Norm-Based Generalisation Bounds for Deep Multi-Class Convolutional Neural Networks

Authors

  • Antoine Ledent TU Kaiserslautern
  • Waleed Mustafa TU Kaiserslautern
  • Yunwen Lei TU Kaiserslautern Southern Univ. of Science and Technology
  • Marius Kloft TU Kaiserslautern

DOI:

https://doi.org/10.1609/aaai.v35i9.17007

Keywords:

(Deep) Neural Network Learning Theory, Learning Theory

Abstract

We show generalisation error bounds for deep learning with two main improvements over the state of the art. (1) Our bounds have no explicit dependence on the number of classes except for logarithmic factors. This holds even when formulating the bounds in terms of the Frobenius-norm of the weight matrices, where previous bounds exhibit at least a square-root dependence on the number of classes. (2) We adapt the classic Rademacher analysis of DNNs to incorporate weight sharing---a task of fundamental theoretical importance which was previously attempted only under very restrictive assumptions. In our results, each convolutional filter contributes only once to the bound, regardless of how many times it is applied. Further improvements exploiting pooling and sparse connections are provided. The presented bounds scale as the norms of the parameter matrices, rather than the number of parameters. In particular, contrary to bounds based on parameter counting, they are asymptotically tight (up to log factors) when the weights approach initialisation, making them suitable as a basic ingredient in bounds sensitive to the optimisation procedure. We also show how to adapt the recent technique of loss function augmentation to replace spectral norms by empirical analogues whilst maintaining the advantages of our approach.

Downloads

Published

2021-05-18

How to Cite

Ledent, A., Mustafa, W., Lei, Y., & Kloft, M. (2021). Norm-Based Generalisation Bounds for Deep Multi-Class Convolutional Neural Networks. Proceedings of the AAAI Conference on Artificial Intelligence, 35(9), 8279-8287. https://doi.org/10.1609/aaai.v35i9.17007

Issue

Section

AAAI Technical Track on Machine Learning II