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Abstract

We study bandits with graph-structured feedback, where a
learner repeatedly selects an arm and then observes rewards
of the chosen arm as well as its neighbors in the feedback
graph. Existing work on graphical bandits assumes either
stochastic rewards or adversarial rewards, both of which are
extremes and appear rarely in real-world scenarios. In this
paper, we study graphical bandits with a reward model that
interpolates between the two extremes, where the rewards are
overall stochastically generated but a small fraction of them
can be adversarially corrupted. For this problem, we propose
an online algorithm that can utilize the stochastic pattern and
also tolerate the adversarial corruptions. The main idea is to
restrict exploration to carefully-designed independent sets of
the feedback graph and perform exploitation by adopting a
soft version of arm elimination. Theoretical analysis shows
that our algorithm attains an O(α lnK lnT + αC) regret,
where α is the independence number of the feedback graph,
K is the number of arms, T is the time horizon, and C quan-
tifies the total corruptions introduced by the adversary. The
effectiveness of our algorithm is demonstrated by numerical
experiments.

Introduction
As a powerful sequential decision-making model, the multi-
armed bandits (MAB) have found applications in a variety of
real-world scenarios, such as cell planning (Maghsudi and
Hossain 2016), medical trials (Villar, Bowden, and Wason
2015), and online advertising (Schwartz, Bradlow, and Fader
2017). In MAB, learning proceeds in a sequence of consec-
utive rounds. At each round, a learner first chooses one ofK
arms to play and then receives a reward of the chosen arm.
The learner’s goal is to maximize the total rewards over T
rounds, which requires carefully balancing the trade-off be-
tween exploration (trying different arms to avoid missing the
optimal arm) and exploitation (sticking to the empirically
best arm to accumulate more rewards). The standard metric
for MAB is the regret, which is the cumulative rewards ob-
tained by always selecting the optimal arm in hindsight mi-
nus the total rewards received by the learner. Over the past
decades, regret theories and effective algorithms for MAB
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have been well developed (Bubeck and Cesa-Bianchi 2012;
Lattimore and Szepesvári 2020).

A natural extension of MAB is the graphical bandits
(GB), initially introduced by Mannor and Shamir (2011). In
GB, there exists a undirected feedback graph G with nodes
corresponding to K arms and edges characterizing the feed-
back structure. Specifically, an edge (u, v) in graph G indi-
cates that whenever the learner plays arm u or arm v, the
rewards of both u and v are revealed to the learner. Com-
pared to MAB, the main advantage of GB is that it cap-
tures the side-information about rewards of unselected arms.
Such side-information widely exist in real-world applica-
tions (Alon et al. 2017). For example, in online advertising,
if two ads promote similar products, they can be connected
with an edge in the feedback graph: When a user clicks one
ad, it is likely that the user also takes interest in the other ad.
In social networks, two persons following each other often
share similar preferences, so behaviors of one person also
reveal information on the other. Furthermore, from a theo-
retical view, GB generalizes and unifies two popular online
learning paradigms: MAB and PEA (Prediction with Expert
Advice, Cesa-Bianchi and Lugosi, 2006) in the sense that
GB reduces to MAB and PEA when the feedback graph is
empty and complete, respectively.

Since the seminal work of Mannor and Shamir (2011),
there has been a large body of research on GB, which
can be divided into two categories according to the reward
model. One category is the stochastic GB (Caron et al. 2012;
Buccapatnam, Eryilmaz, and Shroff 2014; Cohen, Hazan,
and Koren 2016; Tossou, Dimitrakakis, and Dubhashi 2017;
Liu, Zheng, and Shroff 2018; Liu, Buccapatnam, and Shroff
2018; Hu, Mehta, and Pan 2019; Lykouris, Tardos, and Wali
2020), where the reward of each arm is stochastically gen-
erated. The other is the adversarial GB (Mannor and Shamir
2011; Alon et al. 2013; Kocák et al. 2014; Alon et al. 2015;
Neu 2015; Kocák, Neu, and Valko 2016; Lykouris, Srid-
haran, and Tardos 2018; Feng and Loh 2018; Rangi and
Franceschetti 2019; Arora, Marinov, and Mohri 2019; Lee,
Luo, and Zhang 2020), in which rewards of arms are deter-
mined by an adversary and can be hence nearly arbitrary.
While the stochastic GB can achieve a logarithmic regret
bound, it is too optimistic and the stochastic assumption on
reward is too stringent. By contrast, the adversarial GB has
wider applicability, but it is too pessimistic and only enjoys
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a regret bound that scales with
√
T . Thus, a natural question

arises: Is there a bandits model that lies between the stochas-
tic and adversary worlds and admits regret guarantees only
slightly worsen than the logarithmic regret bound? In fact,
this question has been answered affirmatively in the context
of MAB (Seldin and Slivkins 2014; Lykouris, Mirrokni, and
Paes Leme 2018; Zimmert and Seldin 2019; Gupta, Koren,
and Talwar 2019) and PEA (Amir et al. 2020), but still re-
mains open for GB.

In this paper, we provide an affirmative answer to this
question for GB. Inspired by previous work (Lykouris, Mir-
rokni, and Paes Leme 2018; Gupta, Koren, and Talwar
2019), we study the adversarially-corrupted stochastic set-
ting and formulate a new graphical bandits model called
stochastic graphical bandits with adversarial corruptions,
where rewards of arms at each round are first drawn from
some unknown distributions and then can be corrupted by
an adversary with a total corruption budget. As a motivating
example, consider a search engine that offers pay-per-click
advertising services. When a user comes in, the search en-
gine chooses an ad to display and obtains a reward if the ad is
clicked. While for an ad most feedback from users (i.e., click
or not) follows a stochastic pattern, some feedback may be
maliciously simulated by botnets and get corrupted, result-
ing in the notorious phenomenon of click fraud (Wilbur and
Zhu 2009).

For stochastic graphical bandits with adversarial corrup-
tions, we propose an online algorithm that can exploit the
generally stochastic nature of rewards and be also robust to
the reward corruptions introduced by the adversary. Our al-
gorithm builds on the BARBAR method (Gupta, Koren, and
Talwar 2019), which is designed for stochastic MAB with
adversarial corruptions. We extend BARBAR to the graph-
ical bandits setting and leverage the graph-structured feed-
back to reduce the regret suffered from exploration. Specif-
ically, we construct carefully-designed independent sets of
the feedback graph and restrict the exploration to these in-
dependent sets instead of exploring on the whole arm set.
Theoretical analysis shows that our algorithm enjoys an
O(α lnK lnT +αC) regret bound, where α is the indepen-
dence number of the feedback graph and C is the amount
of corruption. Compared to the O(K lnK lnT + KC) re-
gret bound of BARBAR, our result implies that in the cor-
rupted setting, replacing pure bandit feedback with graph-
structured feedback can also reduce the regret by aK/α fac-
tor, which is consistent with the existing literature on non-
corrupted graphical bandits.

Besides extending BARBAR to graphical bandits, we also
make improvements and refinements of BARBAR, includ-
ing a different estimation of mean reward and a smaller con-
stant for epoch length, which help to reduce the leading con-
stant factor in the regret bound of BARBAR by more than
500 times and achieve better empirical performance. Finally,
for stochastic PEA with adversarial corruptions, a special
case of our setting with α = 1, the existing algorithm only
enjoys an expected regret bound and requires the optimal
expert to be unique (Amir et al. 2020). By contrast, our al-
gorithm achieves a high probability regret bound and can
handle scenarios with multiple optimal experts. Finally, we

conduct numerical experiments to demonstrate the effective-
ness of our algorithm.

Related Work
In this section, we briefly review the related work.

Stochastic Graphical Bandits
The study of stochastic graphical bandits was initiated by
Caron et al. (2012), who proposed an elegant extension of
UCB termed UCB-N, where the estimated mean rewards are
updated for not only the chosen arm but also its neighbors.
For this algorithm, Caron et al. (2012) derived anO(χ̄ lnT+
K) regret bound, where χ̄ is the clique covering number of
the feedback graph. In a recent work, Hu, Mehta, and Pan
(2019) proposed a variant of UCB-N called UCB-NE, where
extra exploration was introduced so as to improve the regret
bound to O(χ̄ lnT ).

Instead of following UCB, Buccapatnam, Eryilmaz, and
Shroff (2014) proposed a successive elimination method,
which, though, is termed as UCB-LP. By leveraging graph
feedback to adjust the exploration rate for each arm, UCB-
LP attains an O

(
γ lnT + KD

)
regret, where γ is the dom-

ination number of the feedback graph G and D is the max-
imum degree in G. In a subsequent work, Cohen, Hazan,
and Koren (2016) considered a harder setting where the
feedback graph is directed, time-variant, and not fully re-
vealed to the learner. Cohen, Hazan, and Koren (2016) also
developed an elimination-based algorithm, which enjoys
an O

(
αmax lnK ln (KT )

)
regret bound, where αmax is the

maximum independence number of the feedback graph over
T rounds.

Another popular technique to handle the exploration and
exploitation dilemma inherent in any stochastic bandits
problem is Thompson Sampling (TS, Thompson, 1933).
For stochastic graphical bandits, Tossou, Dimitrakakis, and
Dubhashi (2017) and Liu, Buccapatnam, and Shroff (2018)
proposed several variants of TS with O(

√
χ̄T ) Bayesian re-

gret bounds. A refined Bayesian regret bound of O(
√
αT )

was later provided by Liu, Zheng, and Shroff (2018). In
a subsequent work, Hu, Mehta, and Pan (2019) proved
an O(χ̄ lnT ) frequentist regret bound for the TS-N algo-
rithm developed by Tossou, Dimitrakakis, and Dubhashi
(2017). Very recently, Lykouris, Tardos, and Wali (2020)
proposed a novel layering technique and derived an im-
provedO(α ln2 T ) frequentist regret bound for both UCB-N
and TS-N.

Stochastic Learning with Adversarial Corruptions
In their seminal work, Lykouris, Mirrokni, and Paes Leme
(2018) introduced a new bandits model termed as stochas-
tic MAB with adversarial corruptions. For this model, they
first showed that with prior knowledge of the amount of
corruption, the active arm elimination method (AAE, Even-
Dar, Mannor, and Mansour, 2006) with enlarged confidence
intervals suffices to guarantee logarithmic regrets. Then,
they proposed a multi-layer technique which enables AAE
to adapt to unknown amount of corruption and attain an
O(KC lnK lnT ) regret. Later, Gupta, Koren, and Talwar
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(2019) improved this bound to O(K lnK lnT + KC) by
developing a novel variant of AAE, which gradually reduces
the chance of being selected for arms with bad empirical per-
formance instead of permanently eliminating them. Gupta,
Koren, and Talwar (2019) also established an Ω(K lnT+C)
lower bound indicating a gap of a factor K between the
lower and the upper bounds. This gap was partially bridged
by Zimmert and Seldin (2019), who proved that online mir-
ror descent with Tsallis-INF regularizer can achieve the
optimal O(K lnT + C) bound in expectation, provided
that the optimal arm is unique. Recently, the adversarially-
corrupted stochastic reward model is extended to predic-
tion with expert advice (Amir et al. 2020), assortment op-
timization (Chen, Krishnamurthy, and Wang 2019), Gaus-
sian bandits (Bogunovic, Krause, and Scarlett 2020), linear
bandits (Kapoor, Patel, and Kar 2019; Li, Lou, and Shan
2019), and reinforcement learning (Lykouris et al. 2019).
Instead of studying the budget-bounded corruption setting,
several papers focus on the scenario where the rewards are
corrupted with a fixed probability (Altschuler, Brunel, and
Malek 2019; Kapoor, Patel, and Kar 2019; Guan et al. 2020).

While the above work studies the regime between the
stochastic and the adversarial worlds, there has also been a
surge of research interest in developing algorithms with op-
timal regret bounds for both worlds (Bubeck and Slivkins
2012; Seldin and Slivkins 2014; Auer and Chiang 2016;
Seldin and Lugosi 2017; Wei and Luo 2018; Zimmert and
Seldin 2019; Zimmert, Luo, and Wei 2019; Mourtada and
Gaı̈ffas 2019). Finally, there exists an orthogonal line of re-
search that investigates attack strategies against stochastic
bandits algorithms (Jun et al. 2018; Ma et al. 2018; Liu and
Shroff 2019; Liu and Lai 2020; Garcelon et al. 2020).

Problem Setup
We study stochastic graphical bandits with adversarial cor-
ruptions. Let [K] = {1, . . . ,K} be the arm set and G =
(V,E) be the feedback graph with V = [K] andE ⊆ V ×V .
For an arm a ∈ [K], we denote by φ(a) the set comprised of
a and its neighbors

φ(a) = {a} ∪
{
a′ ∈ [K] | (a′, a) ∈ E

}
.

There is a learner and an adversary interacting with each
other over T rounds. In each round t,

(1) A stochastic reward for each arm rt(a) ∈ [0, 1] is gen-
erated according to its reward distribution.

(2) The adversary observes the stochastic rewards of all
arms

{
rt(a)

}
a∈[K]

and then determines the corrupted
reward r̃t(a) ∈ [0, 1] for each arm a ∈ [K].

(3) The learner chooses an arm It ∈ [K] and then receives
the corrupted reward of the chosen arm r̃t(It) and ad-
ditionally observes the corrupted reward r̃t(a) of each
arm a that is adjacent to the chosen arm (It, a) ∈ E.

It is worth pointing out that the above protocol implies an
adaptive adversary: The corrupted rewards in round t can
depend on the stochastic rewards up to round t as well as the
corrupted rewards and the learner’s choices before round t.

Following Gupta, Koren, and Talwar (2019), we use
pseudo-regret, or simply regret, to evaluate the learner’s per-
formance. Let µ(a) denote the expectation of the reward dis-
tribution of arm a ∈ [K] and a∗ ∈ arg maxa∈[K] µ(a) be an
optimal arm. The regret is defined as

R(T ) =
T∑
t=1

µ(a∗)−
T∑
t=1

µ(It) =
T∑
t=1

∆(It) (1)

where we denote by ∆(a) = µ(a∗)−µ(a) the reward gap for
arm a ∈ [K]. We measure the total corruptions of rewards
introduced by the adversary as

C =
T∑
t=1

max
a∈[K]

|r̃t(a)− rt(a)| (2)

which is termed as corruption level and remains unknown
to the learner. Finally, we introduce the following graph-
theoretical definitions (West et al. 2001).

Definition 1 (Independent Set) An independent set I in a
graphG = (V,E) is a subset of V such that no two vertices
in I are adjacent.

Definition 2 (Independence Number) The independence
number α of a graph G is the cardinality of the largest inde-
pendent set in G.

Algorithm
Our algorithm belongs to the family of active arm elimina-
tion (AAE) methods and is a variant of the BARBAR algo-
rithm (Gupta, Koren, and Talwar 2019). Before presenting
our algorithm, we first review AAE and BARBAR. The ba-
sic idea of AAE is to maintain a subset S ⊆ [K] of arms and
repeat the following two steps until T rounds of interactions
are exhausted.
(a) Play each arm in S once and then update the empirical

mean rewards for all arms in S based on the received
feedback (which consumes |S| rounds of interactions in
total).

(b) Eliminate arms from S whose empirical mean rewards
are significantly worse than the maximal empirical mean
reward.

If there is no corruption, it can be shown that with high
probability, after O(lnT ) iterations of the above two steps,
the set S contains only optimal arms. Since each iteration
involves at most |S| ≤ K pulls of sub-optimal arms and
each pull of a sub-optimal arm incurs at most 1 regret, the
overall regret can be upper bounded by O(K lnT ), which is
minimax optimal for stochastic MAB. While AAE is effec-
tive in the purely stochastic setting, it can suffer linear re-
grets when adversarial corruptions of rewards exist. To see
this, consider an adversary who, in some initial rounds, con-
sistently manipulate the feedback observed by AAE in the
way that the corrupted rewards of optimal arms are set to
be significantly smaller than those of sub-optimal arms. Af-
ter the initial rounds, optimal arms have significantly worse
empirical mean rewards and are hence eliminated from S
according to Step (b). Furthermore, Step (a) indicates that
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Algorithm 1 Elise

Input: confidence δ ∈ (0, 1), time horizon T
1: Initializem← 1, τ1 ← 1, t← 1, ∆̃0(a)← 1, ∀a ∈ [K]
2: Set λ← 273 ln(3Kδ−1 log2 T )
3: while t ≤ T do
4: Invoke Algorithm 2 with inputs

{
∆̃m−1(a)

}
a∈[K]

to
get an independent set Im

5: τm+1 ← min
(
T+1, τm+

⌈
λ
∑
a∈Im

(
∆̃m−1(a)

)−2⌉)
6: Compute pm according to (3)
7: while t < τm+1 do
8: Draw an arm It ∼ pm to play
9: Observe rewards {r̃t(a)}a∈φ(It)

10: t← t+ 1
11: end while
12: for a = 1, . . . ,K do
13: Compute an empirical mean reward r̄m(a) by (4)
14: end for
15: Set r̂∗m ← maxa∈[K] r̄m(a)− ∆̃m−1(a)/10
16: for a = 1, . . . ,K do
17: Update the estimated reward gap as

∆̃m(a)← max
(
2−m, r̂∗m − r̄m(a)

)
18: end for
19: m← m+ 1
20: end while

only arms in S can be played. Thus, after the initial rounds,
AAE will always play sub-optimal arms, which leads to lin-
ear regrets.

To make AAE robust to adversarial corruptions, Gupta,
Koren, and Talwar (2019) proposed a variant algorithm of
AAE called BARBAR. The main idea of BARBAR is to par-
tition the rounds into epochs and maintain an epoch-variant
estimated reward gap ∆̃(a) > 0 for each arm a. In each
round of an epoch, BARBAR randomly chooses an arm a
from the whole arm set [K] to play with probability propor-
tional to

(
∆̃(a)

)−2
. In this way, optimal arms, even with

rewards heavily corrupted by the adversary, always have
chances to be chosen. On the other hand, arms with sig-
nificantly worse empirical mean rewards (and hence large
estimated reward gaps) are unlikely to be played, which
can be viewed as a soft version of arm elimination. Gupta,
Koren, and Talwar (2019) proved that BARBAR attains an
O(K lnK lnT + KC) regret for stochastic MAB with ad-
versarial corruptions, where C is the corruption level.

We here propose a variant of BARBAR for graphical ban-
dits, which can leverage the graph-structured feedback to
achieve an improved regret bound of O(α lnK lnT + αC),
where α is the independence number of the feedback graph
G. The main difference between our algorithm and BAR-
BAR is that in each epoch we only play arms from a
carefully-designed independent set I of the feedback graph
G instead of the whole arm set [K], which reduces the cost
of exploring arms once from O(K) to O(α). While the idea
of restricting exploration to an independent set has been used

Algorithm 2

Input: estimated reward gaps
{

∆̃(a)
}
a∈[K]

1: Initialize A ← [K] and I ← ∅
2: repeat
3: Choose an arm a ∈ arg mina′∈A ∆̃(a′)
4: I ← I ∪ {a}
5: A ← A− φ(a)
6: until A = ∅
7: return I

for stochastic graphical bandits (Cohen, Hazan, and Koren
2016), the novelty of our algorithm lies in the construction
of the independent set I. Specifically, with initializations
A = [K] and I = ∅, we construct I by repeating the fol-
lowing three steps until A = ∅: choosing an arm a from A
with the minimum estimated reward gap, adding a into I,
and removing all neighbors of a from A. This procedure is
summarized in Algorithm 2 and the intuition behind it is as
follows. For each arm a ∈ [K] that is not in I, Algorithm 2
ensures that there must exist an arm b ∈ I with (a, b) ∈ E
and ∆̃(b) ≤ ∆̃(a). This implies that the probability of ob-
serving the reward of a (via playing b) is not smaller than the
(imagined) probability of playing a. In other words, by only
playing arms in I, we can guarantee, for each arm a ∈ [K],
at least the same expected number of times of observing a’s
reward as that in BARBAR, which is crucial for deriving our
graph-dependent logarithmic regret bound.

We now describe our algorithm in detail, which is termed
as exploring on independent sets (Elise) and outlined in Al-
gorithm 1. Let m index epoch and ∆̃m(a) denote the es-
timated reward gap of arm a computed using observations
during the m-th epoch. In each epoch m = 1, 2, . . ., Elise
first computes an independent set Im by invoking Algorithm
2 with inputs

{
∆̃m−1(a)

}
a∈[K]

. Then, Elise repeatedly
draws an arm from Im to play according to a probability dis-
tribution pm. In the regret analysis, for each arm a ∈ Im, we
require it being played around λ

(
∆̃m−1(a)

)−2
times in ex-

pectation. To this end, we determine the epoch length to be⌈
λ
∑
a∈Im

(
∆̃m−1(a)

)−2
⌉

and design the probability dis-
tribution pm as

pm(a) =


(∆̃m−1(a))

−2∑
a′∈Im(∆̃m−1(a′))

−2 a ∈ Im
0 a 6∈ Im.

(3)

Let Ot(a) = 1{a ∈ φ(It)} be an indicator random variable
representing the event that the reward of arm a is observed in
round t. At the end of them-th epoch, for each arm a ∈ [K],
Elise computes an empirical mean reward r̄m(a) as

r̄m(a) =

∑τm+1−1
t=τm

r̃t(a)Ot(a)∑τm+1−1
t=τm

Ot(a)
(4)

where we denote by τm the first round in them-th epoch and
use the convention 0/0 = 0. Finally, Elise computes a lower
confidence bound r̂∗m for the mean reward of the optimal arm
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µ(a∗) and updates the estimated reward gap ∆̃m(a) for each
arm a ∈ [K] based on the difference between its empirical
mean reward r̄m(a) and the lower confidence bound r̂∗m.

While our algorithm Elise is an extension of BABBAR,
we would like to emphasize that it also involves improve-
ments and refinements over BARBAR as follows.

• At the end of the m-th epoch, BARBAR computes an es-
timated mean reward for each arm a ∈ [K] as

r̄′m(a) =

∑τm+1−1
t=τm

r̃t(a)Ot(a)

E
[∑τm+1−1

t=τm
Ot(a)

] . (5)

BARBAR uses this estimation rather than the empiri-
cal mean reward r̄m(a) defined in (4) to compute the
lower confidence bound r̂∗m for the mean reward of
the optimal arm and update the estimated reward gaps{

∆̃m(a)
}
a∈[K]

. Since the denominator in (5) is the ex-
pected number of times that the reward of arm a is ob-
served, the value of r̄′m(a) can be larger than 1 and con-
sequently the estimated reward gap ∆̃m(a) can exceed
1. However, the regret analysis of BARBAR (proof of
Lemma 4 in Gupta, Koren, and Talwar, 2019) requires
∆̃m(a) ≤ 1 and thus may be problematic. We address
this issue by replacing the expected number of times in
(5) with the actual number of times in (4), which ensures
that

{
r̄m(a)

}
a∈[K]

and hence
{

∆̃m(a)
}
a∈[K]

are upper
bounded by 1.

• In the regret analyses of both BARBAR and our algo-
rithm Elise, the core lemma is to bound the difference be-
tween the estimated (resp. empirical) mean reward r̄m(a)
(resp. r̄′m(a)) and the true mean reward µ(a) for each arm
a ∈ [K]. While Gupta, Koren, and Talwar (2019) proved
this core lemma by applying the multiplicative version of
Chernoff-Hoeffding inequality (Dubhashi and Panconesi
2009), we derive it by employing the Bernstein inequality
(Bernstein 1924). The advantage of using the Bernstein
inequality is that we can configure our algorithm Elise
with a smaller constant λ = 273 ln(3Kδ−1 log2 T ) com-
pared to λ = 1024 ln(8Kδ−1 log2 T ) in BARBAR. Since
in both algorithms the epoch length is proportional to λ,
for the same MAB problem, our algorithm Elise has a
smaller epoch length and hence a higher frequency of up-
dating the estimated reward gaps compared to BARBAR,
which also translates into better empirical performance as
shown in the section of Experiments.

For Elise, we have the following theoretical guarantee.

Theorem 1 Let A∗ = {a ∈ [K] | µ(a) = max
a′∈[K]

µ(a′)}

denote the set of all optimal arms and I∗ be an independent
set with the maximum sum of inverse of reward gap over
sub-optimal arms

I∗ ∈ arg max
I∈Ind(G)

∑
a∈I−A∗

1

∆(a)
(6)

where we denote by Ind(G) the collection of all independent
sets of the feedback graph G. With probability at least 1− δ,

for T ≥ 5, the regret of Algorithm 1 satisfies

R(T ) ≤ 1732αC + 3731 ln(3Kδ−1 log2 T )
∑

a∈I∗−A∗

log2 T

∆(a)

= O(α lnK lnT + αC).

Remark 1 Our regret bound recovers the O(K lnK lnT +
KC) regret bound of BARBAR for MAB (α = K) and di-
rectly implies a regret bound of O(lnK lnT + C) for PEA
(α = 1). We notice that there exists a smaller regret bound of
O(lnK+C) for stochastic PEA with adversarial corruptions
(Amir et al. 2020). However, this bound only holds in expec-
tation and its proof assumes the optimal expert is unique. By
contrast, we derive a high probability bound and our anal-
ysis does not require the unique assumption and applies to
general scenarios with any number of optimal experts.

Remark 2 According to the theoretical analysis of BAR-
BAR in Gupta, Koren, and Talwar (2019), the precise regret
bound of BARBAR is

2097152 ln(8Kδ−1 log2 T )
∑

a∈[K]−A∗

log2 T

∆(a)
+ 2048KC

in which the leading constant factor is very large. By con-
trast, we optimize the constants used in the regret analysis
and the leading constant factor in the regret bound of our
algorithm is only 3731, reducing that of BARBAR by more
than 500 times.

Remark 3 In the purely stochastic setting, the leading con-
stant factor in the regret bound of the AAE-AlphaSample
algorithm (Cohen, Hazan, and Koren 2016) is 1280. Thus,
from a theoretical perspective, the cost to achieve robustness
is about a factor of three.

Theoretical Analysis
In this section, we present the proof of Theorem 1.

Preliminaries
We first introduce some notations that will be used in the
proof. Let M be the index of the last epoch, i.e., the epoch
with τM+1 = T + 1. We denote by Lm = τm+1 − τm the
length of the m-th epoch. Then, for m ∈ [M − 1], we have
Lm =

⌈
λ
∑
a∈Im

(
∆̃m−1(a)

)−2
⌉
. We also define

L̃m = λ
∑
a∈Im

(
∆̃m−1(a)

)−2
, ωm =

Lm

L̃m
. (7)

For a ∈ [K], we denote by ñm(a) =
∑τm+1−1
t=τm

Ot(a)
the actual number of times that the reward of arm a is
observed during the m-th epoch and define nm(a) =

λ
∑
a′∈φ(a)∩Im

(
∆̃m−1(a′)

)−2
. For t ∈ [T ], we denote by

ct(a) = r̃t(a) − rt(a) the corruption added to the reward
of arm a in round t by the adversary. We define Cm =∑τm+1−1
t=τm

maxa∈[K] |ct(a)|, which are total corruptions of
rewards during the m-th epoch.
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Our analysis is based on the following proposition, the
proof of which is postponed to Appendix A in the full ver-
sion.1

Proposition 1 The following two facts hold.

(i) M ≤ log4 T and L̃m ≥ λ22(m−1), ∀m ∈ [M − 1].

(ii) With probability at least 1 − δ, for all arms a ∈ [K]

and all epochs m ∈ [M ], we have ñm(a)
nm(a) ≤

12κ
11 and

∆̃m−1(a) ≥ 8∆(a)

9
− 12

5
· 2−m − 3ρm−1

where we define κ = 501
500 and

ρm =
m∑
s=1

2.2Cs

5m−sL̃s
. (8)

Proof of Theorem 1
We are now ready to prove Theorem 1. We first decompose
the regret into epochs as

R(T ) =
T∑
t=1

∆(It) =
M∑
m=1

τm+1−1∑
t=τm

∆(It). (9)

According to Algorithm 1, in each epoch m ∈ [M ], only
arms in Im can be played. Furthermore, since Im is an in-
dependent set, for each arm a ∈ Im, the number of times
of playing a is equivalent to the number of times that the
reward of a is observed. Thus, we have for all m ∈ [M ],

τm+1−1∑
t=τm

∆(It) =
∑
a∈Im

∆(a)ñm(a) =
∑

a∈Im−A∗
∆(a)ñm(a)

≤ 12κ

11

∑
a∈Im−A∗

∆(a)nm(a) (10)

where the inequality is due to Proposition 1 andA∗ is the set
comprised of all optimal arms defined in Theorem 1. Fix an
epoch m ∈ [M ] and a sub-optimal arm a ∈ Im−A∗. There
are three cases as follows.

(1) 0 < ∆(a) ≤ 4/2m. Then, we can bound nm(a) as

nm(a) = λ
∑

a′∈φ(a)∩Im

(
∆̃m−1(a′)

)−2

= λ
(
∆̃m−1(a)

)−2 ≤ λ22(m−1) ≤ 4λ(
∆(a)

)2
which leads to ∆(a)nm(a) ≤ 4λ

∆(a) .

(2) ∆(a) > 4/2m and ρm−1 ≤ ∆(a)/36. In this case, by
Proposition 1, we have

∆̃m−1(a) ≥ 8∆(a)

9
− 12

5
· 2−m − 3ρm−1

≥
(

8

9
− 3

5
− 1

12

)
∆(a) ≥ ∆(a)

5

1https://www.lamda.nju.edu.cn/lusy/rb-graph-bandits.pdf

which, in turn, implies

∆(a)nm(a) = ∆(a)λ
(
∆̃m−1(a)

)−2 ≤ 25λ

∆(a)
.

(3) ∆(a) > 4/2m and ρm−1 > ∆(a)/36. Then, we write

∆(a)nm(a) ≤ 36ρm−1nm(a) = 36ρm−1λ
(
∆̃m−1(a)

)−2

≤ 36λρm−122(m−1) ≤ 9λρm−122m.

Combining the above three cases, we obtain that for all
sub-optimal arms a ∈ Im −A∗,

∆(a)nm(a) ≤ 25λ

∆(a)
+ 9λρm−122m.

Substituting this inequality into (10) gives
τm+1−1∑
t=τm

∆(It) ≤
12κ

11

∑
a∈Im−A∗

(
25λ

∆(a)
+ 9λρm−122m

)
≤ 300κλ

11

∑
a∈I∗−A∗

1

∆(a)
+

108ακλ

11
ρm−122m

where I∗ is the independent set with the maximum sum of
inverse of reward gap over sub-optimal arms defined in (6).
Combining this inequality with (9), we get

R(T ) ≤ 300κλ

11

∑
a∈I∗−A∗

M

∆(a)
+

108ακλ

11

M∑
m=1

ρm−122m

≤ 300κλ

22

∑
a∈I∗−A∗

log2 T

∆(a)
+

108ακλ

11

M∑
m=1

ρm−122m

where the second inequality follows from Proposition 1.
It remains to bound the summation

∑M
m=1 ρm−122m. By

Proposition 1 and the definition of ρm in (8), we have
M∑
m=1

ρm−122m =
M∑
m=1

22m
m−1∑
s=1

2.2Cs

5m−1−sL̃s

≤
M∑
m=1

22m
m−1∑
s=1

2.2Cs
5m−1−sλ22(s−1)

=
35.2

λ

M∑
m=1

m−1∑
s=1

(4/5)m−1−sCs

=
35.2

λ

M−1∑
s=1

Cs

M∑
m=s+1

(4/5)m−1−s

≤ 35.2

λ

M−1∑
s=1

Cs

+∞∑
h=0

(4/5)h ≤ 176C

λ
.

By combining the above two inequalities and recalling that
λ = 273 ln(3Kδ−1 log2 T ) and κ = 501/500, we obtain

R(T ) ≤ 1732αC+3731 ln(3Kδ−1 log2 T )
∑

a∈I∗−A∗

log2 T

∆(a)
.

which finishes the proof of Theorem 1. �
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Figure 1: Comparison of our algorithm versus BARBAR and
UCB for MAB
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Figure 2: Comparison of our algorithm versus Exp3-Set and
AAE-AlphaSample for GB

Experiments
In this section, we present numerical results to demonstrate
the effectiveness of our algorithm.

Multi-Armed Bandits
To show the improvements of our algorithm Elise over BAB-
BAR as mentioned, we first conduct experiments in the
MAB setting, which is a special case of graphical bandits
with α = K. Without loss of generality, we consider an
arm set in which the first two arms are optimal and the other
arms are sub-optimal. For the optimal arms a ∈ {1, 2}, the
mean reward is set as µ(a) = 0.8. For sub-optimal arms a ∈
{3, . . . ,K}, the mean reward µ(a) is drawn uniformly from
[0.4, 0.6]. For each arm ∈ [K], we generate the stochastic
rewards {rt(a)}t∈[T ] according to a truncated normal dis-
tribution with support [0, 1], mean µ(a), and variance 0.01.
We use a relatively large time horizon T = 2000000 and
set the corruption level as C = 1000 ln(T ). Following Liu
and Shroff (2019), we only corrupt the reward of the optimal
arm. Specifically, in each round t ∈ [T ], we set the corrupted
reward of the optimal arm to be zero, if the reward of the op-
timal arm is to be observed by the algorithm and the total
corruptions have not exceeded the corruption level C.

We compare our algorithm Elise with BARBAR as well
as UCB which is designed for stochastic MAB. We run each

algorithm 10 times and report the average performance in
Fig. 1. As can be seen, UCB suffers the largest regret, which
is expected since UCB is vulnerable to adversarial corrup-
tions (Liu and Shroff 2019). Furthermore, Elise outperforms
BARBAR in each experiment, confirming our claim that
the smaller epoch length and hence the higher updating
frequency can boost the performance. Finally, the perfor-
mance gap between Elise and BARBAR increases with K,
which is consistent with the theoretical analysis: Both al-
gorithms enjoy an O(K lnK lnT + KC) regret bound for
the adversarially-corrupted stochastic MAB problem withK
arms, but the leading constant factor in the regret bound of
Elise is much smaller than that of BARBAR.

Graphical Bandits

We now turn to general graphical bandits setting with α 6=
K. We setK = 10 and adopt the Erdos–Renyi model to gen-
erate the feedback graph (Erdos and Renyi 1960). Specifi-
cally, for each pair of arms (u, v) ∈ [K] × [K] with u 6= v,
we connect them with a fixed probability p. Intuitively, with
p increasing, the feedback graph becomes denser and the in-
dependence number gets smaller. Except for the feedback
graph, we follow the same experimental setup as in the
above subsection.

We use two baseline algorithms in the experiment, i.e.,
AAE-AlphaSample (Cohen, Hazan, and Koren 2016) and
Exp3-Set (Alon et al. 2013). The former is designed for
stochastic graphical bandits, while the latter applies to ad-
versarial graphical bandits. Each baseline algorithm as well
as our algorithm Elise is tested 10 times and the average
performance is pictured in Fig. 2. Unsurprisingly, Elise be-
haves the best for each configuration of p, as it can exploit
the stochastic pattern of rewards and also tolerate adversarial
corruptions. Furthermore, the regret of Elise decreases with
p, validating the O(α lnK lnT + αC) regret bound.

Conclusion and Future Work

We have formulated a new graphical bandits model termed
as stochastic graphical bandits with adversarial corruptions.
For this model, we proposed an online algorithm that can
utilize the stochastic nature of rewards and be also robust
to adversarial corruptions. Our algorithm is a non-trivial ex-
tension of the BARBAR method and involves a novel pol-
icy for constructing independent sets. Furthermore, we also
made improvements and refinements of BARBAR, leading
to smaller constant factors in the regret bound and better em-
pirical performance in the experiments. Finally, as a byprod-
uct, we provided the first high probability regret bound for
stochastic PEA with adversarial corruptions.

Currently, we only consider bounded rewards. In the fu-
ture, we will try to develop more robust algorithms for
stochastic graphical bandits with adversarial corruptions
that can handle unbounded and even heavy-tailed rewards
(Bubeck, Cesa-Bianchi, and Lugosi 2013; Lu et al. 2019).
Another future direction is to develop algorithms withO(C)
dependency in regret bounds.
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