human society yet. We believe that demonstrating and de-
veloping few-shot learning techniques is vital for robust and
universal intelligence. Moreover, advanced few-shot learn-
ing algorithms may optimize industrial chain by encourag-
ing practitioners to apply for technology-intensive positions
rather than labor-intensive ones like data collectors.
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