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Abstract
We present a method for learning dynamics of complex physi-
cal processes described by time-dependent nonlinear partial
differential equations (PDEs). Our particular interest lies in
extrapolating solutions in time beyond the range of temporal
domain used in training. Our choice for a baseline method is
physics-informed neural network (PINN) because the method
parameterizes not only the solutions, but also the equations
that describe the dynamics of physical processes. We demon-
strate that PINN performs poorly on extrapolation tasks in
many benchmark problems. To address this, we propose a
novel method for better training PINN and demonstrate that
our newly enhanced PINNs can accurately extrapolate solu-
tions in time. Our method shows up to 72% smaller errors than
existing methods in terms of the standard L2-norm metric.

1 Introduction
Understanding dynamics of complex real-world physical pro-
cesses is essential in many applications (e.g., fluid dynamics
(Anderson, Tannehill, and Pletcher 2016; Hirsch 2007)). Such
dynamics are often modeled as time-dependent partial defer-
ential equations (PDEs), where we seek a solution function
u(x, t) satisfying a governing equation,

f(x, t)
def
= ut +N (u) = 0, x ∈ Ω, t ∈ [0, T ], (1)

where ut
def
= ∂u

∂t denotes the partial derivative of u w.r.t. t,
N denotes a nonlinear differential operator, Ω ⊂ Rd (d =
1, 2, 3) denotes a spatial domain, and T denotes the final time.
Moreover, there are two more types of conditions imposed on
the solution function u(x, t): i) an initial condition u(x, 0) =
u0(x), ∀x ∈ Ω and ii) a set of boundary conditions specifying
the behaviors of the solution function on the boundaries of
Ω. Solving such problem becomes particularly challenging
when the nonlinear differential operator is highly nonlinear.

Traditionally, classical numerical methods (e.g., (Iserles
2009; LeVeque et al. 2002; Stoer and Bulirsch 2013)) have
been dominant choices for solving such nonlinear time-
dependent PDEs, as they have demonstrated their effective-
ness in solving complex nonlinear PDEs and provide sound
theoretical analyses. However, they are often based on tech-
niques that require complex, problem-specific knowledge
such as sophisticated spatio-temporal discretization schemes.
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Recently, with the advancements in deep learning, many
data-centric approaches, which heavily rely on the universal
approximation theorem (Hornik et al. 1989), have been pro-
posed. Most approaches formulate the problem as a rather
simple (semi-)supervised learning problem for constructing
surrogate models for solution functions (Geist et al. 2020;
Khoo, Lu, and Ying 2017; Ling, Kurzawski, and Temple-
ton 2016; Ling and Templeton 2015; Tripathy and Bilionis
2018; Vlachas et al. 2018; Holl, Thuerey, and Koltun 2020).
Although the formulation itself is simple, this approach re-
quires costly evaluations or existence of solutions and also
suffers from lack of ways to enforce a priori information of
the problem such as physical laws described by the governing
equation. There are also more “physics-aware” approaches
such as methods based on learning latent-dynamics of phys-
ical processes (Erichson, Muehlebach, and Mahoney 2019;
Fulton et al. 2019; Lee and Carlberg 2019, 2020; Wiewel,
Becher, and Thuerey 2019). These approaches, however, still
require computations of solutions to collect training dataset.

Among those data-centric approaches, a method called
physics-informed neural network (PINN) (Raissi, Perdikaris,
and Karniadakis 2019) has brought attention to the commu-
nity because of its simple, but effective way of approximating
time-dependent nonlinear PDEs with neural networks, while
preserving important physical properties described by the
governing equations. PINN achieves these by parameterizing
the solution and the governing equation simultaneously with
a set of shared network parameters, which we will elaborate
in the next section. After the great success of the seminal pa-
per (Raissi, Perdikaris, and Karniadakis 2019), many sequels
have applied PINN to solve various PDE applications, e.g.
(Cosmin Anitescu 2019; Yang, Meng, and Karniadakis 2020;
Zhang et al. 2019; Doan, Polifke, and Magri 2019).

Nearly all these studies, however, demonstrated the perfor-
mances of their methods evaluated at a set of testing points
sampled within a pre-specified range, i.e., {(xitest, t

i
test)} ⊂

Ω × [0, Ttrain] \ {(xitrain, t
i
train)}, which we denote by inter-

polation. In this paper, however, we are more interested in
assessing the capability of PINN as a tool for learning the
dynamics of physical processes. In particular, we would like
to assess the performance of PINN on a testing set sampled
beyond the final training time Ttrain of the pre-specified range,
i.e., {(xitest, t

i
test)} ⊂ Ω×(Ttrain, T ], where T > Ttrain, and we

denote this task by extrapolation. In principle, PINN is ex-
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(a) Interpolation (b) Extrapolation

Figure 1: 1D viscous Burgers’ equation examples. We train
the PINN model (Raissi, Perdikaris, and Karniadakis 2019)
with Ttrain = 0.5 and report two solution snapshots of the
reference solution (solid blue line) and the approximated
solution (dashed red line) obtained by PINN at t = 0.03 (i.e.,
interpolation) and t = 0.98 (i.e., extrapolation).

pected to learn the dynamics Eq. (1) and, consequently, to ap-
proximate u(x, t) in (Ttrain, T ] accurately if trained properly.
However, in our preliminary study with a one-dimensional
viscous Burgers’ equation shown in Fig. 1, we observe that
the accuracy of the approximate solution produced by PINN
in the extrapolation setting is significantly degraded com-
pared to that produced in the interpolation setting.

Motivated by this observation, we analyze PINN in detail
(Section 2), propose our method to improve the approxima-
tion accuracy in extrapolation (Section 3), and demonstrate
the effectiveness of the proposed method with various bench-
mark problems (Section 4). In all benchmark problems, our
proposed methods, denoted by PINN-D1 and D2, show the
best accuracies with various evaluation metrics. In compari-
son with state-of-the-art methods, errors from our proposed
methods are up to 72% smaller.

2 Related Work and Preliminaries
We now formally introduce PINN. Essentially, PINN param-
eterizes both the solution u and the governing equation f .
Let us denote a neural network approximation of the solu-
tion u(x, t) by ũ(x, t; Θ), where Θ denotes a set of network
parameters. The governing equation f is then approximated
by a neural network f̃(x, t, ũ; Θ)

def
= ũt + N (ũ(x, t; Θ)),

where partial derivatives are obtained via automatic differen-
tiation (or a back-propagation algorithm (Rumelhart, Hinton,
and Williams 1986) to be more specific). That is, the neu-
ral network f̃(x, t, ũ; Θ) shares the same network weights
with ũ(x, t; Θ), but enforces physical laws by applying an
extra problem-specific nonlinear activation defined by the
PDE in Eq. (1) (i.e., ũt + N (ũ)), which leads to the name
“physics-informed” neural network.1

This construction suggests that these shared network
weights can be learned via forming a loss function consisting

1We also note that there are other studies (e.g., (Cranmer et al.
2020; Greydanus, Dzamba, and Yosinski 2019)) using the idea of
parameterizing the governing equations, where derivatives are also
computed using automatic differentiation.

of two terms, each of which is associated with approximation
errors in ũ and f̃ , respectively. In the original formulation, a
loss function consisting of two error terms is considered:

L
def
= αLu + βLf , (2)

where α, β ∈ R are coefficients and Lu, Lf are defined
below.

Lu =
1

Nu

Nu∑
i=1

|u(xiu, t
i
u)− ũ(xiu, t

i
u; Θ)|2, (3)

Lf =
1

Nf

Nf∑
i=1

|f̃(xif , t
i
f , ũ; Θ)|2. (4)

The first loss term,Lu, enforces initial and boundary condi-
tions using a set of training data

{(
(xiu, t

i
u), u(xiu, t

i
u)
)}Nu

i=1
,

where the first element of the tuple is the input to the neural
network ũ and the second element is the ground truth that the
output of ũ attempts to match. These data can be easily col-
lected from specified initial and boundary conditions, which
are known a priori (e.g., u(x, 0) = u0(x) = − sin(πx)
in a PDE we use for our experiments). The second loss
term, Lf , minimizes the discrepancy between the governing
equation f and the neural network approximation f̃ eval-
uated at collocation points, which forms another training
dataset

{(
(xif , t

i
f ), f(xif , t

i
f )
)}Nf

i=1
, where the ground truth

{f(xif , t
i
f )}Nf

i=1 consists of all zeros.
The advantages of this loss construction are that i) no costly

evaluations of the solutions u(x, t) at collocation points are
required to collect training data, ii) initial and boundary con-
ditions are enforced by the first loss term Lu where its train-
ing dataset can be easily generated, and iii) a physical law
described by the governing equation f in Eq. (1) can be en-
forced by minimizing the second loss term Lf . In (Raissi,
Perdikaris, and Karniadakis 2019), both the loss terms are
considered equally important (i.e., α = β = 1), and the
combined loss term L is minimized.

Motivations. If PINN can correctly learn a governing equa-
tion, its extrapolation should be as good as interpolation. Suc-
cessful extrapolation will enable the adoption of PINN to
many PDE applications. With the loss formulation in Eq. (2),
however, we empirically found that it is challenging to train
PINN for extrapolation as shown in Fig. 1.

Hence, we first investigate training loss curves of Lu and
Lf separately: Fig. 2 depicts the loss curves Lu and Lf of
PINN trained for a 1D inviscid Burgers’ equation. The fig-
ure shows that Lu converges very fast, whereas Lf starts to
fluctuate after a certain epoch and does not decrease below
a certain value. From the observation, we can conclude that
the initial and the boundary conditions are successfully en-
forced, whereas the dynamics of the physical process may
not be accurately enforced, which, consequently, could lead
to significantly less accurate approximations in extrapolation,
e.g., Fig. 1(b). Motivated by this observation, we propose a
novel training method for PINN in the following section. In
the experiments section, we demonstrate performances of the
proposed training method.
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(a) Lu curve (b) Lf curve (c) Updating Θ

Figure 2: Example training curves of Lu and Lf of PINN for
a 1D inviscid Burgers’ equation in (a) and (b) respectively,
and an example of updating Θ in (c)

3 Dynamic Pulling Method (DPM)
The issue with training PINN, which we have identified in our
preliminary experiments, is that Lf is fluctuating and is not
decreasing. To resolve this issue, we propose a novel training
method to impose a soft constraint of Lf ≤ ε, where ε is a
hyperparameter and can be set to an arbitrary small value to
ensure an accurate approximation of the governing equation,
i.e., enforcing f̃(·) to be close to zero. The proposed training
concept is dynamically manipulating the gradients.

We dynamically manipulate the gradients of the loss terms
on top of a gradient-based optimizer including but not limited
to the gradient descent method, i.e., Θ(k+1) = Θ(k) − γg(k),
where γ is a learning rate, and g(k) is a gradient at k-th epoch.
We set the gradient g(k) to one of the following vectors
depending on conditions:

g(k) =


g

(k)
Lu

, if Lf ≤ ε
g

(k)
L , if Lf > ε ∧ g

(k)
Lu
· g(k)
Lf
≥ 0,

v + g
(k)
L , otherwise

(5)

where v ∈ Rdim(Θ) is a manipulation vector, which we will
show how to calculate shortly; g(k)

Lu
, g(k)

Lf
, and g

(k)
L denote

the gradients of Lu, Lf , and L, respectively.

Here, we care only about g(k)
Lu

, when Lf is small enough,
i.e., Lf ≤ ε, because Lf already satisfies the constraint.
There are two possible cases when Lf > ε: i) g(k)

Lu
· g(k)
Lf
≥ 0

and ii) g(k)
Lu
· g(k)

Lf
< 0. In the former case where the two

gradient terms g
(k)
Lu

and g
(k)
Lf

have the same direction (i.e.,
the angle between them is less than 90◦ and hence their dot-
product is positive), performing a gradient descent update
with g

(k)
L guarantees a decrease in Lf . In Fig. 2 (c), for

instance, both Lf and Lu decrease if Θ(k) is updated into the
gray area.

When Lf > ε and g
(k)
Lu
· g(k)

Lf
< 0, however, v carefully

manipulates the gradient in such a way that Lf is guaranteed
to decrease after a gradient descent update.

We now seek such a solution v that will result in
(
v +

g
(k)
L

)
·g(k)
Lf

> 0 given g
(k)
L and g

(k)
Lf

. Because the dot-product

is distributive, it satisfies the following condition(
v + g

(k)
L

)
· g(k)
Lf

= v · g(k)
Lf

+ g
(k)
L · g

(k)
Lf

> 0, (6)

which can be re-formulated as follows:

v · g(k)
Lf

+ g
(k)
L · g

(k)
Lf

= δ, (7)

where δ > 0 is to control how much we pull Θ(k) toward the
region where Lf decreases, e.g., the gray region of Fig. 2 (c).

We note that Eq. (7) has many possible solutions. Among

them, one solution, denoted v∗ =
−g(k)

L ·g
(k)
Lf

+δ

‖g(k)
Lf
‖22

g
(k)
Lf

, can be

computed by using the pseudoinverse of g(k)
Lf

, which is widely
used to find such solutions, e.g., the analytic solution of linear
least-squared problems arising in linear regressions.

A good characteristic of the pseudoinverse is that it mini-
mizes ‖v‖22 (Ben-Israel and Greville 2006). By minimizing
‖v‖22, we can disturb the original updating process as little as
possible. Therefore, we use the pseudoinverse-based solution
in our method.

Despite its advantage, the gradient manipulation vector
v∗ sometimes requires many iterations until Lf ≤ ε. To
expedite the pulling procedure, we also dynamically control
the additive pulling term δ as follows:

∆(k) = Lf (Θ(k))− ε, (8)

δ(k+1) =

{
wδ(k), if ∆(k) > 0,
δ(k)

w , if ∆(k) ≤ 0,
(9)

where w > 1 is an inflation factor for increasing δ.

4 Experiments
We describe our experimental environments and results with
four benchmark time-dependent nonlinear PDEs and several
different neural network designs. Our software and hard-
ware environments are as follows: UBUNTU 18.04 LTS,
PYTHON 3.6.6, NUMPY 1.18.5, SCIPY 1.5, MATPLOTLIB
3.3.1, TENSORFLOW-GPU 1.14, CUDA 10.0, and NVIDIA
Driver 417.22, i9 CPU, and NVIDIA RTX TITAN.

4.1 Experimental Environments
PDEs. We consider viscous and inviscid Burgers’ equa-
tions, nonlinear Schrödinger equation (NLS), and Allen–
Cahn (AC) equation. We refer readers to the full version (Kim
et al. 2020) for detailed descriptions for these equations.

For training/validating/testing, we divide the entire time
domain [0, T ] into three segments: [0, Ttrain], (Ttrain, Tval], and
(Tval, Ttest], where T = Ttest > Tval > Ttrain > 0. In other
words, our task is to predict the solution functions of the
PDEs in a future time frame, i.e., extrapolation. We use
Ttrain = T

2 , Tval = 4T
5 , and Ttest = T , i.e., extrapolating

for the last 20% of the time domain, which is a widely used
setting in many time-series prediction studies (Kim 2003;
Kang et al. 2016).

8148



PDE
L2-norm (↓) Explained variance score (↑) Max error (↓) Mean absolute error (↓)

PINN PINN-R PINN-D1 PINN-D2 PINN PINN-R PINN-D1 PINN-D2 PINN PINN-R PINN-D1 PINN-D2 PINN PINN-R PINN-D1 PINN-D2
Vis. Burgers 0.329 0.333 0.106 0.092 0.891 0.901 0.988 0.991 0.657 1.081 0.545 0.333 0.085 0.108 0.026 0.021
Inv. Burgers 0.131 0.095 0.083 0.090 0.214 0.468 0.485 0.621 3.088 2.589 1.534 2.036 0.431 0.299 0.277 0.315
Allen–Cahn 0.350 0.286 0.246 0.182 0.090 0.919 0.939 0.967 1.190 1.631 1.096 0.836 0.212 0.142 0.129 0.094
Schrödinger 0.239 0.212 0.314 0.141 -4.364 -3.902 -4.973 -3.257 4.656 4.222 4.945 3.829 0.954 0.894 0.868 0.896

Table 1: The extrapolation accuracy in terms of the relative errors in the L2-norm, the explained variance error, the max error,
and the mean absolute error in various PDEs. Large (resp. small) values are preferred for ↑ (resp. ↓).

Baselines. Our task definition is not to simply approximate
a solution function u with a regression model but to let a
neural network learn physical dynamics without costly collec-
tions of training samples (see our broader impact statement
to learn why it is important to train without costly collec-
tions of training samples). For this task, the state-of-the-art
method is PINN. We compare our method with the following
baselines: i) the original PINN which uses a series of fully-
connected and hyperbolic tangent layer, denoted by PINN,
and ii) PINN improved with the residual connection (He et al.
2016), denoted by PINN-R. We apply our DPM with (resp.
without) controlling δ in Eq. (9) to train PINN-R, denoted by
PINN-D2 (resp. PINN-D1).

Evaluation Metrics. For performance evaluation, we col-
lect predicted solutions at testing data instances to construct a
solution vector ũ = [ũ(x1

test, t
1
test; Θ), ũ(x2

test, t
2
test; Θ), . . .]>,

where {(xitest, t
i
test)} is a set of testing samples. xitest is sam-

pled at a uniform spatial mesh grid in Ω and titest is on a uni-
form temporal grid in (Tval, Ttest]. See the full version (Kim
et al. 2020) for how to build testing sets. For the comparison,
we also collect the reference solution vector, denoted u, at the
same testing data instances by solving the same PDEs using
traditional numerical solvers. As evaluation metrics, we use
the standard relative errors in L2-norm, i.e., ‖ũ− u‖2/‖u‖2,
the explained variance score, the max error, and the mean
absolute error, each of which shows a different aspect of per-
formance. Moreover, we report snapshots of the reference
and approximate solutions at certain time indices.

Hyperparameters. For all methods, we test with the fol-
lowing hyperparameter configurations: the number of lay-
ers is {2, 3, 4, 5, 6, 7, 8}, the dimensionality of hidden vec-
tor is {20, 40, 50, 100, 150}. For PINN and PINN-R, we
use α = {1, 10, 100, 1000}, β = {1, 10, 100, 1000} —
we do not test the condition of α = β, except for α =
β = 1. Our DPM uses α = β = 1. The learning rate
is {1e-3, 5e-3, 1e-4, 5e-5} with various standard optimizers
such as Adam, SGD, etc. For the proposed DPM, we test with
ε = {0.001, 0.005, 0.01, 0.0125}, δ = {0.01, 0.1, 1, 10},
and w = {1.001, 1.005, 1.01, 1.025}. We also use the early
stopping technique using the validation error as a criterion.
If there are no improvements in validation loss larger than
1e-5 for the past 50 epochs, we stop the training process. We
choose the model that best performs on the validation set.

Train & Test Set Creation. To build testing sets, xitest is
sampled at a uniform spatial mesh grid in Ω and titest is on

a uniform temporal grid in (Tval, Ttest]. We use a temporal
step size of 0.01, 0.0175, 0.01π

2 , and 0.005 for the viscous
Burgers’ equation, the inviscid Burgers’ equation, the NLS
equation, and the AC equation, respectively. We divide Ω
into a grid of 256, 512, 256, and 256 points for the viscous
Burgers’ equation, the inviscid Burgers’ equation, the NLS
equation, and the AC equation, respectively.

For creating our training sets, we use Nu = 100 initial and
boundary tuples for all the benchmark equations. For Nf , we
use 10K for the viscous and the inviscid Burgers’ equations,
and 20K for the NLS equation and the AC equation.

4.2 Experimental Results
Table 1 summarizes the overall performance for all bench-
mark PDEs obtained by PINN, PINN-R, PINN-D1, and
PINN-D2. PINN-R shows smaller L2-norm errors than PINN.
The proposed PINN-D2 significantly outperforms PINN and
PINN-R in all four benchmark problems for all metrics. For
the viscous Burgers’ equation and the AC equation, PINN-D2
demonstrates 72% and 48% (resp. 72% and 36%) improve-
ments over PINN (resp. PINN-R) in terms of the relative
L2-norm, respectively.

Viscous Burgers’ equation. Fig. 3 shows the reference
solution and predictions made by PINN and the PINN vari-
ants of the viscous Burgers’ equation. In Figs. 3(b)–3(c),
both PINN and PINN-R fail to correctly learn the govern-
ing equation and their prediction accuracy is significantly
degraded as t increases. However, the proposed PINN-D2
shows much more accurate prediction even when t is close
to the end of the time domain. These results explain that
learning a governing equation correctly helps accurate ex-
trapolation. Although PINN and PINN-R are able to learn
the initial and boundary conditions accurately, their extrap-
olation performances are poor because they fail to learn the
governing equation accurately. Figs. 3(e)–3(j) report solution
snapshots at t = {0.83, 0.98} and we observe that the pro-
posed PINN-D2 outperforms the other two PINN methods.
Only PINN-D2 accurately enforces the prediction around
x = 0 in Fig. 3(j). PINN-D1 is comparable to PINN-D2 in
this equation according to Table 1.

Inviscid Burgers’ equation. In this benchmark problem,
we consider the inviscid Burgers’ equation posed on a very
long time domain [0, 35], which is much larger than those of
other benchmark problems and could make the extrapolation
task even more challeging. Fig. 4 reports the results obtained
by the PINN variants along with the reference solution. All
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(a) Reference Solution (b) PINN

(c) PINN-R (d) PINN-D2

(e) PINN (f) PINN-R (g) PINN-D2

(h) PINN (i) PINN-R (j) PINN-D2

Figure 3: Top two rows: the complete reference solution and
predictions of the benchmark viscous Burgers’ equation. The
points marked with × mean initial or boundary points. Bot-
tom: the solution snapshots at t = {0.83, 0.98} obtained via
the extrapolation. In Fig. 3(a), the black vertical lines corre-
spond to Ttrain and Tval, respectively, and in Figs. 3(b)–3(d),
the white vertical lines correspond to time indices, where
we extract solution snapshots. We refer readers to the full
version (Kim et al. 2020) for more snapshots. The meanings
of the vertical lines remain the same in the following figures.

the three methods, PINN-R, PINN-D1, and PINN-D2, are
comparable in this benchmark problem. However, we can
still observe that PINN-D2 produces slightly more accurate
predictions than other methods at x = 0, the boundary con-
dition. The first condition of Eq. (5) accounts for this result:
when Lf is sufficiently small, the update performed by DPM
further decreases Lu to improve the predictions in the initial
and boundary conditions.

Allen–Cahn equation (AC). Fig. 5 reports the reference
solutions of the AC equation and the predictions made by all
the considered PINN variants. The solution snapshots shown
in Figs. 5(e)–5(j) demonstrate that the proposed PNN-D2
produces the most accurate approximations to the reference
solutions. In particular, the approximate solutions obtained
by using PINN-D2 matches very closely with the reference
solutions with the exception on the valley (around x = 0),

(a) Reference Solution (b) PINN

(c) PINN-R (d) PINN-D2

(e) PINN (f) PINN-R (g) PINN-D2

(h) PINN (i) PINN-R (j) PINN-D2

Figure 4: Top two rows: the complete reference solution
and predictions of the benchmark inviscid Burgers’ equation.
The points marked with × mean initial or boundary points.
Bottom: the solution snapshots at t = {28.0875, 34.9125}
obtained via the extrapolation.

where all three methods struggle to make accurate predictions.
Moreover, the approximate solutions of PINN-D2 are almost
symmetric w.r.t. x = 0, whereas the approximate solutions of
the other two methods are significantly non-symmetric and
the accuracy becomes even more degraded as t increases.

Nonlinear Schrödinger equation (NLS). Fig. 6 reports
the reference solution of the NLS equation and the predic-
tions made by all the considered PINN variants. Because the
solution of the NLS equation is a complex-valued, the mag-
nitudes of the reference solution |u(x, t)| and the predictions
|ũ(x, t)| are depicted. The solution snapshots produced by
PINN and PINN-R exhibit errors around x = −1 and x = 1
whereas PINN-D2 is accurate around the region. In particu-
lar, the predictions made by PINN and PINN-R exhibit the
shapes that are very similar to previous time steps’ solution
snapshots, which indicates that the dynamics of the system
is not learned accurately. In contrast, PINN-D2 seems to en-
force the dynamics much better and produce more accurate
predictions.
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(a) Reference Solution (b) PINN

(c) PINN-R (d) PINN-D2

(e) PINN (f) PINN-R (g) PINN-D2

(h) PINN (i) PINN-R (j) PINN-D2

Figure 5: Top two rows: the complete reference solution and
predictions of the Allen–Cahn equation. The points marked
with × mean initial or boundary points. Bottom: the extrapo-
lation solution snapshots at t = {0.815, 0.995}.

4.3 Ablation Study
To show the efficacy of controlling δ in Eq. (9), we compare
PINN-D1 and PINN-D2. In Table 1, PINN-D2 outperforms
PINN-D1 for three benchmark equations. The biggest im-
provement is made in the NLS equation, one of the most
difficult equations to predict, i.e., 0.314 vs. 0.141 in the L2-
norm metric. We note that without controlling δ, PINN-D1
shows worse predictions even than PINN and PINN-R in this
equation.

4.4 Visualization of Training Process
Fig. 7 shows the curves of Lu and Lf with our method in
the benchmark viscous Burgers’ equation. For Lf , we set
ε = 0.001, δ = 0.01, and w = 1.01, which produces the best
extrapolation accuracy. With this setting, DPM immediately
pulls Lf toward the threshold ε = 0.001 as soon as Lf >
0.001. Because our method uses the smallest manipulation
vector, v∗, Lu is also trained properly as training goes on.

4.5 PINN vs. Regression
The task definition of PINN is different from that of the
simple regression learning a solution function u, where the
reference solutions of u(x, t) are collected not only for ini-
tial and boundary conditions but also for other (x, t) pairs.

(a) Reference Solution (b) PINN

(c) PINN-R (d) PINN-D2

(e) PINN (f) PINN-R (g) PINN-D2

(h) PINN (i) PINN-R (j) PINN-D2

Figure 6: Top two rows: the complete reference solution and
predictions of the nonlinear Schrödinger equation. The points
marked with × mean initial or boundary points. Bottom: the
extrapolation solution snapshots at t = {1.2802, 1.5551}.

In general, this approach requires non-trivial efforts to run
computer simulations and collect such reference solutions.
Once we collect them, one advantage is learning u becomes
a simple regression task without involving Lf . However, a
critical disadvantage is that governing equations cannot be
explicitly imposed during the training process.

Although our task is not to fit a regression model to the
reference solutions but to learn physical dynamics, we com-
pare our proposed method with the regression-based ap-
proach to better understand our method. To train the re-
gression model, we use Lu with an augmented training
set
{(

(xiu, t
i
u), u(xiu, t

i
u)
)}Nu

i=1
∪
{(

(xir, t
i
r), u(xir, t

i
r)
)}Nr

i=1
,

where the first set consists of initial and boundary training
samples, (xir, t

i
r) are sampled uniformly in Ω and [0, Ttrain],

and we set Nr = Nf for fairness. We run external software
to calculate u(xir, t

i
r), which is not needed for u(xiu, t

i
u) be-

cause initial and boundary conditions are known a priori.
We train two regression models: one based on a series of

fully connected (FC) layers and the other based on residual
connections. In Table 2, they are denoted by FC and FC-R,
respectively. We note that the neural network architecture of
FC (resp. FC-R) is the same as that of PINN (resp. PINN-R)
but they are trained in the supervised manner described earlier.
We use the same set of hyperparameters for the number of
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PDE
L2-norm (↓) Explained variance score (↑) Max error (↓) Mean absolute error (↓)

FC FC-R PINN-D1 PINN-D2 FC FC-R PINN-D1 PINN-D2 FC FC-R PINN-D1 PINN-D2 FC FC-R PINN-D1 PINN-D2
Vis. Burgers 0.352 0.301 0.112 0.092 0.896 0.915 0.988 0.991 0.718 0.598 0.545 0.333 0.119 0.108 0.026 0.021
Inv. Burgers 0.114 0.133 0.083 0.090 0.060 -0.181 0.454 0.621 3.245 3.301 1.534 2.036 0.255 0.332 0.277 0.315
Allen–Cahn 0.324 0.313 0.246 0.182 0.873 0.766 0.939 0.967 1.512 1.190 1.096 0.8366 0.207 0.336 0.129 0.094
Schrödinger 0.375 0.235 0.314 0.141 -3.438 -3.174 -4.973 -3.257 4.078 4.3165 4.945 3.829 2.072 1.868 0.868 0.896

Table 2: The extrapolation accuracy in terms of the relative errors in L2-norm, the Pearson correlation coefficient, and R2 in
various PDEs. Large (resp. small) values are preferred for ↑ (resp. ↓).

(a) Lu curve (b) Lf curve

Figure 7: Example training curves of Lu and Lf of PINN-D2
(ε = 0.001, δ = 0.01, and w = 1.01) for the benchmark
viscous Burgers’ equation

layers, the dimensionality of hidden vector, and so on, and
choose the best hyperparameter using the validation set. Note
that this is exactly the same environment as the experiments
shown in the main text.

Our proposed PINN-D1 and D2 outperform the regression-
based models for all benchmark problems by large margins in
Table 2. In Fig. 8, we show the extrapolation results of the two
regression models for the worst and the best performing cases
in terms of human visual perception. For the AC equation
(the top row in the figure), it is hard to say that they learned
the physical dynamics. In particular, FC-R shows the worst
extrapolation in Fig. 8(f). On the other hand, FC-R is suc-
cessful for the NLS equation (the bottom row in the figure),
whereas FC fails to extrapolate the both ends of the curve.
Therefore, we can say that the regression-based approach
shows unstable performance and is not “physics-informed.”

5 Conclusions
In this work, we presented a novel training method, dy-
namic pulling method (DPM), for obtaining better perform-
ing physics-informed neural networks in extrapolation. The
proposed DPM enables PINN to learn dynamics of the gov-
erning equations accurately. In the numerical experiments,
we first demonstrated that the original PINN performs poorly
on extrapolation tasks and empirically analyzed PINN in
detail. Then, we demonstrated that the proposed DPM signif-
icantly outperforms PINN and its residual-block variant (up
to 72% in comparison with PINN and PINN-R) in various
metrics. As an ablation study, we compared PINN-D1 and
PINN-D2, where PINN-D2 overwhelms PINN-D1 in three
benchmark problems. Finally, we explained how DPM be-
haves by illustrating example training loss curves. All codes
and data will be released upon publication.

(a) FC (b) FC (c) FC

(d) FC-R (e) FC-R (f) FC-R

(g) FC (h) FC (i) FC

(j) FC-R (k) FC-R (l) FC-R

Figure 8: We visualize the results by regression models. As
shown, they are inferior to our PINN-D2 in Figs. 5 and 6.
Top two rows: the regression extrapolation snapshots for the
Allen–Cahn equation. Bottom: the regression extrapolation
snapshots for the nonlinear Schrödinger equation.
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