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Abstract

Few-shot learning (FSL) aims to recognize target classes by
adapting the prior knowledge learned from source classes.
Such knowledge usually resides in a deep embedding model
for a general matching purpose of the support and query im-
age pairs. The objective of this paper is to repurpose the con-
trastive learning for such matching to learn a few-shot em-
bedding model. We make the following contributions: (i) We
investigate the contrastive learning with Noise Contrastive
Estimation (NCE) in a supervised manner for training a few-
shot embedding model; (ii) We propose a novel contrastive
training scheme dubbed infoPatch, exploiting the patch-wise
relationship to substantially improve the popular infoNCE;
(iii) We show that the embedding learned by the proposed
infoPatch is more effective; (iv) Our model is thoroughly eval-
uated on few-shot recognition task; and demonstrates state-of-
the-art results on miniImageNet and appealing performance
on tieredImageNet, Fewshot-CIFAR100 (FC-100).

Introduction
Humans are born with the ability of few-shot recognition, i.e.,
learning from one or a few examples. For example, a child
finds no problem to recognize the “rhinoceros” by only taking
a glance at it from the TV. However, currently most successful
deep learning based vision recognition systems (Krizhevsky,
Sutskever, and Hinton 2012; He et al. 2016, 2017) still highly
rely on an avalanche of labeled training data and many it-
erations to train their large portion of parameters. Most im-
portantly, these systems have difficulty adapting the learned
knowledge to target categories. This severely limits their scal-
ability to open-ended learning of the long tail categories in
the real-world.

Inspired by the few-shot learning ability of humans, there
has been a recent resurgence of interest in one/few-shot learn-
ing (Finn, Abbeel, and Levine 2017; Snell, Swersky, and
Zemel 2017; Sung et al. 2018; Rusu et al. 2018; Tseng
et al. 2020). It aims to recognize target classes by adapt-
ing the prior ‘knowledge’ learned from source classes. Such
knowledge usually resides in a deep embedding model for
a general-purpose matching of the support and query image
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pairs. The embedding is normally learned with enough train-
ing instances on source classes and updated by a few training
instances on target classes. To further address data scarcity
on target classes, meta-learning is utilized to better learn
the deep embedding, and thus improves its generalization
ability. Particularly, the idea of episode (Snell, Swersky, and
Zemel 2017) is utilized for FSL in meta-learning paradigm.
Every episode should imitate each one-shot learning task:
few train and test instances are sampled from several classes
to train/test the embedding model; the sampled training set is
fed to the learner to produce a classifier, and then the loss of
classifiers is computed on the sampled test set. The promis-
ing methodology of solving FSL is learning to match queries
with few-shot support examples via a deep convolution net-
work followed by a linear classifier. Typically, such methods
train networks with meta-learners either to learn a deep em-
bedding space that coincides with a fixed metric, such as
MatchingNet (Vinyals et al. 2016) and ProtoNet (Snell, Swer-
sky, and Zemel 2017) or to implicitly learn a metric and
classify the new class data with the binary classifiers, such as
RelationNet (Sung et al. 2018).

Despite previous efforts are made, the key challenge of a
few-shot learning system still lies in eliminating the inductive
bias from source classes to tailor its preference for hypothe-
ses according to the few training instances from new target
classes. Such a few-shot AI system has to deal with the poor
generalisation of learned few-shot embedding model over
target classes. On the other hand, the recent study of (Tian
et al. 2020) suggests that the core of improving FSL also lies
in improving the embedding learned. Particularly, it is very
important for the embedding to map instances of different
categories to different clusters. Furthermore, the embedding
should not, in principle, learn the inductive bias of source
classes by memorizing training data, as this might undermine
the generalization performance of this embedding.

To this end, several new efforts are made in this paper in
order to tackle the FSL on these several challenges. Specif-
ically, we repurpose the contrastive learning to boost the
performance of few-shot learning. As a prevailing and rising
research topic, contrastive learning has been widely studied
and utilized in several AI related research communities. For
example, very impressive performance could be achieved on
several downstream tasks (Chen et al. 2020b,a), if the model
of good embedding is pre-trained on the unlabelled data.
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For these methods, infoNCE (Oord, Li, and Vinyals 2018)
is widely used. Notably, the key challenge of contrastive
learning is to choose informative positive pairs and negative
pairs (Khosla et al. 2020).

In this paper, contrastive learning is extended and utilized
to the task of few-shot learning. Specifically, we propose the
algorithm of constructing the positive and negative pairs by
information of source classes. In one episode, we have sup-
port instances and query instances. For every query instance,
we can construct positive and negative examples using all the
support instances. To find more informative pairs for train-
ing good embedding, we present the strategy of generating
hard examples. Intuitively, as human beings, we are able to
rely only parts of image for recoginizing objects, even the
other parts of images un-observable. Such an intuition is
enforced to help build our contrastive learning algorithm in
FSL. Typically, for the support images, they should contain
enough information for matching; so we adopt the strategy of
randomly blocking part of images. Accordingly, the query im-
ages are split into patches. Each patch is illustrated in Fig. 1;
and those patches are employed to help few-shot recognition.
Thus the model may learn the correspondence, even only part
of the image is given.

We further make another contribution of removing the in-
ductive bias of data in source classes. Critically, the inductive
bias of source classes may inevitably introduce unexpected
information or correlation between instances and classes. For
instance, if the images of horses are highly correlated with
grass, the model learned on such data may be inclined to
relate to grass those target images visually similar to the
horse images. We alleviate this issue by mixing patches from
different pictures to enforce the embedding to learn more
disentangled information.

The contributions of this work are as follows: (i) We inves-
tigate the contrastive learning with Noise Contrastive Estima-
tion (NCE) in a supervised manner for training a few-shot em-
bedding model; (ii) We propose a novel contrastive training
scheme called infoPatch exploiting the patch-wise relation-
ship to substantially improve the popular infoNCE. (iii) We
show that the embedding learned by the proposed infoPatch
is more effective. (iv) Extensive experiments show that our
simple approach allow us to establish competitive results on
three widely-used few-shot recognition benchmarks includ-
ing miniImageNet, tieredImageNet and Fewshot-CIFAR100.

Related Work
Few-shot Learning Few-shot learning aims to recognize in-
stance from target categories with few labelled samples. It
demands the efficient few-shot algorithms for many practical
applications, such as, classification (Fei-Fei, Fergus, and Per-
ona 2006; Wang et al. 2020b,a), segmentation (Wang et al.
2019; Rakelly et al. 2018), generation (Liu et al. 2019) and
localisation (Wertheimer and Hariharan 2019). Prior works
can be roughly cast into two categories.

Optimization based approaches including MAML (Finn,
Abbeel, and Levine 2017), Reptile (Nichol, Achiam, and
Schulman 2018), LEO (Rusu et al. 2018) and metric
learning based approaches such as ProtoNet (Snell, Swer-
sky, and Zemel 2017), RelationNet (Sung et al. 2018),

TADAM (Oreshkin, Rodriguez, and Lacoste 2018) and
MatchingNet (Vinyals et al. 2016).

Metric learning based approaches attempt to learn a good
embedding and an appropriate comparison metric. CAN (Hou
et al. 2019) finds that the attentions are often misaligned be-
tween support and query images, a cross attention module
is then used to alleviate the problem. In consideration of
input variety, Cross Domain (Tseng et al. 2020) transforms
the feature through an input dependent affine transformation
layer. FEAT (Ye et al. 2020) combines FSL with transformer
self-attention mechanism and achieves decent performance.
(Wang et al. 2018a) proposes that by using triplet loss the

performance of metric learning method can be improved.
(Gidaris et al. 2019) adds extra self supervised tasks to im-
prove generalization performance. DeepEMD (Zhang et al.
2020) attempts to import a new metric to solve the problem

Contrastive Learning Nowadays contrastive learning is
widely used in unsupervised learning. DeepInfomax for-
malizes this problem in a view of mutual information.
MoCo (Chen et al. 2020b) utilizes a memory bank and some
implementation tricks to achieve good performance. Sim-
Clr (Chen et al. 2020a) improves contrastive learning by
using larger batch size and data augmentation. CMC (Tian,
Krishnan, and Isola 2019) attempts to combine information
from different views. Currently (Khosla et al. 2020) sug-
gests that infoNCE has better performance than cross entropy
on supervised classification. Contrastive learning is also im-
ported to other area such as image translation (Park et al.
2020). In (Park et al. 2020), the authors propose using the
contrastive learning between the patches of target image and
source images. Inspired by this, we tailor a novel constrastive
learning with significant distinctive implementations in few-
shot learning scenarios.

Data Augmentation Data augmentation is an important
area in deep learning. With proper data augmentation (Zhang
et al. 2017; Yun et al. 2019; Hendrycks et al. 2019), the per-
formance of deep network can be improved significantly. For
instance mixup (Zhang et al. 2017) can improve the clas-
sification performance on several widely used dataset. Fol-
lowing mixup (Zhang et al. 2017), manifold mixup (Verma
et al. 2019) tries to mix the feature instead of input images.
Cutout (DeVries and Taylor 2017) removes the part of the
input images during training. Cutmix (Yun et al. 2019) im-
proves them via exchanging patch with random size and
uses a mixed label similar to mixup. Augmix (Hendrycks
et al. 2019) combines several augmented input images with
random sampled weights. By extending Cutmix (Yun et al.
2019), we present the PatchMix augmentation, the bespoken
algorithm to better remove inductive bias and improve FSL.
In (Summers and Dinneen 2019), the author provides an
analysis of several variants of mixup (Zhang et al. 2017).

FSL and Data Augmentation Several FSL works put em-
phasis on data augmentation recently. Image Hallucina-
tion (Wang et al. 2018b) employs a generator to synthe-
sise hallucinated images to enlarge the support set. IDeMe-
Net (Chen et al. 2019c) samples a gallery image pool, most
similar images are picked from the pool for data augmenta-
tion. Several regular augmentations are studied in (Chen et al.

8636



Embedding 
network

Positive support

Query

PatchMixFrameworkRandom 
block

Negative support

Random 
block Embedding 

network

Share  
Weights

Split with 
grid Embedding 

network

Positive key

Negative key

Feature 1 

One patch  

Bus Hourglass

Replace selected patch 

Assign label for each patch 

Bus
Hourglass

Share  
Weights

+ -Patches

Feature 2

Feature 3

Feature  4 

Figure 1: Our infoPatch is illustrated in this figure. The left part is the framework of our method. We try to use hard sample for
contrastive learning. The definition of patch is shown with the grid. The right part shows the process of our PatchMix.

2019b). (Mangla et al. 2020) adds manifold mixup (Verma
et al. 2019) to enhance the model embedding.

Method
Problem Definition
In this section, we introduce the problem of few-shot recog-
nition. Xtrain, Xval and Xtest denote the train, validation
and test set respectively. The label sets are Ytrain, Yval and
Ytest. The whole train, validation and test set are defined
as Dtrain = {Xtrain, Ytrain}, Dval = {Xval, Yval} and
Dtest = {Xtest, Ytest}. We denote the categories of train set,
validation set and test set as Ctrain, Cval and Ctest.

For FSL, it is slightly different from common supervised
learning. The categories of train set and test set are totally
different, i.e., Ctrain ∩ Ctest = ∅. The goal of FSL is to
recognize samples for new categories. In common, we need
some labelled samples from new categories, called support
set. Those samples staying to be classified are defined as
query set. Images from support set are named as support
images, similar definition for query images. A standard way
to formalize this setting uses way and shot. way means the
number of new categories during one test process. shot rep-
resents the number of support images for each category; here
we suppose that we have same number of support images
for each category. So we commonly call the FSL setting as
N -way, k-shot. We focus on two mainstream settings 5-way,
1-shot and 5-way, 5shot. Additionally we denote the number
of query images for each category as nq .

Naïve Baseline
Recently, some works focus on rebuilding the baseline us-
ing supervised pretraining (Liu et al. 2020b; Dhillon et al.
2019). As supposed in their works, supervised pretraining
shall achieve a very competitive FSL performance. Partic-
ularly, these methods usually train the network with a clas-
sification layer with a cross entropy loss on source classes.
The network serves as a feature extractor on target classes;
and nearest neighbour classifier is employed to classify the
examples from target classes. Due to its simplicity, we adopt
it as the naïve baseline.

Overview of InfoPatch To improve the naïve baseline with
more representative embedding, we propose a novel model
named infoPatch including two components. One is a con-
trastive learning scheme which modifies infoNCE loss into a
few-shot manner and utilizes augmentation methods to mine
hard samples. The other is a data augmentation technique,
called PatchMix, which aims to alleviate the inductive bias
introduced in the training process of few-shot learning.

Episodic Contrastive Learning
Before fully developing our model, we clarify some notations
and definitions. In FSL, we define the episode as one sample
of data that is composed of N × k support data and N ×
nq query data. The query instance and support instance are
denoted by xq and xs. Their labels are denoted as yq and ys.

We denote Φ as the embedding network such as
ResNet12 (Oreshkin, Rodriguez, and Lacoste 2018). For
convenience, we define the tensor shape of input and out
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for the embedding network as Cin × Hin × Win and
Cout ×Hout ×Wout. The training and testing process both
utilise a N -way, k-shot setting for illustration. The output
feature of embedding network Φ is denoted as f . fq and fs

stand for output feature of query and support. For contrastive
learning, normalized features are required for better compari-
son. In our paper, fq and fs are normalized by default. We
normalize the output feature following (Chen et al. 2020b).

Training Phase Follow the idea of contrastive learning, we
construct contrastive pair for every query instance. This con-
struction way is in accordance with testing phase. The con-
strastive pairs are constructed using support features. For
every query instance, we have its label. So for every query
instance xq

i , we regard support instance with same label as
its positive pair. Negative pairs are those with different la-
bels. For both query and support instances, we use the same
embedding network Φ.

The infoNCE for one query instance xq
i can be written as:

Li = −log

∑
ys
j=yq

i
ef

q
i f

s
j∑

ys
j=yq

i
ef

q
i f

s
j +

∑
ys
k 6=yq

i
ef

q
i f

s
k

(1)

Here fq
i f

s
j means the inner product of the two feature vectors.

For training one episode, the whole loss is the mean over all
query samples as L =

∑N×nq

i=1 Li. In our work, we com-
bine supervised loss in naive baseline and infoNCE together
during training. We set the weights for supervised loss and
infoNCE loss as 1 and 0.5.

Testing Phase For testing, we have labelled support samples
and unlabelled query samples. The goal is to predict query
samples. For each query sample, we calculate the feature
inner product between all the support samples. Here the net-
work Φ is frozen. In detail, for each query sample xq

i , we first
get its feature fq

i . We find the support instance with largest
inner product with fq

i .

j∗ = arg max
j

fq
i f

s
j (2)

Then we assign the prediction as ŷqi = ysj∗ .

Construct Hard Samples
As illustrated in CMC (Tian, Krishnan, and Isola 2019), one
key point of contrastive learning lies in finding hard samples.
The good way of finding hard samples forces the model
to learn more useful information. To recognize an instance,
humans do not always need to see the whole picture. Under
most circumstances, part of the picture is enough. It can be
similar for neural networks. We believe that using part of the
picture can also add to the generalization ability. Meanwhile
giving part of them can make the model learn more useful
information. So we suppose that this can be a good way to
construct hard samples.

Following this idea, we suggest that during training phase
we should modify the input. During episode training, support
images and query images act different roles. So we choose
different modifications for them.

For support images, they are regarded as matching tem-
plate. So we try to keep them intact. For dropping part of its

information, we apply random masks to the support images.
This process is illustrated in Fig.1. Using this modification,
the support images are harder to recognize than original ones.
We call this modification random block.

For query images, we try to match them with support im-
ages, we hope that we can get a correct match even if we only
have part of the query images. We can split the input query
instance into several patches using grids. The definition of
patch is one unit of the grids as shown in Fig.1. For conve-
nience, we suggest that we have a W ×H patches. Now we
fed them into the embedding network, and finally get W ×H
features. For query sample xq

i , we denote it whth vector as
fq
iwh. Each of them has part of the information of this query

sample. In order to fully learn the correlation between pixels,
we still input the whole image into the embedding network.
Then we can get the W × H output features for different
patches of one query instance. The loss function should be
modified slightly as follows.

Liwh = −log

∑
ys
j=yq

i
ef

q
iwhf

s
j∑

ys
j=yq

iwh
ef

q
i f

s
j +
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(3)

The whole loss is L =
∑N×nq

i=1

∑W
w=1

∑H
h=1 Liwh This al-

ternation is only used for training, the testing phase is kept
the same.

Enhancing Contrastive Learning via PatchMix
For FSL, we demand a generalization on target classes. Dur-
ing training phase, the data bias of the source classes may do
harm to the generalization. The data bias can be caused by
learning incorrect correlation between pixels. For example,
the background of some specific classes may be similar in
color or texture. The embedding network may just memorize
this property. To alleviate the issue, we suggest that we can
mix some patches. For instance, after we mixing the patches,
the images have more diversity, some simple correlations can
not work any more. Then the network can learning some real
rules.

For implementation, we mix the image patches randomly.
Following Cutmix (Yun et al. 2019), we use a similar rule.
The PatchMix operation is performed inner one episode. To
avoid importing too much noise, we only conduct PatchMix
for query samples. In detail, for every query instance xq

i , we
sample a different instance xq

k from samples in this episode.
Then we randomly select a box (w1, h1, w2, h2). Here w1, h1

denotes the left upper point and w2, h2 stands for the right
lower point. The way to sample the random box is similar to
Cutmix (Yun et al. 2019). We simply replace the patch of xq

i
by patch of xq

k as

xq
i [w1 : w2, h1 : h2] = xq

k[w1 : w2, h1 : h2] (4)

The difference between PatchMix and Cutmix lies in the la-
bel after mix. For Cutmix, it uses a mixed label for training
the cross entropy loss. As metioned before, we use patches
for contrastive learning, so we assign deterministic label for
every patch. Note that we mix patch just for avoiding sim-
ple correlations, every patch keeps its original label. The
instances after PatchMix is then fed into the embedding net-
work. The loss is the same as previous section.
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Model Backbone
miniImageNet tieredImageNet

1-shot 5-shot 1-shot 5-shot
ProtoNet (Snell, Swersky, and Zemel 2017)

Conv4

44.42±0.84 64.24±0.72 53.31±0.89 72.69±0.74
MatchingNet (Vinyals et al. 2016) 48.14±0.78 63.48±0.66 — —
RelationNet (Sung et al. 2018) 49.31±0.85 66.60±0.69 54.48±0.93 71.32±0.78
MAML (Finn, Abbeel, and Levine 2017) 46.47±0.82 62.71±0.71 51.67±1.81 70.30±1.75
LEO (Rusu et al. 2018)

WRN-28

61.76±0.08 77.59±0.12 66.33±0.05 81.44±0.09
PPA (Qiao et al. 2018) 59.60±0.41 73.74±0.19 — —
wDAE (Gidaris and Komodakis 2019) 61.07±0.15 76.75±0.11 68.18±0.16 83.09±0.12
CC+rot (Gidaris et al. 2019) 62.93±0.45 79.87±0.33 70.53±0.51 84.98±0.36
ProtoNet (Chen et al. 2019a)

Res-10

51.98±0.84 72.64±0.64 — —
MatchingNet (Chen et al. 2019a) 54.49±0.81 68.82±0.65 — —
RelationNet (Chen et al. 2019a) 52.19±0.83 70.20±0.66 — —
MAML (Chen et al. 2019a) 51.98±0.84 66.62±0.83 — —
Cross Domain (Tseng et al. 2020) 66.32±0.80 81.98±0.55 — —
TapNet (Yoon, Seo, and Moon 2019)

Res-12

61.65±0.15 76.36±0.10 — —
MetaOptNet (Lee et al. 2019) 62.64±0.61 78.63±0.46 65.99±0.72 81.56±0.53
CAN (Hou et al. 2019) 63.85±0.48 79.44±0.34 69.89±0.51 84.23±0.37
FEAT (Fei et al. 2020) 66.78±0.20 82.05±0.14 70.80±0.23 84.79±0.16
DeepEMD (Zhang et al. 2020) 65.91±0.82 82.41±0.56 71.16±0.87 86.03±0.58
Negative Margin (Liu et al. 2020a) 63.85±0.81 81.57±0.56 — —
Rethink-Distill (Tian et al. 2020) 64.82±0.60 82.14±0.43 71.52±0.69 86.03±0.49
infoPatch 67.67±0.45 82.44±0.31 71.51±0.52 85.44±0.35

Table 1: 5-way few-shot accuracies with 95% confidence interval on miniImageNet and tieredImageNet. All results of competitors
are from the original papers.

Experiments
Dataset and Setting
To validate our method, we conduct experiments on several
widely used datasets. miniImageNet (Vinyals et al. 2016) is
a sub-dataset from ImageNet (Russakovsky et al. 2015). It
has 100 categories in all, each category has 600 instances.
These categories are split into train, val and test with 64,
16 and 20 classes respectively. The partition follows the in-
struction of (Ravi and Larochelle 2017). tieredImageNet is
also sampled from ImageNet (Russakovsky et al. 2015). It
is made up of 779,165 images from 608 categories. They
are separated into 351 classes for training, 97 for valida-
tion and 160 for testing as suggested in (Ren et al. 2018).
Fewshot-CIFAR100 (FC100) dataset (Oreshkin, Rodriguez,
and Lacoste 2018) is a subset of CIFAR-100. A common
split is 60, 20 and categories for train, val and test set.

Images of tieredImageNet and miniImageNet are firstly
resized to 84×84 during training and testing process. Images
of FC100 are resized to 32× 32. For training process, random
horizontal flip and random crop are utilized as common data
augmentation as used in (Hou et al. 2019).

Implementation Details. ResNet12 is our selected
model structure, the details follow the one proposed in
TADAM (Oreshkin, Rodriguez, and Lacoste 2018). We use
he-normal (He et al. 2015) to initialize the model. Stochastic
Gradient Descent(SGD) (Bottou 2010) is taken as our
optimizer. The initial learning rate is 0.1. For miniImageNet,
we decrease the learning rate at 12, 000-th, 14, 000-th and
16, 000-th episode. For tieredImageNet, the learning rate is

halved at every 24,000 episodes. For all the experiments, we
test the model for 2000 episodes. 4 episodes are picked for
every batch during training.

Metric for Comparison. We conduct experiments on two
settings: 5-way 1-shot and 5-way 5-shot. We report mean
accuracy as well as the 95% confidence interval for com-
parison with other methods. For ablation study and further
discussions, only mean accuracy is reported.

Comparison with State-of-the-art

Competitors. To testify how our model performs, several
previous methods are selected for comparison. For instance
ProtoNet (Snell, Swersky, and Zemel 2017), MAML (Finn,
Abbeel, and Levine 2017), CAN (Hou et al. 2019), FEAT (Fei
et al. 2020), Cross Domain (Tseng et al. 2020) and so on.
These methods are either classical methods in FSL or meth-
ods with best reported results.

Discussion The results are reported in Tab. 1. Compared
to other method with complex structure or larger net-
work(WRN28), we achieve conspicuous increment, about
1% compared with FEAT (Fei et al. 2020). Due to no extra
structure adds to the model, we have more clear inference
logic compared to some other methods such as CAN (Hou
et al. 2019).

Results on FC100 are shown in Tab. 2, our model achieves
competitive performance among them.
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Model
FC100 accuracies

5-way 1-shot 5-way 5-shot
MAML 38.1±1.7 50.4±1.0
MAML++ 38.7±0.4 52.9±0.4
T-NAS++ 40.4±1.2 54.6±0.9
TADAM 40.1±0.4 56.1±0.4
ProtoNet 37.5±0.6 52.5±0.6
MetaOptNet 41.1±0.6 55.5±0.6
DC 42.0±0.2 57.1±0.2
DeepEMD 46.5±0.8 63.2±0.7
Rethink-Distill 44.6±0.7 60.1±0.6
infoPatch 43.8±0.4 58.0±0.4

Table 2: 5-way few-shot accuracies with 95% confidence
interval on FC100. All results of competitors are from the
original papers

Model
k

1 5
R-Net 52.78 68.11
R-Net + P-mix 53.50 68.67
CAN 63.85 79.44
CAN + P-mix 64.65 79.86

Type
k

1 5
Ind-mix 67.67 82.44
S-mix 67.53 81.94
E-mix 67.48 82.06

(a) (b)

Table 3: R-Net: RelationNet, P-mix: PatchMix. Ind-mix: in-
dependent mix, S-mix: share mix, E-mix: exchange mix.
Table(a) shows combination of PatchMix and other meth-
ods(RelationNet and CAN). Table(b) shows the ablation
study on different implementations of PatchMix.

Ablation Study

Analysis of Our Method For our method, we have different
parts:infoNCE, hard sample, PatchMix. As shown in Tab. 5,
each part contributes to the improvement. For this analysis,
we only use miniImageNet. Among them, we find that the
each part has significant contribution. With our infoNCE,
we can improve more than 2% compared with the baseline.
Using the hard sample proposed by us, the model has better
generalization ability, and the performance comes to 66.8%
for 1-shot classification. For PatchMix, we find that it can
improve the model further by about 1%.

Ablation on Grid Size During constructing the hard exam-
ples, we have to define the grid for patches. For convenience,
we only conduct analysis experiments on miniImageNet. We
choose three kinds of grid size 1× 1, 6× 6 and 11× 11. For
1× 1, we use the whole image for contrastive learning. As
shown in Tab. 4(b), using a large grid size leads to better
results. We do not try larger grid size. For we have an input
size of 84× 84, larger grid size may lead to larger noise in
patches. For a moderate grid size, we can find hard samples,
which can improve the performance.

Augment
k

1 5
mixup 66.64 80.99
augmix 66.90 81.27
cutmix 66.34 81.43
IDeMeNet 66.59 81.12
M-mixup 66.92 81.41
PatchMix 67.67 82.44

grid size
k

1 5
1× 1 64.23 79.17
6×6 66.19 81.27
11× 11 66.80 81.35

(a) (b)

Table 4: M-mixup: Manifold Mixup. Table(a) contains the
comparisons between other augmentation methods. Table(b)
shows the results of different grid size. Note that we do not
include PatchMix in this experiment for 6×6 and 11×11. We
find that using the size of 11 × 11 is a good choice for our
setting.

Model
miniImageNet

5-way 1-shot 5-way 5-shot
Baseline 61.69 78.31
+ infoNCE 64.23 79.17
+ hard sample 66.80 81.35
+ PatchMix 67.67 82.44

Table 5: Ablation study on our model, we can find that each
part of our model has important contribution.

Effectiveness on PatchMix To verify the effectiveness of
our proposed method, we conduct following two experiments.
We plug our PatchMix into other existing few-shot learning
methods, i.e., RelationNet and CAN. Note that we modify
the output of RelationNet to be a rather than a scalar to make
it compatible with patch-wise loss. Results in Tab. 3(a)are
similar to those in Tab. 5. The first experiment illustrates
that our augmentation method can be applied to other FSL
methods directly and boost their performance. It proves that
our method is a general method that can be used in FSL
widely.

To further validate our PatchMix, we pick several other
data augmentation method for comparison. Experiments are
conducted on miniImageNet with the same setting except
for the detailed data augmentation method. We add Aug-
mix (Hendrycks et al. 2019), Cutmix (Yun et al. 2019) to
our baseline method. Meanwhile, we utilize the augmen-
tation method from manifold mixup (Mangla et al. 2020)
and IDeMeNet (Chen et al. 2019b). We report the results
on Tab. 4(a) It is obvious that our PatchMix gives the best
results.

On the Implementation of PatchMix We implement the
PatchMix by exchanging the patch between samples. In this
session, we also discuss the detailed implementation. For our
default implementation, we conduct the PatchMix inner every
episode. We call this kind of implementation as independent
mix. Currently, some works propose to modify the sampling
strategies. For instance, we can sample two episode that have
the same categories. The images of these two episodes are
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Figure 2: Images and the heatmaps for spatial correspondence are shown. We use the feature of support generated by the network
to calculate inner product with features of query images. We visualize the inner product in form of heatmap. We can find that our
model locates the object more precisely. This part is done with images from target classes.

totally different. The two episodes are similar under this
sampling strategy. So we try two variants of implementation.
The first is called share mix. For share mix, we conduct
PatchMix inner the two episodes. The other one is named as
exchange mix. It conduct PatchMix by using samples from
similar episode instead of the episode they belong to. By
observing the results of Tab. 3(b), we can find that PatchMix
is robust in terms of mix strategies.

Visualizations
The effectiveness of our method is conspicuous. We explore
the mechanism of the improvement with visualizations in this
section.

We firstly visualize the embedding by using tSNE plot.
In detail, we sample one episode from target classes of
miniImageNet, and feed it into baseline model as well as our
full model. The embedding is visualized in Fig. 3. From fig. 3,
we can observe that the cluster generated by our method is
more compact than that of baseline method.

Besides, we verify whether we can recognize the images
by using part of the information by visualizing the spatial
correspondence. Similarly, we sample one episode from tar-
get classes of miniImageNet. We use the feature of support
images to calculate inner product of each patch of the query
images. Heatmap score is visualizd in Fig. 2. From Fig. 2,
we can observe that our method outperforms the baseline
method in terms of spatial relationship. Our model covers
more accurately and completely of the foreground. It can also
be viewed as proof for better representation.

Conclusion
In this paper, we have shown that contrastive learning with
Noise Contrastive Estimation (NCE) in a supervised manner
can be used to train a deep embedding model for few-shot
recognition. Based on this observation, we have proposed a
novel contrastive training scheme called infoPatch, exploiting
the patch-wise relationship to substantially improve the pop-
ular infoNCE. We have shown that the embedding learned

Figure 3: We visualize the tSNE plot of some samples from
target classes. The left one is visualization for baseline and
the right for our model. It is clear that our model cluster
the samples better. Here different colors represents different
categories.

by the proposed infoPatch is more effective. We thoroughly
evaluate our method on the few-shot recognition task and
demonstrates state-of-the-art results on miniImageNet and ap-
pealing performance on tieredImageNet, Fewshot-CIFAR100
(FC-100).
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