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Abstract

Unsupervised training of deep representations has demon-
strated remarkable potentials in mitigating the prohibitive ex-
penses on annotating labeled data recently. Among them is
predicting transformations as a pretext task to self-train repre-
sentations, which has shown great potentials for unsupervised
learning. However, existing approaches in this category learn
representations by either treating a discrete set of transforma-
tions as separate classes, or using the Euclidean distance as
the metric to minimize the errors between transformations.
None of them has been dedicated to revealing the vital role of
the geometry of transformation groups in learning represen-
tations. Indeed, an image must continuously transform along
the curved manifold of a transformation group rather than
through a straight line in the forbidden ambient Euclidean
space. This suggests the use of geodesic distance to minimize
the errors between the estimated and groundtruth transfor-
mations. Particularly, we focus on homographies, a general
group of planar transformations containing the Euclidean,
similarity and affine transformations as its special cases. To
avoid an explicit computing of intractable Riemannian log-
arithm, we project homographies onto an alternative group
of rotation transformations SR(3) with a tractable form of
geodesic distance. Experiments demonstrate the proposed ap-
proach to Auto-Encoding Transformations exhibits superior
performances on a variety of recognition problems.

Introduction
Representation learning plays a vital role in many machine
learning problems. Among them is supervised pretraining
from large-scale labeled datasets such as ImageNet and MS
COCO for various recognition tasks ranging from image
classification, object detection, and segmentation. Previous
results have shown that representations learned through su-
pervised training on labeled data is critical to competitive
performances before being finetuned on the downstream
tasks. However, it becomes prohibitively expensive to col-
lect labeled data for the purpose of pre-training representa-
tion networks, which prevents the application of deep net-
works in many practical applications. This inspires many
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Figure 1: The deviation between two transformations should
be measured along the curved manifold (Lie group) of
transformations rather than through the forbidden Euclidean
space of transformations.

works to explore the possibility of pretraining representa-
tions in an unsupervised fashion by removing the reliance
on labeled data.

Specifically, self-supervised representation learning from
transformed images has shown great potential. The idea can
trace back to the data augmentation in supervised learn-
ing of convolutional neural networks in AlexNet, where la-
beled data are augmented by various copies of their trans-
formed copies. The fine structure of transformations have
also been explored in training deep network representations.
For example, the celebrated convolutional neural networks
are trained to transform equivariantly against the transla-
tions to capture the translated visual structures. This idea has
been extended to train deep convolutional networks that are
equivariant to to a family of transformations beyond trans-
lations. However, these models still rely on supervised pre-
training of representations on labeled data.

Recently, unsupervised pretraining of representations was
proposed in a self-supervised fashion. The deep networks
are trained by decoding the pretext signals without la-
beled data (Kolesnikov, Zhai, and Beyer 2019). The state-
of-the-art performances have been achieved by the repre-
sentations learned through various transformations as the
self-supervisory signals. Among them is a representative
paradigm of Auto-Encoding Transformations (AET) (Qi
2019) that extends the conventional autoencoders from re-
constructing data to transformations. The AET seeks to ex-
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plore the variations of data under various transformations,
and capture the intrinsic patterns of data variations by pre-
training representations without need to annotate data.

It relies on a simple criterion: if a representation network
could successfully model the change of visual structures be-
fore and after a transformation, we should be able to de-
code the transformation by comparing the representations of
original and transformed images. In other words, transfor-
mations are used as a proxy to reveal the pattern of visual
structures that are supposed to equivary against the applied
transformations. Both deterministic and probabilistic AET
models have been presented in literature, which minimizes
the Mean-Square Errors (MSE) between the matrix repre-
sentation of parametric transformations (Zhang et al. 2019)
and maximizes the mutual information between the learned
representation and transformations (Qi 2019), respectively.

Albeit the promising performances on both AET mod-
els, they are subject to a questionable assumption — they
use the Euclidean distance as the metric to minimize the
errors between the estimated and the groundtruth transfor-
mations. Obviously, this assumption is problematic. Indeed,
transformations have a Lie group structure restricted on a
curved manifold of matrix representations rather than be-
ing filled in the ambient Euclidean space. Moreover, a group
of transformations can be decomposed into various compo-
nents of atomic transformations. For example, a homogra-
phy as one of the most general planar transformations can be
decomposed into affine, similarity and Euclidean transfor-
mations hierarchically. A direct summation of the Euclidean
distances over these components could yield incomparable
results with some components overweighing the others due
to various scales.

From the perspective of transformation geometry in Lie
groups, a more natural way to measure the different between
transformations is the shortest curved path (i.e., geodesic)
connecting two transformations along the manifold, instead
of a straight segment in the ambient Euclidean space. As il-
lustrated in Figure 1, given a pair of original and transformed
images, one cannot find a valid path of transformations in
the Euclidean space to continuously transform the original
one to its transformed counterpart. On the contrary, such a
path of transformations can only reside on the curved man-
ifold of a transformation group. Therefore, one should use
the geodesic along the manifold as the metric to measure the
errors between transformations.

To this end, we will leverage the theory of Lie groups to
explore the geometry of transformations, and choose to min-
imize the revealed geodesic errors between transformations
on the underlying manifold to pretrain the unsupervised rep-
resentations. Specifically, we will consider the Lie group
PG(2) of homographies as to train the AET model, as it
contains a rich family of planar transformations that gener-
alize various transformations including as its special cases
the Euclidean transformations such as translations and rota-
tions, as well as isotropic-scaling similarity transformations
and anisotropic-scaling affine transformations.

There exist two challenges to implement the AET for
the group of homographies. First, one needs the Rieman-
nian logarithm to express the geodesic between transforma-

tions, which can be intractable for the homography group
with no closed form. Instead, we project the transforma-
tions onto another group with a tractable expression of
geodesic distances. Particularly, we choose the scaled rota-
tion group S+(1)×SO(3) to approximate PG(2), in which
the geodesic distance has a tractable closed form that can be
efficiently computed without taking an explicit group log-
arithm. This can greatly reduce the computing overhead in
self-training the proposed model in the Lie group of homo-
graphies. Second, to train the AET, we need a reasonable pa-
rameterization of homographies that can be computed from
the deep network. Although a 3 × 3 matrix representation
in homogeneous coordinates is available to parameterize
homographies directly, it mixes up various components of
transformations such as rotations, translations, and scales
that have incomparable scales of values. The direct matrix
parameterization is thus not optimal which may result in un-
stable numeric results. Thus, inspired by deep homography
estimation (DeTone, Malisiewicz, and Rabinovich 2016; Er-
lik Nowruzi, Laganiere, and Japkowicz 2017; Nguyen et al.
2018; Le et al. 2020), we choose to a reparameterization ap-
proach by making the network output an implicit expres-
sion of homographies with the four-point correspondences
between original and transformed images. The matrix rep-
resentation is computed from the output correspondences
through a SVD operation. Such reparameterization of ho-
mographies is differentiable, thereby enabling us to mini-
mize the geodesic errors between transformations to train
the deep network in an end-to-end fashion.

In summary, our major contributions are as follows:

• We leverage the theory of Lie groups to explore the geom-
etry of transformations, using geodesic distance to min-
imize the errors between the estimated and groundtruth
transformations in AET.

• Due to the intractable Riemannian logarithm, we propose
an approximation of PG(2) in a closed form by project-
ing the transformations onto the scaled rotation group.

• Experiments demonstrate the proposed method exhibits
superior performances on various recognition problems.

Background & Methodology
AET with Euclidean Distances
First, let us review the Auto-Encoding Transformations
(AET) (Zhang et al. 2019). In the AET, a transformation
t is sampled from a Lie group G, which is then applied to
an image x, resulting in a transformed copy t(x). Usually,
an image transformation t can be represented by the cor-
responding 3 × 3 matrix T in a 3D homogeneous coordi-
nate. Such a Lie group G of transformations we will consider
in this paper is both a group equipped with a composition
between transformation matrices, and a manifold of matri-
ces endowed with a Riemannian metric. More preliminaries
about the Lie group can be found in Appendix 1.

The goal of the AET is to learn a representation encoder
Eφ(x) for each image x, as well as a transformation de-
coder Dψ to estimate the transformation t from the repre-
sentations Eφ(x) and Eφ(t(x)) of original and transformed
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images, where φ and ψ are model weights of the encoder
and decoder. It is supposed that a good representation Eφ
ought to capture the intrinsic visual structures of individual
images, so that the decoder can infer the applied transforma-
tion by comparing the encoded image representations before
and after the transformations. Recent work has also revealed
the relation between the AET model and the transformation-
equivariant representations from an information-theoretic
point of view (Qi et al. 2019).

Formally, to learn the encoder Eφ and the decoder Dψ ,
one can choose to minimize the following Mean-Squared
Error (MSE) over weights φ and ψ to train the AET model

min
φ,ψ

E
x,t

1

2
‖T̂φ,ψ − T‖2F (1)

where ‖ · ‖F is the Frobenius norm of matrix, T̂ is an esti-
mate of the matrix representation T of the applied transfor-
mation, which is a function of the model parameters (φ, ψ),
and the mean-squared error is taken over the sampled images
x and transformations t. For the notational simplicity, we
will drop the subscript (φ, ψ) in T̂φ,ψ whenever it is clear
from the context. The model that minimizes the MSE be-
tween transformation matrices is named the AETv1 in this
paper. Although the results (Zhang et al. 2019) showed its
impressive performances, the MSE objective may not ex-
actly characterize the intrinsic distance between a sampled
and an estimated transformations, as it simply uses the Eu-
clidean distances between them.

Indeed, a Lie group G of transformations is embedded
into the ambient matrix space, often forming a curved man-
ifold. Obviously, a more accurate distance between trans-
formations should be characterized by the length of the
geodesic connecting them along the manifold, which char-
acterizes how a transformation can continuously change to
another transformation along the manifold. Minimizing such
a geodesic distance on the manifold can yield a more exact
estimate of a sampled transformation along the Lie group of
transformations.

AET in Lie Groups
In the AET, we seek to train the model by minimizing
the mean-squared error between the estimated and sampled
transformations T̂ and T. However, a Lie group G of trans-
formations has a curved manifold structure embedded in an
ambient matrix space. The mean-squared error characterizes
the Euclidean distance between two transformation matri-
ces, which reflects their external distance in the ambient Eu-
clidean space. It cannot reflect the intrinsic distance between
transformations along the curved manifold of the Lie group.

Instead, in this paper, we will consider the geodesic that
is the short curve connecting two transformations along the
curved manifold between them. It can be shown that the
geodesic between T̂ and T can be represented as

γ(t) = ExpT(t LogT(T̂)) = TExpI(t LogI(T
−1T̂))

(2)
where γ(0) = T and γ(1) = T̂, and ExpT and LogT are
the Riemannian exponential and logarithm that map from

the tangent space at a transformation T to the manifold of a
Lie group and conversely. The readers who are interested in
more preliminaries about the Lie group can refer to (Zacur,
Bossa, and Olmos 2014a) and Appendix.

The geodesic distance between T and T̂ is defined as∫ 1

0

‖γ′(t)‖dt = ‖γ′(0)‖

where ‖ · ‖ is the left-invariant metric. This equality fol-
lows from that γ′(t) is parallel along γ(t) by the definition
of geodesics, and thus ‖γ′(t)‖ is a constant of t along the
geodesic.

The derivative of the geodesic γ(t) at t = 0 is

γ′(0) = LogT(T̂) = T LogI(T
−1T̂) ∈ TTG

which lies in the tangent space TTG of the transformation
group G at T. Thus, the (squared) Geodesic Distance be-
tween Transformations (GDT) can be rewritten as

`(T̂,T) ,
1

2
‖γ′(0)‖2 =

1

2
‖LogI(T

−1T̂)‖2F (3)

where we use the left-invariant property of ‖ · ‖, and left-
translate γ′(0) by T to the tangent space at the identity.
Then, one can minimize the GDT between the sampled and
estimated transformations to train the AET.

Let us denote LogI(T
−1T̂) by R. Following the chain

rule, we show in Appendix 2 that the derivative of the loss `
w.r.t. the decoded transformation T̂

∇T̂`(T̂,T) = R
ᵀ

(∇RExpI(R))−1I⊗T−1 (4)

where the overline R denotes the stacking of the matrix
columns, and ⊗ is the Kronecker product between matrices.
Then, the training errors can be back-propagated through
this derivative to update the network weights iteratively.
However, it is usually intractable to directly minimize the
Riemannian logarithm R to train the AET. We will show a
concrete example to implement AET in a general Lie group
with a alternative projection approach in the next section.

AET with Homographies
In this section, we will discuss in details how to implement
the AET in the homograhy group, a Lie group that covers
the entire family of projective transformations. First, we will
review the Lie group of homographies in the next subsection
and a direct computing of geodesic distances in it.

Homography Transformations The AETv1 have shown
the group PG(2) of homographies (aka projective trans-
formations) have gained impressive performances with the
AET model (Zhang et al. 2019). It contains a rich family
of spatial transformations that can reveal the visual struc-
tures of images. Thus, we discuss the details about how to
implement the AET with PG(2) considering its Lie group
structure, namely AETv2 in this paper.

The 2D homography transformations PG(2) can be de-
fined as the transformations in the augmented 3D homoge-
neous space of image coordinates (Beutelspacher, Albrecht,
and Rosenbaum 1998). Its matrix representation contains all
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matrices with a unit determinant, and the corresponding Lie
algebra (i.e., the tangent space at the identity) g consists of
all matrices with zero trace. With a left-invariant metric, the
Riemannian exponential can be written in terms of matrix
exponential (Zacur, Bossa, and Olmos 2014a),

ExpI(R) = exp(Rᵀ) exp(R−Rᵀ) (5)

for all R ∈ g. Unfortunately, its inverse, the Riemannian
logarithm, has no closed form that can be expressed in terms
of matrix logarithm. This makes it hard to directly minimize
the geodesic distance between homographies, we will dis-
cuss an alternative approximation method to this problem.

Two Challenges In this section, we will address two chal-
lenges of implementing the AET in the homography group.
First, directly solving the derivative in Eq. (4) needs to cal-
culate the Riemannian logarithm R of T−1T̂. However, the
lack of the closed-form solution to this Riemannian loga-
rithm requires an iterative algorithm to solve it, which is
computationally prohibitive and hard to implement. Instead,
we will choose to project the homographies into a subgroup
with tractable geodesic distances in Subsection A. Second,
the output of the transformation decoder needs to be suitably
parameterized to estimate the homography matrix. A direct
parameterization of homography matrix is problematic as it
contains differents components of transformations that can-
not be estimated in a balanced fashion, such as rotations,
translations and shears. Thus, we will discuss an alterative
parameterization in Subsection B.

A. Projection onto SR(3) Subgroup: here we present
an alternative method by projecting the target transforma-
tion T−1T̂ onto a subgroup of transformations, where there
exists a tractable Frobenius norm of Riemannian logarithm
(Zacur, Bossa, and Olmos 2014b). Let us consider a scaled
rotation group SR(3) , S+(1) × SO(3), which is the di-
rect product between the group S+(1) of positive isotropic
scalings and the 3D rotation group SO(3). Its matrix repre-
sentation consists of 3 × 3 matrices sT such that s ∈ R+,
and T ∈ SO(3) subject to TᵀT = I and det(T) = 1.
The corresponding Lie algebra has a form of εI + L for all
skew-symmetric matrices (i.e., Lᵀ = −L) with traces equal
to zero (Zacur, Bossa, and Olmos 2014a). The Riemannian
logarithm for such a scaled rotation group is the matrix log-
arithm since the matrices commute in its Lie algebra.

Formally, one can estimate R , LogI(T
−1T̂) in (3) by

projecting it onto SR(3), where the matrix logarithm can be
used in place of the Riemannian logarithm LogI,

R̂ = log

[
Π

S+(1)×SO(3)
(T−1T̂)

]
where log is the conventional matrix logarithm, and Π(·)
is the projection onto S+(1) × SO(3). With the singular
value decomposition of T−1T̂ = UΣVᵀ, we prove in Ap-
pendix 3 that the projection onto SR(3) can be written in a
closed form as

Π
S+(1)×SO(3)

(T−1T̂) = αP (6)

with α =
1

3
tr(ΣD), P , UDVᵀ ∈ SO(3), where D ,

diag {1, 1, det(UVᵀ)}.
Then, the Frobenius norm of R̂ can be written as

‖R̂‖2F , ‖logαP‖2F = ‖logαI + log P‖2F
= ‖logαI‖2F + 2 logα tr(log P) + ‖log P‖2F

where the first equality follows from the fact that αI and
P are both positive definite and commute with each other.
Since P ∈ SO(3), its logarithm log P, which maps to the
Lie algebra of SO(3), is a skew-symmetric matrix and thus
we have tr(log P) = 0. Moreover, due to Rodrigues’ rota-
tion formula (Engø 2001), the Frobenius norm of P can be
written as

‖ log P‖2F = 2θ2 (7)

where θ = arccos

[
tr(P)− 1

2

]
∈ [0, π] is the rotation angle

around a unit 3D axis given by θ−1 log P whenever θ 6= 0.
Therefore, the Frobenius norm of R̂ eventually becomes

‖R̂‖2F = ‖logαI‖2F + ‖log P‖2F = 3(logα)2 + 2θ2 (8)

Then, we can approximate the loss `(T̂,T) in Eq. (3) by
combining the resultant geodesic distance and the distance
between T−1T̂ to its projection onto SR(3),

ˆ̀(T̂,T) = 3

[
log

tr(DΣ)

3

]2
+ 2 arccos2

[
tr(P)− 1

2

]
+ λ ‖RΠ‖2F

(9)

with the following projection residual

RΠ = T−1T̂− Π
S+(1)×SO(3)

(T−1T̂)

where λ is a positive weight on the projection distance, and
it will be fixed to one in experiments. Minimizing the pro-
jection residual can minimize the deviation incurred by pro-
jecting T−1T̂ onto SR(3).

B. Reparameterized Homographies: the second chal-
lenge we need to address is how to parameterize the matri-
ces of homographies so that we can compute their geodesic
distances in the underlying Lie group. A straightforward ap-
proach is to let the decoder network output the homograhy
matrices directly, followed with a determinant normaliza-
tion. However, a 2D homography matrix is composed of sev-
eral parts of different transformations

T =

[
T11 T12 T13

T21 T22 T23

T31 T32 T33

]
where the topleft 2 × 2 submatrix accounts for the rotation
and scaling component, and [T13,T23] represents the trans-
lation component. Since different components of homogra-
phies have various scales of values, a direct parameteriza-
tion of homography matrices could result in unstable perfor-
mances on decoding them jointly.
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Figure 2: This figure illustrates the end-to-end pipeline.

This motivates us to use an indirect parameterization by
using four-point correspondence under a homography. For-
mally, consider the correspondences {pi ↔ p′i | i =
1, 2, 3, 4} each of which maps a homogeneous coordinate
pi = [xi, yi, wi]

ᵀ from the original image to the correspond-
ing point p′i = [x′i, y

′
i, w
′
i]
ᵀ after the transformation. The as-

sociated homography matrix T can be derived by solving the
equation p′i×Tpi = 0, i = 1, 2, 3, 4 with the cross-product
×. This can be further rewritten as AiT = 0 by staking T
columnwise into a vector T with

Ai =

[
0ᵀ −wi′pᵀ

i yi
′pᵀ
i

w′ip
ᵀ
i 0ᵀ −x′ip

ᵀ
i

]
After assembling four 2 × 9 matrices {Ai} into the 8 × 9
matrix A, T is solved by the Direct Linear Transformation
(DLT) as the singular vector of the smallest singular value of
A up to a scalar factor. Furthermore, to ensure the obtained
homography matrix invariant to the change of image coor-
dinates under the DLT as well as to make it robust against
noises on the estimated correspondences, the coordinates of
four correspondence points are normalized in the original
and transformed images, respectively.

Formally, four points pi in the original image are fixed to
be its four corners in this paper. The decoderDψ is designed
to output its estimate of each point p′i after the transforma-
tion. Then, two transformations S and S′ with only transla-
tion and scaling are formed respectively to normalize {pi}
and {p′i} so that they are centered at the origin and have an
average distance of

√
2 to the center. After solving the nor-

malized homography T̃ from the normalized coordinates,
the unnormalized version T is obtained from T = S′−1T̃S.
Since both SVD and matrix inverse are differentiable, the
network outputting such reparameterized homographies can
be trained end-to-end by the gradient descent method.

Comparison between EU and SR(3) To illustrate how
well SR(3) can approximate PG(2), we provide a compar-
ison between the Euclidean distances and the scaled rotation
distances. We randomly draw 10, 000 homgraphies based on

(a) PG(2) vs. Euclidean (b) PG(2) vs. SR(3)

Figure 3: The scatter plot of PG(2) vs. (a) Euclidean and
(b) Scaled Rotation distances.

KNN 1-FC 2-FC 3-FC conv

AETv1 (2019) 22.39 16.65 9.41 9.92 7.82
(Ours) AETv2 21.26 15.03 9.09 9.55 7.44

Table 1: Comparison with different classifiers on top of
learned representations for evaluation, where n-FC denotes
a n-layer fully connected classifier, and K = 10 for KNN.

(5) by sampling R with its entries drawn from the unit Gaus-
sian distribution. This allows us to accurately compute the
geodesic distances between the drawn homographies and the
identity in PG(2) with known R. Meanwhile, by project-
ing the obtained homographies onto SR(3), we can com-
pute the geodesic distances between the projected transfor-
mations and the identity in SR(3) as in (8). We plot the scat-
ter points between the obtained PG(2) and Euclidean dis-
tances in Figure 3(a), as well as that between the PG(2) and
the scaled rotation distances in Figure 3(b). The scaled rota-
tion distance is highly correlated with the PG(2) distance,
since the Pearson correlation coefficient between the PG(2)
and the scaled rotation distances is as high as 0.9303, com-
pared with that of 0.5347 between the PG(2) and the Eu-
clidean distances. This shows that SR(3) provides a better
approximation to the intractable geodesic distance in the ho-
mograhy group, and we can minimize it as a surrogate to
train the AET model. From this observation, we believe the
AETv2 based on the minimization of the scaled rotation dis-
tances ought to outperform the AETv1 that minimizes the
Euclidean distances between transformations.

An End-to-end Pipeline In Figure 2, we illustrate how to
train AETv2 in an end-to-end pipeline. An input image is
first transformed by moving each of four corners pi to the
corresponding location p′i with a randomly sampled homog-
raphy T. Through Siamese representation encoders Eφ and
a transformation decoderDψ , four correspondence points p̂′i
after the transformation are predicted, and the estimate T̂ of
the input homography is made by the normalized DLT from
the SVD of A. This provides the reparameterization of T as
a function of the four-point correspondence. Then, the resul-
tant T−1T̂ is projected onto a subgroup SR(3) that admits a
tractable geodesic distance. Since both the normalized DLT
and the subgroup projection are differentiable, the AETv2
can be trained end-to-end by minimizing (9).
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Method Error rate

Supervised NIN (Lower Bound) 7.20
Random Init. + conv (Upper Bound) 27.50

Roto-Scat + SVM (2015) 17.7
ExamplarCNN (2014) 15.7
DCGAN (2015) 17.2
Scattering (2017) 15.3
RotNet + FC (2018) 10.94
RotNet + conv (2018) 8.84
AETv1 + FC (2019) 9.41
AETv1 + conv (2019) 7.82

(Ours) AETv2 + FC 9.09
(Ours) AETv2 + conv 7.44

Table 2: Comparison of unsupervised models on CIFAR-10.
The fully supervised NIN and the random Init. + conv have
the same three NIN blocks, but they are fully supervised
and is trained with the first two blocks randomly initialized
and staying frozen during training, respectively. “+FC” and
“+conv” denote a nonlinear classifier with a hidden FC layer
and a NIN convolutional block respectively, followed by a
10-way softmax layer.

Experiments
In this section, we present our experiment results by compar-
ing the AETv2 with the AETv1 as well as the other unsuper-
vised models. Following the standard evaluation protocol in
literature (Zhang et al. 2019; Qi et al. 2019; Oyallon and
Mallat 2015; Dosovitskiy et al. 2014; Radford, Metz, and
Chintala 2015; Oyallon, Belilovsky, and Zagoruyko 2017;
Gidaris, Singh, and Komodakis 2018), we will adopt down-
stream classification tasks to evaluate the learned represen-
tations on CIFAR10, ImageNet, and Places datasets.

CIFAR-10 Experiments
Network and Experiment Details To make a fair and
direct comparison with existing unsupervised models, we
adopt the Network-In-Network (NIN) architecture previ-
ously used on the CIFAR-10 dataset for the unsupervised
learning task (Zhang et al. 2019; Qi et al. 2019; Oyallon and
Mallat 2015; Dosovitskiy et al. 2014; Radford, Metz, and
Chintala 2015; Oyallon, Belilovsky, and Zagoruyko 2017;
Gidaris, Singh, and Komodakis 2018). The NIN consists of
four convolutional blocks, each having three convolutional
layers. Two Siamese NIN branches are then constructed in
the AETv2, each of which takes the original and the trans-
formed images, respectively. The outputs from the last block
of two branches are concatenated and average-pooled to
form a 384-d feature vector. An output layer follows to pre-
dict the eight parameters of the input homography transfor-
mation. The model is trained by the Adam solver with a
learning rate of 10−5, a value of 0.9 and 0.999 for β1 and
β2, and a weight decay rate of 5× 10−4.

A classifier is then built on top of the second convolutional
block to evaluate the quality of the learned representation
following the standard protocol in literature (Zhang et al.
2019; Qi et al. 2019; Oyallon and Mallat 2015; Dosovit-

Method Conv4 Conv5

ImageNet Labels (Upper Bound) 59.7 59.7
Random (Lower Bound) 27.1 12.0

Tracking (2015) 38.8 29.8
Context (2015) 45.6 30.4
Colorization (2016) 40.7 35.2
Jigsaw Puzzles (2016) 45.3 34.6
BiGAN (2016) 41.9 32.2
NAT (2017) - 36.0
DeepCluster (2018) - 44.0
RotNet (2018) 50.0 43.8
AETv1 (2019) 53.2 47.0

(Ours) AETv2 54.3 47.5

Table 3: Top-1 accuracy on ImageNet. After unsupervised
training of AlexNet, nonlinear classifiers are trained on top
of Conv4 and Conv5 layers with labeled data for the eval-
uation purpose. The fully supervised and random models
are also compared that give upper and lower bounded per-
formances, respectively. A single crop is applied with no
dropout or local response normalization during the testing.

skiy et al. 2014; Radford, Metz, and Chintala 2015; Oyallon,
Belilovsky, and Zagoruyko 2017; Gidaris, Singh, and Ko-
modakis 2018). In particular, the first two blocks are frozen
when the classifier atop is trained with labeled data.

Both model-based and model-free classifiers are trained
for the evaluation purpose. First, we train a non-linear clas-
sifier with various numbers of Fully-Connected (FC) lay-
ers. Each hidden layer has 200 neurons followed by a batch-
normalization and ReLU activation. We also train a convo-
lutional classifier by adding a third NIN block on top of the
unsupervised features, and its output feature map is aver-
aged pooled and connected to a linear softmax layer. Al-
ternatively, we test a model-free KNN classifier based on
the averaged-pooled features from the second convolutional
block. Without explicitly training a model with labeled data,
the KNN classifier can make a direct assessment on the qual-
ity of unsupervised feature representations.

Results Table 2 compares the AETv2 with the other mod-
els on CIFAR-10. On one hand, it outperforms the AETv1 as
well as the other unsupervised models with the same back-
bone. Furthermore, it narrows the performance gap with the
fully supervised convolutional classifier (7.44% vs. 7.20%)
that gives the lower bound of error rate when all labels are
used to train the model end-to-end. More comparisons with
the AETv1 are made in Table 1. We compare the perfor-
mances by both the model-based and model-free classifiers
in the downstream tasks for both versions of the AET mod-
els. From the results, we can see that the AETv2 consistently
outperforms its AETv1 counterpart with both KNN classi-
fiers and different numbers of fully connected layers.

ImageNet Experiments
Network and Experiment Details We further evaluate
the performance on the ImageNet dataset. For a fair com-
parison with the AETv1, the AlexNet is used as the back-
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Method Conv1 Conv2 Conv3 Conv4 Conv5

Places labels (2014) 22.1 35.1 40.2 43.3 44.6
ImageNet labels 22.7 34.8 38.4 39.4 38.7
Random 15.7 20.3 19.8 19.1 17.5
Random rescaled (2015) 21.4 26.2 27.1 26.1 24.0

Context (2015) 19.7 26.7 31.9 32.7 30.9
Context Encoders (2016) 18.2 23.2 23.4 21.9 18.4
Colorization (2016) 16.0 25.7 29.6 30.3 29.7
Jigsaw Puzzles (2016) 23.0 31.9 35.0 34.2 29.3
BiGAN (2016) 22.0 28.7 31.8 31.3 29.7
Split-Brain (2017) 21.3 30.7 34.0 34.1 32.5
Counting (2017) 23.3 33.9 36.3 34.7 29.6
RotNet (2018) 21.5 31.0 35.1 34.6 33.7
AETv1 (2019) 22.1 32.9 37.1 36.2 34.7

AETv2 22.8 33.2 38.1 36.8 35.3

Table 4: Top-1 accuracy on the Places dataset. Different lay-
ers of feature maps are spatially resized to about 9, 000 ele-
ments, and a 205-way linear classifier is trained atop. All un-
supervised features are pre-trained on the ImageNet, and are
frozen when training the classification layer with Places la-
bels. The fully-supervised networks trained with Places La-
bels and ImageNet labels are also compared, in addition to
random models. The best accuracies are highlighted in bold
and the second best values are underlined.

bone to learn the unsupervised features. Two branches with
shared parameters are created by taking original and trans-
formed images as inputs to train the unsupervised model.
The 4, 096-d output features from the second last fully con-
nected layer in two branches are concatenated and fed into
the output layer producing eight projective transformation
parameters. We still use the Adam solver to train the network
with a batch size of 768 original and transformed images.

Results Table 3 reports the Top-1 accuracies of compared
methods on ImageNet with the evaluation protocol used
in (Noroozi and Favaro 2016), where Conv4 and Conv5 de-
note the training of AlexNet with the labeled data, after the
bottom convolutional layers up to Conv4 and Conv5 are pre-
trained in an unsupervised fashion and frozen thereafter. The
results show that in both settings, the AETv2 outperforms
the other unsupervised models including the AETv1. The
performance gap to the fully supervised models that give the
upper bounded performance has been further narrowed to
5.4% and 12.2%. To evaluate the quality of unsupervised
representations, a weak 1, 000-way fully connected linear
classifier is trained on top of different numbers of convo-
lutional layers. The results are shown in Table 5, and the
AETv2 again achieves the best Top-1 accuracy among the
compared models. This shows that the AETv2 can learn a
high-quality unsupervised representation with superior per-
formances even though a weaker classifier is used.

Places Experiments
We conduct experiments to evaluate unsupervised models
on the Places dataset. An unsupervised representation is first
pretrained on the ImageNet, and a single-layer softmax clas-

Method Conv1 Conv2 Conv3 Conv4 Conv5

ImageNet Labels 19.3 36.3 44.2 48.3 50.5
Random 11.6 17.1 16.9 16.3 14.1
Random rescaled (2015) 17.5 23.0 24.5 23.2 20.6

Context (2015) 16.2 23.3 30.2 31.7 29.6
Context Encoders (2016) 14.1 20.7 21.0 19.8 15.5
Colorization (2016) 12.5 24.5 30.4 31.5 30.3
Jigsaw Puzzles (2016) 18.2 28.8 34.0 33.9 27.1
BiGAN (2016) 17.7 24.5 31.0 29.9 28.0
Split-Brain (2017) 17.7 29.3 35.4 35.2 32.8
Counting (2017) 18.0 30.6 34.3 32.5 25.7
RotNet (2018) 18.8 31.7 38.7 38.2 36.5
AETv1 (2019) 19.2 32.8 40.6 39.7 37.7

(Ours) AETv2 19.6 34.1 41.9 40.4 37.9

DeepCluster* (2018) 13.4 32.3 41.0 39.6 38.2
AETv1* (2019) 19.3 35.4 44.0 43.6 42.4

(Ours) AETv2* 21.2 36.9 45.9 44.7 43.2

Table 5: Top-1 accuracy on ImageNet, where a 1, 000-way
linear classifier is trained on top of different convolutional
layers of feature maps spatially resized to about 9, 000 ele-
ments. Fully supervised and random models show the upper
and the lower bounds of performances. Only a single crop is
used during testing, except that the models marked with “*”
apply ten crops.

sifier is trained on top of different layers of the feature maps
with Places labels. In this way, we assess how well unsu-
pervised features can generalize across datasets. As shown
in Table 4, the AETv2 outperforms the compared unsuper-
vised models again, except for Conv1 and Conv2 in which
case Counting performs slightly better.

Conclusions
We present a novel paradigm of Auto-Encoding Transfor-
mations (AET) to train unsupervised representations with-
out involving labeled data. From the geometry of transfor-
mation, it seeks to minimize the geodesic distance between
the input and predicted homographies. Compared with the
conventional mean-squared error in the forbidden ambient
Euclidean space, like AETv1, our AETv2 provides a natu-
ral error metric that enables to characterize how a transfor-
mation continuously moves to another one along the mani-
fold of homographies. To this end, we tackle the intractable
Riemannian logarithm by projecting the estimated homo-
graphies onto a subgroup that admits a tractable form of
geodesic distance. Moreover, while a direct parameteriza-
tion of transformations would mix up different transforma-
tion components with incomparable scales of values, we
present a reparameterization of homographies instead from
four-point correspondence. Since both the subgroup projec-
tion and the reparameterization are differentiable, it allows
us to train the AET network end-to-end. Finally, we conduct
experiments to demonstrate the superior performance of the
pre-trained unsupervised representations on various down-
stream recognition tasks of multiple datasets.
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Krähenbühl, P.; Doersch, C.; Donahue, J.; and Darrell, T.
2015. Data-dependent initializations of convolutional neural
networks. arXiv preprint arXiv:1511.06856 .

Le, H.; Liu, F.; Zhang, S.; and Agarwala, A. 2020. Deep
Homography Estimation for Dynamic Scenes. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, 7652–7661.

Nguyen, T.; Chen, S. W.; Shivakumar, S. S.; Taylor, C. J.;
and Kumar, V. 2018. Unsupervised deep homography:
A fast and robust homography estimation model. IEEE
Robotics and Automation Letters 3(3): 2346–2353.

Noroozi, M.; and Favaro, P. 2016. Unsupervised learning of
visual representations by solving jigsaw puzzles. In Euro-
pean Conference on Computer Vision, 69–84. Springer.

Noroozi, M.; Pirsiavash, H.; and Favaro, P. 2017. Represen-
tation learning by learning to count. In The IEEE Interna-
tional Conference on Computer Vision (ICCV).

Oyallon, E.; Belilovsky, E.; and Zagoruyko, S. 2017. Scaling
the scattering transform: Deep hybrid networks. In Interna-
tional Conference on Computer Vision (ICCV).
Oyallon, E.; and Mallat, S. 2015. Deep roto-translation scat-
tering for object classification. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2865–2873.
Pathak, D.; Krahenbuhl, P.; Donahue, J.; Darrell, T.; and
Efros, A. A. 2016. Context encoders: Feature learning by
inpainting. In Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2536–2544.
Qi, G.-J. 2019. Learning Generalized Transformation
Equivariant Representations via Autoencoding Transforma-
tions. arXiv preprint arXiv:1906.08628 .
Qi, G.-J.; Zhang, L.; Chen, C. W.; and Tian, Q. 2019. AVT:
Unsupervised Learning of Transformation Equivariant Rep-
resentations by Autoencoding Variational Transformations.
arXiv preprint arXiv:1903.10863 .
Radford, A.; Metz, L.; and Chintala, S. 2015. Unsupervised
representation learning with deep convolutional generative
adversarial networks. arXiv preprint arXiv:1511.06434 .
Wang, X.; and Gupta, A. 2015. Unsupervised learning of
visual representations using videos. In Proceedings of the
IEEE International Conference on Computer Vision, 2794–
2802.
Zacur, E.; Bossa, M.; and Olmos, S. 2014a. Left-invariant
riemannian geodesics on spatial transformation groups.
SIAM Journal on Imaging Sciences 7(3): 1503–1557.
Zacur, E.; Bossa, M.; and Olmos, S. 2014b. Multivariate
tensor-based morphometry with a right-invariant Rieman-
nian distance on GL+(n). Journal of mathematical imaging
and vision 50(1-2): 18–31.
Zhang, L.; Qi, G.-J.; Wang, L.; and Luo, J. 2019. Aet vs.
aed: Unsupervised representation learning by auto-encoding
transformations rather than data. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
2547–2555.
Zhang, R.; Isola, P.; and Efros, A. A. 2016. Colorful image
colorization. In European Conference on Computer Vision,
649–666. Springer.
Zhang, R.; Isola, P.; and Efros, A. A. 2017. Split-brain au-
toencoders: Unsupervised learning by cross-channel predic-
tion. In Proceedings of IEEE Conference on Computer Vi-
sion and Pattern Recognition (CVPR).
Zhou, B.; Lapedriza, A.; Xiao, J.; Torralba, A.; and Oliva,
A. 2014. Learning deep features for scene recognition using
places database. In Advances in neural information process-
ing systems, 487–495.

8617


