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Abstract

Deep Convolutional Neural Networks (CNN) have been suc-
cessfully applied to many real-life problems. However, the
huge memory cost of deep CNN models poses a great chal-
lenge of deploying them on memory-constrained devices
(e.g., mobile phones). One popular way to reduce the mem-
ory cost of deep CNN model is to train binary CNN where the
weights in convolution filters are either 1 or −1 and therefore
each weight can be efficiently stored using a single bit. How-
ever, the compression ratio of existing binary CNN models
is upper bounded by ∼ 32. To address this limitation, we
propose a novel method to compress deep CNN model by
stacking low-dimensional binary convolution filters. Our pro-
posed method approximates a standard convolution filter by
selecting and stacking filters from a set of low-dimensional
binary convolution filters. This set of low-dimensional bi-
nary convolution filters is shared across all filters for a given
convolution layer. Therefore, our method will achieve much
larger compression ratio than binary CNN models. In order
to train our proposed model, we have theoretically shown
that our proposed model is equivalent to select and stack
intermediate feature maps generated by low-dimensional bi-
nary filters. Therefore, our proposed model can be efficiently
trained using the split-transform-merge strategy. We also pro-
vide detailed analysis of the memory and computation cost
of our model in model inference. We compared the pro-
posed method with other five popular model compression
techniques on two benchmark datasets. Our experimental re-
sults have demonstrated that our proposed method achieves
much higher compression ratio than existing methods while
maintains comparable accuracy.

Introduction
Recent advances in deep convolutional neural network
(CNN) have produced powerful models that achieve high ac-
curacy on a wide variety of real-life tasks. These deep CNN
models typically consist of a large number of convolution
layers involving many parameters. They require large mem-
ory to store the model parameters and intensive computation
for model inference. Due to concerns on privacy, security
and latency caused by performing deep CNN model infer-
ence remotely in the cloud, deploying deep CNN models
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on edge devices (e.g., mobile phones) and performing lo-
cal on-device model inference has gained growing interests
recently (Zhang et al. 2018; Howard et al. 2017). However,
the huge memory cost of deep CNN model poses a great
challenge when deploying it on resource-constrained edge
devices. For example, the VGG-16 network (Simonyan and
Zisserman 2014), which is one of the famous deep CNN
models, performs very well in both image classification and
object detection tasks. But this VGG-16 network requires
more than 500MB memory and over 15 billions floating
number operations (FLOPs) to classify a single input image
(Cheng et al. 2018).

To reduce the memory and computation cost of deep CNN
models, several model compression methods have been pro-
posed in recent years. These methods can be generally cat-
egorized into five major types: (1) parameter pruning and
sharing (Han et al. 2015; Han, Mao, and Dally 2015; Ull-
rich, Meeds, and Welling 2017): pruning redundant, non-
informative weights in pre-trained CNN models; (2) low-
rank approximation (Denton et al. 2014; Jaderberg, Vedaldi,
and Zisserman 2014): finding appropriate low-rank approx-
imation for convolution layers; (3) knowledge distillation
(Ba and Caruana 2014; Hinton, Vinyals, and Dean 2015;
Buciluǎ, Caruana, and Niculescu-Mizil 2006): approximat-
ing deep neural networks with shallow models; (4) compact
convolution filters (Howard et al. 2017; Zhang et al. 2018):
using carefully designed structural convolution filters; and
(5) model quantization (Han, Mao, and Dally 2015; Gupta
et al. 2015): quantizating the model parameters and there-
fore reducing the number of bits to represent each weight.
Among these existing studies, model quantization is one
of the most popular ways for deep CNN model compres-
sion. It is widely used in commercial model deployments
and has several advantages compared with other methods
(Krishnamoorthi 2018): (1) broadly applicable across differ-
ent network architectures and hardwares; (2) smaller model
footprint; (3) faster computation and (4) powerful efficiency.

Binary neural networks is the extreme case in model
quantization where each weight can only be 1 or −1 and
therefore can be stored using a single bit. In the research
direction of binary neural networks, the pioneering work Bi-
naryConnect (BC) proposed by (Courbariaux, Bengio, and
David 2015) is the first successful method that incorpo-
rates learning binary model weights in the training pro-
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cess. Several extensions to BC have been proposed, such
as Binarized Neural Networks(BNN) presented by (Hubara
et al. 2016), Binary Weight Network (BWN) and XNOR-
Networks (XNOR-Net) proposed by (Rastegari et al. 2016).
Even though the existing works on binary neural networks
have shown promising results on model compression and
acceleration, they use a binary filter with the same kernel
size and the same filter depth as a standard convolution fil-
ter. Therefore, for a given popular CNN architecture, binary
neural networks can only compress the original model by up
to ∼ 32 times. This upper bound on compression ratio (i.e.,
32) could limit the applications of binary CNNs on resource-
constrained devices, especially for large scale CNNs with a
huge number of parameters.

Motivated by recent work LegoNet (Yang et al. 2019)
which constructs efficient convolutional networks with a set
of small full-precision convolution filters named lego filters,
we propose to compress deep CNN by selecting and stack-
ing low-dimensional binary convolution filters. In our pro-
posed method, each original convolution filter is approxi-
mated by stacking a number of filters selected from a set of
low-dimensional binary convolution filters. This set of low-
dimensional binary convolution filters is shared across all
convolution filters for a given convolution layer. Therefore,
our proposed method can achieve much higher compression
ratio than binary CNNs. Compared with LegoNet, our pro-
posed method can reduce the memory cost of LegoNet by
a factor of ∼ 32 since our basic building blocks are binary
filters instead of full-precision filters.

The main contributions of this paper can be summarized
as follows: First, we propose a novel method to overcome
the theoretical compression ratio limit of recent works on
binary CNN models. Second, we have shown that our pro-
posed model can be reformulated as selecting and stacking
feature maps generated by low-dimensional binary convolu-
tion filters. After reformulation, our proposed model can be
efficiently trained using the split-transform-merge strategy
and can be easily implemented by using any existing deep
learning framework (e.g., PyTorch or Tensorflow). Third, we
provide detailed analysis of the memory and computation
cost of our model for model inference. Finally, we com-
pare our proposed method with other five popular model
compression algorithms on three benchmark datasets. Our
experimental results clearly demonstrate that our proposed
method can achieve comparable accuracy with much higher
compression ratio. We also empirically explore the impact of
various training techniques (e.g., choice of optimizer, batch
normalization) on our proposed method in the experiments.

Preliminaries
Convolutional Neural Networks
In a standard CNN, convolution operation is the basic op-
eration. As shown in Figure 1(a), for a given convolution
layer in CNN, it transforms a three-dimensional input tensor
Xinput ∈ Rwin×hin×cin , where win, hin and cin represents
the width, height and depth (or called number of channels)
of the input tensor, into a three-dimensional output tensor
Xoutput ∈ Rwout×hout×cout by

Xoutput = Conv(Xinput,W), (1)
where Conv() denotes the convolution operation. Each entry
in the output tensor Xoutput is obtained by an element-wise
multiplication between a convolution filter Wi ∈ Rd×d×cin

and a patch Xi
input ∈ Rd×d×cin extracted from Xinput fol-

lowed by summation. d×d is the kernel size of the convolu-
tion filter (usually d is 3) and cin is depth of the convolution
filter which is equal to the number of input channels. There-
fore, for a given convolution layer with cout convolution fil-
ters, we can use W ∈ Rd×d×cin×cout to denote the parame-
ters needed for all cout convolution filters. The memory cost
of storing weights of convolution filters W for a given layer
is d×d×cin×cout×32 bits assuming 32-bit floating-point
values are used to represent model weights. It is high since
deep CNN models usually contain a large number of layers.
The computation cost for CNN model inference is also high
because the convolution operation involves a large number
of FLOPs.

Binary Convolutional Neural Networks
To reduce the memory and computation cost of deep CNN
model, several algorithms (Simonyan and Zisserman 2014;
Courbariaux, Bengio, and David 2015; Rastegari et al. 2016;
Hubara et al. 2016; Alizadeh et al. 2019) have been pro-
posed recently. Their core idea is to binarize the model
weights W ∈ Rd×d×cin×cout . Since a binary weight can
be efficiently stored with a single bit, these methods can re-
duce the memory cost of storing W ∈ Rd×d×cin×cout to
d × d × cin × cout bits. It has been shown that these meth-
ods can achieve good classification accuracy with much less
memory and computation cost compared to standard CNN
model. However, due to that the binarized W is still of size
d× d× cin × cout, these binary CNNs can only reduce the
memory cost of deep CNN model by up to ∼ 32 times.

Methodology
In this section, we propose a new method that can overcome
the theoretical compression ratio limit of binary CNN mod-
els. Instead of approximating convolution filters using bi-
nary convolution filters with the same kernel size and the
same filter depth, our proposed idea approximates the con-
volution filters by selecting and stacking a number of fil-
ters from a set of low-dimensional binary convolution filters.
The depth of these binary filters will be much smaller than
the depth of original convolution filters. Therefore, we call
them low-dimensional binary convolution filters in this pa-
per. This set of low-dimensional binary convolution filters is
shared across all convolution filters for a given convolution
layer. The main idea of our proposed method is illustrated
in Figure 1 and we will explain the details of it in following
subsections.

Approximating Convolution Filters by Stacking
Low-dimensional Binary Filters
Suppose we use Wt ∈ Rd×d×cin to denote the t-th full-
precision convolution filter in a convolution layer in a stan-
dard CNN. According to (1), the t-th feature map in the out-
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(a) Convolution filters W

(b) Stacked W using low-dimensional binary convolution filters

Figure 1: Approximating Convolution Filters by Stacking
Low-dimensional Binary convolution Filters

put tensor Xt
output ∈ Rwout×hout generated by convolution

filter Wt can be written as

Xt
output = Conv(Xinput,W

t). (2)

Let us use {B1,B2, . . . ,Bm} to denote a set of m shared
binary convolution filters for a given convolution layer. Bi ∈
Rd×d×s denotes the weights for the i-th binary filter where
s is depth of the binary convolution filters. In here, the depth
s is much smaller than cin which is the depth of original
convolution filters. Each element in Bi is either 1 or −1.
We propose to approximate Wt by selecting k = cin

s low-
dimensional binary convolution filters from {B1, . . . ,Bm}
and then stacking them together. Let us define an indicator
matrix P ∈ Rm×k as

Pji =

{
1 if the i-th block of Wt is Bj

0 otherwise
. (3)

By following the selecting and stack-
ing idea, Wt will be approximated by
[
∑m

j=1 Pj1Bj,
∑m

j=1 Pj2Bj, . . . ,
∑m

j=1 PjkBj] which
concatenates k low dimensional binary convolution
filters together in column-wise manner. Here we can
also introduce another variable αi to denote the scal-
ing factor associated to the i-th block of Wt when we
concatenate different binary convolution filters together,
that is, Wt ≈ [α1

∑m
j=1 Pj1Bj, α2

∑m
j=1 Pj2Bj, . . . ,

αk

∑m
j=1 PjkBj]. We can treat αiPji as single variable by

changing the definition of P in (3) to

Pji =

{
αi if the i-th block of Wt is Bj

0 otherwise
. (4)

In our experiment section, we have shown that introducing
the scaling factors {αi}ki=1 always obtains slightly better
classification accuracy than without using them.

Let us split the Xinput ∈ Rwin×hin×cin into k = cin
s

parts {Xinput(1), Xinput(2), . . . , Xinput(k) } where the size
of each part Xinput(i) is Rwin×hin×s. Then the t-th feature
map in the output tensor generated by convolution filter Wt

as shown in (2) can be approximated as

Xt
output =

k∑
i=1

Conv(Xinput(i),
m∑
j=1

PjiBj). (5)

Note that ‖P(:,i)‖0 = 1 (i.e., each column of P only con-
tains one non-zero value) means that only one binary filter
Bj is selected to perform the convolution operation on the
i-th part of Xinput. The Xt

output is a element-wise sum of k
feature maps. Each feature map is generated by applying a
single low-dimensional binary convolution filter to one part
of the input.

As shown in (5), for a convolution filter in a given convo-
lution layer, the model parameters are {B1, . . . ,Bm} and
P, where {B1, . . . ,Bm} is shared by all convolution fil-
ters for a given convolution layer. Therefore, the model pa-
rameters of our proposed method for a given convolution
layer with cout convolution filters are just {B1, . . . ,Bm}
and {Pt}cout

t=1 . By considering that the memory cost of stor-
ing {Pt}cout

t=1 is relatively small than storing {B1, . . . ,Bm},
our proposed method can significantly reduce the memory
cost of binary CNNs. A detailed analysis of the compression
ratio and computation cost of our proposed method will be
provided in section of algorithm implementation and analy-
sis.

Training Model Parameters of the Proposed
Compressed CNN
In this section, we present our algorithm to learn the
model parameters {B1, . . . ,Bm} and {Pt}cout

t=1 from the
training data. Without loss of generality, let us consider
to optimize the model parameters for one layer. Assume
{Xinput,Youtput} is a mini-batch of inputs and targets for
a given convolution layer. Therefore, the objective for opti-
mizing {B1, . . . ,Bm} and {Pt}cout

t=1 will be

min

cout∑
t=1

‖Yt
output −

k∑
i=1

Conv(Xinput(i),
m∑
j=1

Pt
jiBj)‖2

s.t ‖Pt
(:,i)‖0 = 1

Bij ∈ {−1, 1}.
(6)

In order to optimize (6), we first prove that the convo-
lution operation Conv(Xinput(i),

∑m
j=1 P

t
jiBj) is equiva-

lent to
∑m

j=1 P
t
jiConv(Xinput(i),Bj) as shown in Propo-

sition 1. In other words, selecting a convolution filter (i.e.,
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Figure 2: Reformat as convolution and then select feature

∑m
j=1 P

t
jiBj) and then performing convolution operation

is equivalent to performing m convolution operations and
then selecting a feature map from the generated m inter-
mediate feature maps {Conv(Xinput(i),Bj)}mj=1. The ad-
vantage of latter computation is that it can reduce the
computation cost since these m intermediate feature maps
{Conv(Xinput(i),Bj)}mj=1 is shared across all cout convo-
lution filters for a given convolution layer.

Proposition 1. Suppose Xinput(i) ∈ Rwin×hin×s,
{B1, . . . ,Bm} is a set of m low-dimensional binary filters
where each Bi ∈ Rd×d×s and Pt

(:,i) is the i-th column in Pt

which is a length-m sparse vector with only one non-zero
element. Then, Conv(Xinput(i),

∑m
j=1 P

t
jiBj) is equivalent

to
∑m

j=1 P
t
jiConv(Xinput(i),Bj).

The proof of Proposition 1 can be done by using the def-
inition of convolution operation and the associative prop-
erty of matrix multiplication. Based on Proposition 1,
Conv(Xinput(i),

∑m
j=1 P

t
jiBj) in (6) can be reformulated

as: (1) first performing convolution operations on Xinput(i)

using {B1, . . . ,Bm} to generate m intermediate feature
maps; (2) selecting one feature map from them. This pro-
cedure is also illustrated in Figure 2. After reformulation,
our proposed model can be efficiently trained using the split-
transform-merge strategy as in Szegedy et al. (2015).

Similar to training a standard CNN, the training process of
our proposed model involves three steps in each iteration: (1)
forward propagation; (2) backward propagation and (3) pa-
rameter update. In our proposed model, we have additional
non-smooth constraints on {B1, . . . ,Bm} and {Pt}cout

t=1 .
To effectively learning the non-smooth model parame-
ters in each convolution layer, we introduce full-precision
filters {R1, . . . ,Rm} as the proxies of binary filters
{B1, . . . ,Bm} and dense matrices {Qt}cout

t=1 as the proxies
of{Pt}cout

t=1 . Instead of directly learning {B1, . . . ,Bm} and
{Pt}cout

t=1 , we learn the proxies {R1, . . . ,Rm} and {Qt}cout
t=1

during the training. {B1, . . . ,Bm} and {Pt}cout
t=1 are com-

puted only in the forward propagation and backward propa-
gation. This framework has been successfully used in train-
ing binary neural networks (Courbariaux, Bengio, and David
2015; Hubara et al. 2016; Rastegari et al. 2016).

Forward Propagation. During the forward propagation,

the binary convolution filters {B1, . . . ,Bm} is obtained by

Bi = sign(Ri), (7)

where sign() is the element-wise sign function which return
1 if the element is larger or equal than zero and return −1
otherwise. Similarly, sparse indicator matrices {Pt}cout

t=1 can
be obtained by

Pt
ji =

{
Qt

ji if j = argmax (|Qt
(:,i)|)

0 otherwise
(8)

during the forward propagation where the argmax (|Qt
(:,i)|)

function returns the row index j of the maximum absolute
value of the i-th column of Qt.

Backward Propagation. Since both the sign() function in
(7) and the argmax() function in (8) are not differentiable, we
use the Straight Through Estimator (STE) (Bengio, Léonard,
and Courville 2013) to back propagate the estimated gra-
dients for updating the proxy variables {R1, . . . ,Rm} and
{Qt}cout

t=1 . The basic idea of STE is to simply pass the
gradients as if the non-differentiable functions sign() and
argmax() are not present.

Specifically, let us use r to denote a full-precision weight
and it is a proxy for a binary weight b. Therefore,

b =

{
1 if r ≥ 0,
−1 otherwise.

(9)

(9) is not a differentiable function, STE will just simply es-
timate its gradient as sign function is not present. That is
∂b
∂r = 1. In practice, we also employ the gradient clipping
as in Hubara et al. (2016). Then, the gradient for the sign
function is

∂b

∂r
= 1|r|≤1. (10)

Therefore, in the back propagation, the gradient of a con-
vex loss function L(r) with respect to the proxy variable r
can be estimated as

∂L(r)

∂r
=
∂L(b)

∂b

∂b

∂r
=
∂L(b)

∂b
1|r|≤1. (11)

Similarly, the gradient of a convex loss function L(Qt
ji)

with respect to the proxy variable Qt
ji can be estimated by

STE as

∂L(Qt
ji)

∂Qt
ji

=
∂L(Pt

ji)

∂Pt
ji

∂Pt
ji

∂Qt
ji

=
∂L(Pt

ji)

∂Pt
ji

. (12)

Parameter Update. As shown in (11) and (12), we

now can backpropagate gradients ∂L(b)
∂b and

∂L(Pt
ji)

∂Pt
ji

to

their proxies {R1, . . . ,Rm} and {Qt}cout
t=1 . Then, these two

proxy variables can be updated by using any popular opti-
mizer (e.g., SGD with momentum or ADAM (Kingma and
Ba 2014)). Note that once our training process is completed,
we do not need to keep the proxy variables {R1, . . . ,Rm}
and {Qt}cout

t=1 . Only the low-dimensional binary convolu-
tion filters{B1, . . . ,Bm} and the sparse indicator matrices
{Pt}cout

t=1 are needed for convolution operations in model in-
ference.
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Algorithm 1 Compressed CNN via stacking low-
dimensional binary filters

Training
Input: training data {Xtrain,ytrain}, a convex loss func-
tion L(y, ŷ), CNN configuration, hyperparameter for
low-dimensional binary filter s and m
Output: Compressed CNN model

1: Initialize proxy variables {R1, . . . ,Rm} and {Qt}cout
t=1

for each convolution layer l based on CNN configura-
tion and s and m

2: for iter = 1 to maxIter do
3: Get a minibatch of training data {X,y}
4: for l = 1 to L do
5: Obtain low-dimensional binary filters

{B1, . . . ,Bm} according to (7)
6: Obtain {Pt}cout

t=1 for each convolution filter t ac-
cording to (8)

7: end for
8: Perform standard forward propagation except that

convolution operations are defined in Proposition 1
9: Compute the loss L(y, ŷ)

10: Perform standard backward propagation except that
gradients for {R1, . . . ,Rm} and {Qt}cout

t=1 are com-
puted respectively as in (11) and (12)

11: Perform parameter update for proxy variables
{R1, . . . ,Rm} and {Qt}cout

t=1 using any popular opti-
mizer (e.g., SGD with momentum or ADAM)

12: end for
Prediction
Input: test data Xtest, Trained compressed CNN
Output: predicted labels ŷtest;

1: Perform standard forward propagation except that
convolution operations are defined in Proposition 1

Algorithm Implementation and Analysis
We summarize our algorithm in Algorithm 1. In step 1, we
initialize the proxy variables {R1, . . . ,Rm} and {Qt}cout

t=1
for each convolution layer l. From step 4 to step 7, we obtain
binary filters {B1, . . . ,Bm} by (7) and sparse indicator ma-
trices {Pt}cout

t=1 by (8) for each convolution layer. In step 8,
we perform standard forward propagation except that con-
volution operations are defined as stacking low-dimensional
binary filters. In step 9, we compute the loss L{y, ŷ} us-
ing current predicted value ŷ and ground truth y. In step 10,
we perform standard backward propagation except that the
gradients with respect to proxy variables {R1, . . . ,Rm} and
{Qt}cout

t=1 are computed respectively as in (11) and (12). In
step 11, we perform parameter update for proxy variables
using any popular optimizer (e.g., SGD with momentum or
ADAM). We implement our Algorithm 1 using PyTorch
framework (Paszke et al. 2019).

In model inference, we do not need to keep the proxy vari-
ables. In each convolution layer, we only need the trained
low-dimensional binary filters {B1, . . . ,Bm} and sparse
indicator matrices {Pt}cout

t=1 to perform convolution opera-
tions. Therefore, compared with standard convolution opera-

tions using W as in (1), our proposed method that constructs
convolution filter by stacking a number of low-dimensional
binary filters can significantly reduce the memory and com-
putation cost of standard CNNs.

With respect to compression ratio, for a standard convo-
lution layer, the memory cost is d × d × cin × cout × 32
bits. In our proposed method, the memory cost of storing
a set of low-dimensional binary filters {B1, . . . ,Bm} is
d × d × s × m bits. The memory cost of storing stacking
parameter {Pt}cout

t=1 is cin
s ×m × cout if P is defined as in

(3) where each entry can be stored using a single bit and is
cin
s ×cout×32×3 if P is defined in (4) 1. In our hyperparam-

eter setting, we will set s = cinf1 and m = coutf2 where
f1 and f2 are fractional numbers less than 1. In our experi-
ments, we set them as 1

2 ,
1
4 ,

1
8 , . . . , and so on. The compres-

sion ratio of our proposed method is

d× d× cin × cout × 32

d× d× cinf1 × coutf2 + 1
f1
× cout × 32× 3

(13)

By considering that the memory cost of storing {Pt}cout
t=1

is relatively small compared with the memory cost of stor-
ing low-dimensional binary filters if f1 is not a very small
fractional number, the compression ratio of our proposed
method can be approximated by ∼ 32

f1f2
. The actual com-

pression ratio of our method will be reported in the experi-
mental section.

With respect to computation cost, for a given convolution
layer, standard convolution operations require d× d× cin×
wout × hout × cout FLOPs. In comparison, our method will
first require d×d×cin×wout×hout×m FLOPs to compute
1
f1
×m intermediate feature maps where the depth of each

intermediate feature map is equal to 1. Then, we select and
combine these intermediate feature maps to form the output
tensor using wout × hout × 1

f1
× cout FLOPs. By consid-

ering that wout × hout × 1
f1
× cout is relatively small than

d × d × wout × hout × cin × m if f1 is not a very small
fractional number, the speedup of our model inference can
be approximated as

∼ d× d× cin × wout × hout × cout
d× d× cin × wout × hout ×m

=
1

f2
. (14)

Furthermore, due to the binary filters used in our method,
convolution operations can be computed using only addition
and subtraction (without multiplication) which can further
speed up the model inference (Rastegari et al. 2016).

Experiments
In this section, we compare the performance of our proposed
method with five state-of-the-art CNN model compression
algorithms on two benchmark image classification datasets:
CIFAR-10 and CIFAR-100 (Krizhevsky, Hinton et al. 2009).
Note that we focus on the compressing convolution layers as
in (Yang et al. 2019). The full connection layers can be com-
pressed by adaptive fastfood transform (Yang et al. 2015)
which is beyond the scope of this paper.

1We use three full-precision vectors to store the indices and val-
ues of the nonzero elements in sparse matrix P.
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Network Compression Ratio CIFAR-10 Acc(%) CIFAR-100 Acc(%)
Full Net (VGG-16) 1 93.25 73.55

LegoNet(f1 = 1
4 , f2 = 1

4 ) 5.4x 91.35 70.10
BC 31.6x 92.11 70.64

BWN 31.6x 93.09 69.03
BNN 31.6x 91.21 67.88

XNOR-Net 31.6x 90.02 68.63
SLBF (f1 = 1, f2 = 1

2 ) 60.1x 91.44 68.80
SLBF (f1 = 1

2 , f2 = 1
2 ) 103.2x 91.30 67.55

SLBF (f1 = 1
2 , f2 = 1

4 ) 173.1x 90.24 66.68
SLBF (f1 = 1

2 , f2 = 1
8 ) 261.4x 89.24 62.88

Table 1: Results of different networks on CIFAR-10 and CIFAR-100 datasets using VGG-16 Net

In our experiments, we evaluate the performance of the
following seven algorithms:

• Full Net: deep CNN model with full-precision weights;

• BinaryConnect(BC): deep CNN model with binary
weights (Courbariaux, Bengio, and David 2015);

• Binarized Neural Networks(BNN): deep CNN model with
both binary weights and binary activations (Hubara et al.
2016);

• Binary Weight Network(BWN): similar to BinaryCon-
nect(BC) but scaling factors are added to binary filters
(Rastegari et al. 2016);

• XNOR-Networks(XNOR-Net): similar to BNN but scal-
ing factors are added to binary filters and binary activa-
tions (Rastegari et al. 2016);

• LegoNet: Efficient CNN with Lego filters (Yang et al.
2019)

• Stacking Low-dimensional Binary Filters (SLBF): Our
proposed method.

Experimental Results on CIFAR-10 and
CIFAR-100 Using VGG-16 Net
We first present our experiment settings and results on
CIFAR-10 and CIFAR-100 datasets by using VGG-16 (Si-
monyan and Zisserman 2014) network as the CNN archi-
tecture. CIFAR-10 consists of 50,000 training samples and
10,000 test samples with 10 classes while CIFAR-100 con-
tains more images belonging to 100 classes. Each sample in
these two datasets is a 32 × 32 colour image. The VGG-16
network contains 13 convolution layers and 3 full-connected
layers. We use this CNN network architecture for all seven
methods. The batch normalization with scaling and shifting
applies to all methods too. In our method SLBF, SGD with
the momentum of 0.9 is used as the optimizer. For other five
model compression methods, we use the suggested settings
from their papers.

Our experimental results with different settings of f1 and
f2 using VGG-16 are presented in Table 1. Note that we
only report the result for LegoNet with f1 = 1

4 and f2 = 1
4

because it gets the best trade-off between compression ra-
tio and accuracy based on our experimental results. The

VGG-16 with full precision weights gets the highest accu-
racy 93.25% on CIFAR-10 and 73.55% on CIFAR-100. For
CIFAR-10, our method can get 91.30% with model com-
pression ratio 103.2x. This is encouraging since we can com-
press the full model by more than 100 times without sac-
rifice classification accuracy too much (< 2%). The loss
of accuracy with the same compression ratio is larger on
CIFAR-100 but the performance is still comparable with
other benchmark methods. As expected, the accuracy of
our method will decrease when compression ratio increases.
However, as can be seen from Table 1, the accuracy does
not decrease much (i.e., from 91.30% to 88.63%) even we
increase the compression ratio from 103.2x to 217.32x. It
clearly demonstrates our proposed method can achieve a
good trade-off between accuracy and model compression ra-
tio.

Experimental Results on CIFAR-10 and
CIFAR-100 Using ResNet-18
We also apply the recent ResNet-18 (He et al. 2016)
structure with 17 convolution layers followed by one full-
connection layer on CIFAR-10 and CIFAR-100 datasets.
Similar to the experimental setting using VGG-16, SGD
with the momentum of 0.9 is used as the optimizer in our
method.

The accuracy and compression ratio of benchmark and
our method with different settings using ResNet-18 is shown
in Table 2. Generally the ResNet performs better than VGG-
16 network on these two datasets, it can obtain a compara-
ble accuracy of 74.19% on CIFAR-100 with about 95 times
compression when setting f1 = 1

2 and f2 = 1
2 , and the accu-

racy will not decrease greatly as compression ratio increases
to 151 times. In the following subsections, we empirically
explore the impact of scaling factors and several other train-
ing techniques on our proposed method.

The Impact of Scaling Factors in Matrix P

In our proposed method, the matrix P used for selecting
and stacking binary filters can be defined either as in (3)
or as in (4). The difference between these two definitions
is that (4) will multiply binary filters with scaling factors
when stacking them together. In here, we evaluate the im-
pact of scaling factors in our method. We compare the ac-
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Network Compression Ratio CIFAR-10 Acc(%) CIFAR-100 Acc(%)
Full Net (ResNet-18) 1 95.19 77.11

LegoNet(f1 = 1
4 , f2 = 1

4 ) 17.5x 93.55 72.67
BC 31.8x 93.73 71.15

BWN 31.8x 93.97 72.92
BNN 31.8x 90.47 70.34

XNOR-Net 31.8x 90.14 72.87
SLBF (f1 = 1, f2 = 1

2 ) 58.7x 93.82 74.59
SLBF (f1 = 1

2 , f2 = 1
2 ) 95.1x 93.72 74.19

SLBF (f1 = 1, f2 = 1
4 ) 108.2x 92.96 72.12

SLBF (f1 = 1
2 , f2 = 1

4 ) 151.4x 92.94 71.91
SLBF (f1 = 1

2 , f2 = 1
8 ) 214.9x 91.70 67.89

Table 2: Results of different networks on CIFAR-10 and CIFAR-100 datasets using ResNet-18 Net

Figure 3: Comparison of our method with and without scal-
ing factors

curacy of our method with and without scaling factors on
CIFAR-10 datasets using VGG-16 as the compression ratio
changing from 60.1x to 217.3x and the results are shown
in Figure 3. As can be seen from Figure 3, our proposed
method with scaling factors always gets slightly higher ac-
curacy than without scaling factors.

The Impact of Batch Normalization
Batch normalization (Ioffe and Szegedy 2015) is a popular
technique to improve the training of deep neural networks.
It standardizes the inputs to a layer for each mini-batch. We
compare the performance of our proposed method with two
different batch normalization settings: (1) batch normaliza-
tion without scaling and shifting: normalize inputs to have
zero mean and unit variance; (2) batch normalization with
scaling and shifting. The results are reported in Figure 4 and
it shows that batch normalization with scaling obtains bet-
ter accuracy than without scaling and shifting on CIFAR-10
dataset. Thus we apply these two factors on our methods in
the experiments.

Conclusions and Future Works
In this paper, we propose a novel method to compress deep
CNN by selecting and stacking low-dimensional binary fil-

Figure 4: Accuracy of batch normalization with/without
scaling and shifting (f1 = 1

2 , f2 = 1
2 ).

ters. Our proposed method can overcome the theoretical
compression ratio limit of existing binary CNN models. We
have theoretically shown that our proposed model is equiva-
lent to select and stack low-dimensional feature maps gener-
ated by low-dimensional binary filters and therefore can be
efficiently trained using the split-transform-merge strategy.
We also provide detailed analysis on the memory and com-
putation cost of our model for model inference. We com-
pare our proposed method with other five popular model
compression techniques on three benchmark datasets. Our
experimental results clearly demonstrate that our proposed
method can achieve comparable accuracy with much higher
compression ratio. In our experiments, we also empirically
explore the impact of various training techniques on our pro-
posed method.

In the future, we will consider to use binary activation
function. By doing it, convolution operations in each layer
will be replaced by cheap XNOR and POPCOUNT binary
operations which can further speed up model inference as
observed in (Rastegari et al. 2016). We are also interested in
investigating alternative methods to Straight Through Esti-
mator (STE) for learning non-smooth model parameters.
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