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Abstract

A split-transform-merge strategy has been broadly used as an
architectural constraint in convolutional neural networks for
visual recognition tasks. It approximates sparsely connected
networks by explicitly defining multiple branches to simulta-
neously learn representations with different visual concepts
or properties. Dependencies or interactions between these
representations are typically defined by dense and local op-
erations, however, without any adaptiveness or high-level
reasoning. In this work, we propose to exploit this strat-
egy and combine it with our Visual Concept Reasoning Net-
works (VCRNet) to enable reasoning between high-level vi-
sual concepts. We associate each branch with a visual con-
cept and derive a compact concept state by selecting a few
local descriptors through an attention module. These concept
states are then updated by graph-based interaction and used
to adaptively modulate the local descriptors. We describe our
proposed model by split-transform-attend-interact-modulate-
merge stages, which are implemented by opting for a highly
modularized architecture. Extensive experiments on visual
recognition tasks such as image classification, semantic seg-
mentation, object detection, scene recognition, and action
recognition show that our proposed model, VCRNet, consis-
tently improves the performance by increasing the number of
parameters by less than 1%.

Introduction

Convolutional neural networks have shown notable success
in visual recognition tasks by learning hierarchical repre-
sentations. The main properties of convolutional operations,
which are local connectivity and weight sharing, are the key
factors that make it more efficient than fully-connected net-
works for processing images. The local connectivity par-
ticularly comes up with a fundamental concept, receptive
field, that defines how far the local descriptor can capture
the context in the input image. In principle, the receptive
field can be expanded by stacking multiple convolutional
layers or increasing the kernel size of them. However, it is
known that the effective receptive field only covers a frac-
tion of the theoretical size of it (Luo et al. 2016). This even-
tually restricts convolutional neural networks to capture the
global context based on long-range dependencies. On the
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other hand, most convolutional neural networks are charac-
terized by dense and local operations that take the advantage
of the weight sharing property. It hence typically lacks an
internal mechanism for high-level reasoning based on ab-
stract semantic concepts such as those humans manipulate
with natural language and inspired by modern theories of
consciousness (Bengio 2017). It is related to system 2 cogni-
tive abilities, which include things like reasoning, planning,
and imagination, that are assumed to capture the global con-
text from interactions between a few abstract factors and ac-
cordingly give feedback to the local descriptor for decision-
making.

There have been approaches to enhance capturing long-
range dependencies such as non-local networks (Wang et al.
2018). The main concept of it, which is related to self-
attention (Vaswani et al. 2017), is to compute a local de-
scriptor by adaptively aggregating other descriptors from all
positions, regardless of relative spatial distance. In this set-
ting, the image feature map is plugged into a fully-connected
graph neural network, where all local positions are fully con-
nected to all others. It is able to capture long-range depen-
dencies and extract the global context, but it still works with
dense operations and lacks high-level reasoning. Both La-
tentGNN (Zhang, He, and Yan 2019) and GloRe (Chen et al.
2019) alleviate these issues by introducing compact graph
neural networks with some latent nodes designed to aggre-
gate local descriptors.

In this work, we propose Visual Concept Reasoning Net-
works (VCRNet) to enable reasoning between high-level vi-
sual concepts. We exploit a modularized multi-branch ar-
chitecture that follows a split-transform-merge strategy (Xie
et al. 2017). While it explicitly has multiple branches
to simultaneously learn multiple visual concepts or prop-
erties, it only considers the dependencies or interactions
between them by using dense and local operations. We
extend the architecture by split-transform-attend-interact-
modulate-merge stages, and this allows the model to cap-
ture the global context by reasoning with sparse interactions
between high-level visual concepts from different branches.

The main contributions of the paper are:

* We propose Visual Concept Reasoning Networks (VCR-
Net) that efficiently capture the global context by reason-
ing over high-level visual concepts.
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Figure 1: A residual block with visual concept reasoning modules.

* We compactly implement our proposed model by exploit-
ing a modularized multi-branch architecture composed of
split-transform-attend-interact-modulate-merge stages.

* We showcase that our proposed model improves the per-
formance more than other models by increasing the num-
ber of parameters by less than 1% on multiple visual
recognition tasks.

Related Works

Multi-branch architectures are carefully designed with mul-
tiple branches characterized by different dense operations,
and split-transform-merge stages are used as the building
blocks. The Inception models (Szegedy et al. 2015) are
one of the successful multi-branch architectures that de-
fine branches with different scales to handle multiple scales.
ResNeXt (Xie et al. 2017) is another version of ResNet (He
et al. 2016) having multiple branches with the same topol-
ogy in residual blocks, and it is efficiently implemented by
grouped convolutions. In this work, we utilize this residual
block and associate each branch of it with a visual concept.

There have been several works to adaptively modulate
the feature maps based on the external context or the
global context of input data. Squeeze-and-Excitation net-
works (SE) (Hu, Shen, and Sun 2018) use a gating mech-
anism to do channel-wise re-scaling in accordance with the
channel dependencies based on the global context. Gather-
Excite networks (GE) (Hu et al. 2018) further re-scale lo-
cally that it is able to finely redistribute the global context
to the local descriptors. Convolutional block attention mod-
ule (CBAM) (Woo et al. 2018) independently and sequen-
tially has channel-wise and spatial-wise gating networks to
modulate the feature maps. All these approaches extract
the global context by using the global average pooling that
equally attends all local positions. Dynamic layer normal-
ization (DLN) (Kim, Song, and Bengio 2017) and Feature-
wise Linear Modulation (FILM) (Perez et al. 2018) present
a method of feature modulation on normalization layers by
conditioning on the global context and the external context,
respectively.

Content-based soft-attention mechanisms (Bahdanau,
Cho, and Bengio 2015) have been broadly used on neu-
ral networks to operate on a set of interchangeable objects
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and aggregate it. Particularly, Transformer models (Vaswani
et al. 2017) have shown impressive results by using multi-
head self-attention modules to improve the ability to capture
long-range dependencies. Non-local networks (NL) (Wang
et al. 2018) use this framework in pixel-level self-attention
blocks to implement non-local operations. There are some
additional related works that one augments the self-attention
modules to convolutional operations (Bello et al. 2019a),
and another replaces all of them with a form of self-
attention (Ramachandran et al. 2019). Global-context net-
works (GC) (Cao et al. 2019) simplify the non-local net-
works by replacing the pixel-level self-attention with an at-
tention module having a single fixed query that is globally
shared and learned. Attention-augmented convolutional net-
works (Bello et al. 2019b) similarly augment convolutional
operators with self-attention modules as the non-local net-
works, but concatenate feature maps from convolution path
and self-attention path. LatentGNN (Zhang, He, and Yan
2019) and Global reasoning module (GloRe) (Chen et al.
2019) differently simplifies the non-local networks that they
first map local descriptors into latent nodes, where the num-
ber of nodes is relatively smaller than the number of local
positions, and capture the long-range dependencies from in-
teractions between the latent nodes. Our proposed model is
similar to these two models, but we take the advantage of
the multi-branch architecture and the attention mechanism
to efficiently extract a set of distinct visual concept states
from the input data.

Methods

In this section, we introduce our proposed model, Visual
Concept Reasoning Network (VCRNet), and describe the
overall architecture and its components in detail. The pro-
posed model is designed to reason over high-level visual
concepts and accordingly modulate feature maps based on
its result. In the following, we assume the input data X €
RHWxd js a 2D tensor as an image feature map, where
H, W, and d refer to the height, width, and feature size of X,
respectively. Moreover, for simplicity, we denote all mod-
ules by a function Fiyn.(-; 6), where 6 is a learnable param-
eter and the subscript func briefly explains the functionality
of it.



Modularized Multi-Branch Residual Block

Residual blocks are composed of a skip connection and mul-
tiple convolutional layers (He et al. 2016). We especially
take advantage of using a residual block of ResNeXt (Xie
et al. 2017) that operates by grouped convolutions. This
block is explicable by a split-transform-merge strategy and
a highly modularized multi-branch architecture. It has an
additional dimension “cardinality” to define the number of
branches used in the block. The branches are defined by
separate networks, which are based on the same topology
and implemented by grouped convolutions, processing non-
overlapping low-dimensional feature maps. In this work, we
use this block by regarding each branch as a network learn-
ing representation of a specific visual concept and, therefore,
refer to the cardinality as the number of visuals concepts C.
The split-transform-merge strategy can be described by vi-
sual concept processing as the following. Each concept ¢ has
a compact concept-wise feature map Z, € R7W P, where
p is a lot smaller than d. It is initially extracted from the
input data X by splitting it into a low-dimensional feature
map X, € REW*P with a 1 x 1 convolution Foie(X; gy,
Afterward, it is followed by a concept-wise transformation
based on a 3 x 3 convolution Ftrans(f( ¢; 07 while keeping
the feature size compact. The extracted concept-wise fea-
ture maps {Z.}<_; are then projected back into the input
space to be merged as Y = X + ZCCZI Ferge (Ze; 02°%°).
This overall multi-branch procedure interestingly can be
highly modularized and parallelized by grouped convolu-
tions. However, it lacks the ability of reasoning over the
high-level visual concepts that captures both local and global
contexts. We propose to extend this approach by introduc-
ing additional modules to enable visual concept reasoning.
Our proposed model is based on a new strategy with split-
transform-attend-interact-modulate-merge stages. The new
stages completely work into the residual block with the fol-
lowing modules: (a) concept sampler, (b) concept reasoner,
and (c) concept modulator. The overall architecture is de-
picted in Figure 1 showing how it is highly modularized by
sharing the topology between different concepts. We refer
to networks having residual blocks with these modules, as
Visual Concept Reasoning Networks (VCRNet).

Concept Sampler

The concept-wise feature maps {Z.}<_, are composed of
all possible pixel-level local descriptors, which contain spa-
tially local feature information, as sets of vectors. To do ef-
ficient reasoning over the visual concepts, it first requires a
set of abstract feature vectors representing the visual con-
cepts. Therefore, a form of aggregation mechanism is nec-
essary to derive a set of visual concept states, where each
state is a vector, from the concept-wise feature maps. We im-
plement this by presenting a concept sampler (CS) module.
Each concept ¢ has a separate concept sampler Fcs(Z,.; 655)
that aggregates the set of local descriptors in Z. and con-
verts it into a concept state h., € R'*P, where we set
p = min(p/4,4). We introduce two types of concept sam-
plers that are based on pooling and attention operations, re-
spectively. Global average pooling is one of the simplest
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Figure 2: Concept samplers with different approaches (® is
a weighted-sum operation).

ways to extract the global context from a feature map with-
out explicitly capturing long-range dependencies. It equally
and densely attends all local positions to aggregate the local
descriptors. Our pooling-based sampler adopts this opera-
tion to compute the concept state h. as shown in Figure 2.a,
and it is formulated as:
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where Z.[i, j] € R1*P is a local descriptor at position (3, j),
and W) € RP*? is a learnable projection weight. In com-
parison with the attention-based sampler, it is simple and
compact having a small number of parameters, but there
is no data-adaptive process. Due to its simplicity, similar
approaches have been broadly used in the previous works
such as SENet (Hu, Shen, and Sun 2018) and CBAM (Woo
et al. 2018). The attention mechanism operates by mapping
a query vector and a set of interchangeable key-value vector
pairs into a single vector, which is a weighted sum of value
vectors. It allows us to aggregate a set of local descriptors
by sparsely and adaptively selecting them. We hence apply
this approach to our concept sampler. For each concept c, the
query vector ¢. € R'*P describes what to focus on during
aggregation. The concept-wise feature map Z,. converts into
a set of key-value vector pairs that we separately project it
into a key map K, = ZcWi,‘ and a value map V, = Z . W},
where WK, WY € RP*P are learnable projection weights.
The concept state h. is derived by computing the dot prod-
ucts of the query vector g. with the key map K. and subse-
quently applying a softmax function to obtain the attention

weights over the value map V, as:
) Zc) Wi @

o T
<softmax <qc (Z \C/Ig/ c)

The query vector q. can be either learned as a model param-
eter or computed by a function of the feature map Z.. The
former approach defines a static query that is shared globally
over all data. GCNet (Cao et al. 2019) uses this approach, in-
stead of global average pooling, to extract the global context.

he



It can be simplified and implemented by replacing the term

qc (ZCVV}f)T in Equation 2 with a 1 x 1 convolution as de-
picted in Figure 2.b. The latter approach, in contrast, uses a
dynamic query that varies according to Z.. We set the query
as an output of the function as q. = Fgap(Z.)W¢, which is
equal to the pool-based sampler, as shown in Equation 1.

The concept samplers can be viewed as multi-head atten-
tion modules in Transformer models (Vaswani et al. 2017)
that we set each concept to be operated by a single-head at-
tention module. However, our concept samplers don’t pro-
cess the same input feature map as they do. Each concept
is only accessible to its corresponding feature map, and this
encourages the concept samplers to attend and process dif-
ferent features. Moreover, we explicitly define concept-wise
queries to aggregate pixel-wise (low-level) descriptors and
obtain global descriptors (high-level concepts) rather than
only capturing long-range dependencies as non-local net-
works (Wang et al. 2018) work with pixel-level dense self-
attention operations.

Concept Reasoner

The visual concept states are derived independently from
separate branches in which no communication exists. There-
fore, we introduce a reasoning module, Concept Reasoner
(CR), to make the visual concept states to interact with
the others and accordingly update them. We opt for using
a graph-based method by defining a fully-connected graph
G = (V, €) with nodes V and directional edges £. The node
v. € V corresponds to a single visual concept ¢ and is de-
scribed by the visual concept state h.. The edge e..r € £
defines the relationship or dependency between visual con-
cepts ¢ and . It is further specified by an adjacency ma-
trix A € REXC to represent edge weight values in a matrix
form. Based on this setting, we describe the update rule of
the visual concept states as:

C

h. = ReLU <BN <hc + > Al c’]hc/>> )

c'=1

where Alc, '] € R is a edge weight value, and batch nor-
malization (BN) and ReLU activation are used. This can also
be implemented in a matrix form as H = ReLU(BN(H +
AH)), where H = [hy;ho;...;hc] € REXP is vertically
stacked concept states. The adjacency matrix A can be
treated as a module parameter that is learned during train-
ing. This sets the edges to be static that all relationships be-
tween visual concepts are consistently applied to all data.
However, we relax this constraint by dynamically comput-
ing the edge weights based on the concept states. A func-
tion Alc,:] = Fegge(he; W) = tanh(h W), where
Wedee ¢ RPXC js a learnable projection weight, is used to
get all edge weights Alc, :] related to the concept ¢ as shown
in Figure 3. This function learns how each concept adap-
tively relates to the others based on its state.

Concept Modulator

The updated concept states are regarding not only a single
concept, but also the others as a result of reasoning based
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Figure 3: (Left) Concept reasoner and (right) modulator

on interactions. This information has to be further propa-
gated to local concept features, which are extracted from the
mainstream of the network. However, this is a non-trivial
problem due to dimensional mismatch that the concept states
are vectors not containing any explicit spatial information.
We alleviate this issue by implementing a module, Concept
Modulator (CM), which is based on a feature modulation
approach. It modulates the concept-wise feature maps by
channel-wise scaling and shifting operations. These opera-
tions are conditioned on the updated concept states to fine-
tune the feature maps based on the result of reasoning. We
design this module based on DLN (Kim, Song, and Ben-
gio 2017) and FiLM (Perez et al. 2018). Both models use
feature-wise affine transformations on normalization layers
by dynamically generating the affine parameters instead of
learning them. In this way, we define separate modules for
the visual concepts as shown in Figure 3. Each concept-wise
feature map X, is modulated as:

X = Fom(he, X5 0SM) = ReLU (e © X + Be)

c
- scale scale - shift shift
o = hWSeale 4 psale g — o pshift g pshite

where @ indicates channel-wise multiplication. a., 8. €
R'*P are scaling and shifting parameters, respectively,
which are adaptively computed by linearly mapping the up-
dated concept state h..

We further implement pixel-level concept modulators to
propagate the global context adaptively and differently into
local descriptors. Each concept state h. is derived by com-
puting the attention map M, € R¥W*1 from the concept
sampler as shown in Equation 2, and we assume it contains
the spatial information related to the concept c. Therefore,
we utilize this attention map for the pixel-level concept mod-
ulator. We first re-normalize the attention map by its maxi-

6o (ZWE)"

mum value:
VP > '

~ M,
MC - 7(/7
max(M,)

Without this re-normalization, the learning Eloesn’t work
properly. The re-normalized attention map M, is used to
project the updated concept state k. into all local positions
by projection M.h, € REW*P Based on this projection,
we are able to do pixel-level feature modulation as:

Xc = FCM(iLc; Mca Xc; GSM) = ReLU (ac - Xe+ ﬁc)

a, = (MC}NLC) Wscale + bicale’ ﬂc (MC}NLC) Wghift + bihiﬂ,

M, = softmax (

where - is an element-wise multiplication. Both «, and S,
are having the same size as the feature map X so that all lo-
cal positions have separate scaling and shifting parameters.



Error (%) # of

Model GFLOPs
Top-1 | Top-5 | Params
ResNeXt-50 (Xie et al. 2017) 21.10 | 5.59 | 25.03M 4.24
ResNeXt-50 + SE (Hu, Shen, and Sun 2018) 20.79 | 5.38 | 27.56M 425
ResNeXt-50 + CBAM (Woo et al. 2018) 20.73 | 5.36 | 27.56M 4.25
ResNeXt-50 + GC (Cao et al. 2019) 20.44 | 5.34 | 27.58M 4.25
ResNeXt-50 + GloRe (Chen et al. 2019) 20.15 | 5.14 | 30.79M 5.86
ResNeXt-50 + VCR (ours) 1997 | 5.03 | 25.26M 4.26
ResNeXt-50 + VCR (ours, pixel-level) 1994 | 5.18 | 25.26M 4.29
ResNeXt-101 (Xie et al. 2017) 19.82 | 496 | 44.18M 7.99
ResNeXt-101 + SE (Hu, Shen, and Sun 2018) | 19.39 | 4.73 | 48.96M 8.00
ResNeXt-101 + CBAM (Woo et al. 2018) 19.60 | 4.87 | 48.96M 8.00
ResNeXt-101 + GC (Cao et al. 2019) 19.52 | 5.03 | 48.99M 8.00
ResNeXt-101 + GloRe (Chen et al. 2019) 19.56 | 4.85 | 49.93M 9.61
ResNeXt-101 + VCR (ours) 18.84 | 4.48 | 44.60M 8.01

Table 1: Results of image classification on ImageNet validation set

Backbone Network APPPOX ApBPox ApDhox [ Apmask - ppmask - Apmak [ 4 params
ResNeXt-50 (Xie et al. 2017) 40.70  62.02 4449 | 36.75 58.89  39.03 | 43.94M
ResNeXt-50 + SE (Hu, Shen, and Sun 2018) | 41.04  62.61 44.45 37.13 59.53 39.79 46.47TM
ResNeXt-50 + CBAM (Woo et al. 2018) 41.69  63.54  45.17 | 37.48 60.27 39.71 46.47TM
ResNeXt-50 + GC (Cao et al. 2019) 41.66 63.76 4529 | 37.58 60.36 3992 | 46.48M
ResNeXt-50 + GloRe (Chen et al. 2019) 4231 64.18 46.13 | 37.83 60.63  40.17 | 49.71IM
ResNeXt-50 + VCR (ours) 41.81 63.93  45.67 | 37.71 60.36  40.25 | 44.18M
ResNeXt-50 + VCR (ours, pixel-level) 4202 64.15 4587 | 37.75 60.62  40.22 | 44.18M

Table 2: Results of object detection and instance segmentation on COCO 2017 validation set

Experiments

In this section, we run experiments on visual recog-
nition tasks such as image classification, object detec-
tion/segmentation, scene recognition, and action recogni-
tion with large-scale datasets. In all experiments, we set
ResNeXt (Xie et al. 2017), which performs better than
ResNet (He et al. 2016) with less parameters, as a base
architecture with cardinality = 32 and base width = 4d.
As our main contribution is to exploit the multi-branch ar-
chitecture to enable high-level concept reasoning by im-
plementing split-transform-attend-interact-modulate-merge
stages, we only use the ResNeXt as a backbone network that
it is the only one already having the split-transform-merge
stages allowing us to seamlessly implement our VCRNet.
Furthermore, our proposed model, VCRNet, is also defined
by C' = 32 concepts in all residual blocks. We also com-
pare VCRNet against other networks (modules), which have
a form of attention or reasoning modules, such as Squeeze-
and-Excitation (SE) (Hu, Shen, and Sun 2018), Convolu-
tional Block Attention Module (CBAM) (Woo et al. 2018),
Global Context block (GC) (Cao et al. 2019), and Global
Reasoning unit (GloRe) (Chen et al. 2019). All networks
are implemented in all residual blocks in the ResNeXt ex-
cept GloRe, which is partially adopted in the second and
third residual stages. In all experiments, we mainly set VCR-
Net with using (1) attention-based concept samplers with
dynamic queries, (2) concept reasoners with dynamic edge
weights, and (3) concept modulators with channel-level fea-
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ture map scaling and shifting.

Image Classification

We conduct experiments on a large-scale image classifica-
tion task on the ImageNet dataset (Russakovsky et al. 2015).
The dataset consists of 1.28M training images and 50K val-
idation images from 1000 different classes. All networks
are trained on the training set and evaluated on the valida-
tion set by reporting the top-1 and top-5 errors with single
center-cropping. Our training setting is explained in detail
in Appendix. The overall experimental results are shown in
Table 1, where all results are reproduced by our training set-
ting for a fair comparison. For evaluation, we always take
the final model, which is obtained by exponential moving
average (EMA) with the decay value 0.9999. VCRNet con-
sistently outperforms than other networks in both ResNeXt-
50 and ResNeXt-101 settings. Moreover, it is more compact
than the others as it only increases the number of parame-
ters by less than 1%(~ 0.95%). In contrast, GloRe (Chen
et al. 2019), which also does high-level reasoning as our
model, requires more parameters than ours, although it is
partially applied in the ResNeXt architecture. In addition,
we test the pixel-level concept modulators to reuse the atten-
tion maps extracted from the concept samplers to modulate
local descriptors at pixel-level as GloRe has a pixel-level re-
projection mechanism. The modification slightly improves
the top-1 performance by using the same number of param-
eters, but it increases the computational cost (GFLOPs).



Model Error (%) # of Backbone network Error (%) # of

Top-1 | Top-5 | Params (Slow-only pathway) Top-1 | Top-5 | Params
ResNeXt-50 (Xie et al. 2017) 4349 | 13.54 | 23.73M  ResNeXt-50 (Xie et al. 2017) 26.41 9.43 | 40.07M
ResNeXt-50 + SE (Hu, Shen, and Sun 2018) | 43.18 | 13.41 | 26.26M  ResNeXt-50 + SE (Hu, Shen, and Sun 2018) | 25.06 | 8.70 | 42.58M
ResNeXt-50 + CBAM (Woo et al. 2018) 43.18 | 1345 | 26.26M  ResNeXt-50 + CBAM (Woo et al. 2018) 24.87 | 8.81 | 42.59M
ResNeXt-50 + GC (Cao et al. 2019) 43.07 | 13.34 | 26.28M  ResNeXt-50 + GC (Cao et al. 2019) 2531 | 9.32 | 42.60M
ResNeXt-50 + GloRe (Chen et al. 2019) 4294 | 1322 | 29.48M  ResNeXt-50 + GloRe (Chen et al. 2019) 2552 | 9.23 | 45.81M
ResNeXt-50 + VCR (ours) 4292 | 1296 | 23.96M  ResNeXt-50 + VCR(ours) 2473 | 8.39 | 40.28M

Table 3: Results of scene recognition on Places-365

Table 4: Results of action recognition on Kinetics-400

Model Top-1 # of Model Top-1 # of Model Top-1 # of
(ResNeXt-50) | Error (%) | Params  (ResNeXt-50) | Error (%) | Params  (ResNeXt-50) | Error (%) | Params
pool 20.21 25.17M  no edge 20.23 25.26M  only scale 20.13 25.22M
static attn 20.18 25.17M  static edge 20.02 25.28M  only shift 20.05 25.22M
dynamic attn 19.97 25.26M  dynamic edge 19.97 25.26M  scale + shift 19.97 25.26M

(a) Concept Sampler

(b) Concept Reasoner

Table 5: Ablation study on VCRNet

(c) Concept Modulator

Object Detection and Segmentation

We further do some experiments on object detection and
instance segmentation on the MSCOCO 2017 dataset (Lin
et al. 2014). MSCOCO dataset contains 115K images over
80 categories for training, SK for validation. Our experi-
ments are based on the Detectron2 !. All backbone networks
are based on the ResNeXt-50 and pre-trained on the Im-
ageNet dataset by default. We employ and train the Mask
R-CNN with FPN (He et al. 2017). We follow the training
procedure of the Detectron2 and use the 1x schedule set-
ting. Furthermore, synchronized batch normalization is used
instead of freezing all related parameters. For evaluation,
we use the standard setting of evaluating object detection
and instance segmentation via the standard mean average-
precision scores at different boxes and the mask IoUs, re-
spectively. Table 2 is the list of results by only varying the
backbone network. It shows similar tendencies to the results
of ImageNet. However, GloRe (Chen et al. 2019) is showing
the best performance. We assume that this result is from two
factors. One is the additional capacity, which is relatively
larger than other models, used by Glore. The other is that
GloRe uses pixel-level re-projection mechanism that applies
the result of reasoning by re-computing all local descriptors.
Especially, the task requires to do prediction on pixel-level
so that it would be beneficial to use it. Therefore, we also
make our model to use pixel-level feature modulation. It fur-
ther improves the performance without requiring additional
parameters.

Scene and Action Recognition

Places365 (Zhou et al. 2017) is a dataset labeled with scene
semantic categories for the scene recognition task. This task
is challenging due to the ambiguity between classes that sev-
eral scene classes may share some similar objects causing
confusion among them. We specifically use the Places365-
Standard setting that the train set has up to 1.8M images
from 365 scene classes, and the validation set has 50 images

"https://github.com/facebookresearch/detectron2
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per each class. All networks are trained from random ini-
tialization and evaluated on the validation set by following
the setting used in our ImageNet experiments. Additionally,
we insert Dropout (Srivastava et al. 2014) layers in residual
blocks with p = 0.02 to avoid some over-fitting. The hu-
man action recognition task is another task appropriate to
demonstrate how the network can generalize well not only
to 2D image data, but also to 3D video data. We use the
Kinetics-400 dataset (Kay et al. 2017) including 400 hu-
man action categories with 235K training videos and 20K
validation videos. We follow the slow-only experiment set-
ting used in (Feichtenhofer et al. 2019) that simply takes the
ImageNet pre-trained model with a parameter inflating ap-
proach (Carreira and Zisserman 2017). Both tasks are clas-
sification tasks similar to the ImageNet image classification,
and the results shown in Table 3 and 4 explain that our
approach are generally performing better than other base-
lines in various visual classification tasks. Moreover, action
recognition results prove that our model can be generally
applied to all types of data.

Ablation Study

(a) Concept Sampler: We have proposed different ap-
proaches for the concept sampler (pooling-based and atten-
tion based samplers). To compare these approaches, we train
our proposed networks (ResNeXt-50 + VCR) by having dif-
ferent concept samplers and keeping all other modules fixed.
Table 5.(a) compares the performance of these approaches
on the ImageNet image classification task. The attention-
based approach with dynamic queries (dynamic attn) out-
performs the others, and we assume that this is due to hav-
ing more adaptive power than the others. Furthermore, the
results interestingly show that our models consistently per-
form better than other baseline networks except a network
with GloRe, which are shown in Table 1, regardless of the
type of concept sampler. (b) Concept Reasoner: To inves-
tigate the effectiveness of reasoning based on interactions
between concepts, we conduct some experiments by modi-
fying the concept reasoner. We first remove the concept in-
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Figure 4: (Left) t-SNE plots of visual concept states. C' = 32 concepts are distinguished by 32 colors. (Right) Visualization of
attention (projection) maps from VCRNet, GCNet, and GloRe
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Figure 5: Visualization of interactions between concepts.

teraction term in Equation 3 and evaluate it to measure the
effectiveness of reasoning. Moreover, we also compare the
performance between learned static edges and computed dy-
namic edges. In Table 5.(b), the results show that the rea-
soning module is beneficial in terms of the performance.
Notably, it also reveals that using dynamic edges can im-
prove the reasoning and reduce the number of parameters.
(c) Concept Modulator: Our feature modulation consists of
both channel-wise scaling and shifting operations. Previous
works have shown to use only scaling (gating) (Hu, Shen,
and Sun 2018; Woo et al. 2018; Hu et al. 2018) or only shift-
ing (Cao et al. 2019). We compare different settings of the
feature modulation as shown in Table 5.(c). Using only shift-
ing performs better than using only scaling, and combining
both operations can be recommended as the best option.

Visualization

We use t-SNE (van der Maaten and Hinton 2008; Chan et al.
2019) to visualize how visual concept states are existing in
the feature space. We collect a set of concept states, which
are all extracted from the same concept sampler, by doing
inference with the ImageNet validation set. In Figure 4, it
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is shown that the concept states are clustered and separated
by concepts. This result can be further explained by observ-
ing the attention maps computed from the concept samplers.
Interestingly, they reveal the fact that the concept samplers
sparsely attend different regions or objects, and this would
result in clustered concept states. This also convinces that
our proposed architecture is able to learn distinct concepts
without any supervision that explicitly associates branches
with certain labeled concepts. We also visualize attention
(projection) maps from other networks such as GCNet (Cao
etal. 2019) and GloRe (Chen et al. 2019) in Figure 4. GCNet
only produces a single attention map, and it tends to sparsely
attend foreground objects. GloRe similarly computes pro-
jection maps as our approach, but the maps are densely at-
tending regions with some redundancies between them. We
furthermore extract edge absolute values (interactions) be-
tween concepts from different images and visualized them in
Figure 5. It shows that each image has different interactions
between concepts, and concepts are interacting sparsely that
most edge values are near zero.

Conclusion

In this work, we propose Visual Concept Reasoning Net-
works (VCRNet) that efficiently capture the global context
by reasoning over high-level visual concepts. Our proposed
model precisely fits to a modularized multi-branch archi-
tecture by having split-transform-attend-interact-modulate-
merge stages. The experimental results shows that it consis-
tently outperforms other baseline models on multiple visual
recognition tasks and only increases the number of parame-
ters by less than 1%. We strongly believe research in these
approaches will provide notable improvements on more dif-
ficult visual recognition tasks in the future. As future works,
we are looking forward to remove dense interactions be-
tween branches as possible to encourage more specialized
concept-wise representation learning and improve the rea-
soning process. Moreover, we expect to have consistent and
specialized visual concepts that are shared and updated over
all stages in the network by removing dense interactions be-
tween different branches as possible. Explicitly associating
branches in the networks with labeled concepts will also im-
prove the learning of tasks requiring high-level reasoning.
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