
A Flexible Framework for Communication-Efficient Machine Learning

Sarit Khirirat 1, Sindri Magnússon 2, Arda Aytekin 3, Mikael Johansson 1

1 Division of Decision and Control Systems, KTH Royal Institute of Technology, Sweden;
2 Department of Computer and System Science, Stockholm University, Sweden; 3 Ericsson, Sweden

sarit@kth.se, sindri.magnusson@dsv.su.se, arda@aytekin.biz, mikaelj@kth.se

Abstract

With the increasing scale of machine learning tasks, it has
become essential to reduce the communication between com-
puting nodes. Early work on gradient compression focused on
the bottleneck between CPUs and GPUs, but communication-
efficiency is now needed in a variety of different sys-
tem architectures, from high-performance clusters to energy-
constrained IoT devices. In the current practice, compression
levels are typically chosen before training and settings that
work well for one task may be vastly sub-optimal for another
dataset on another architecture. In this paper, we propose a
flexible framework which adapts the compression level to the
true gradient at each iteration, maximizing the improvement
in the objective function that is achieved per communicated
bit. Our framework is easy to adapt from one technology to
the next by modeling how the communication cost depends
on the compression level for the specific technology. Theo-
retical results and practical experiments indicate that the auto-
matic tuning strategies significantly increase communication
efficiency on several state-of-the-art compression schemes.

Introduction
The vast size of modern machine learning is shifting the fo-
cus on optimization and learning algorithms from central-
ized to distributed architectures. State-of-the-art models are
now typically trained using multiple CPUs or GPUs, and
data is increasingly being collected and processed in net-
works of resource-constrained devices, e.g., IoT devices,
smart phones, or wireless sensors. This trend is shifting the
bottleneck from the computation to the communication. The
shift is particularly striking when learning is performed on
energy-constrained devices that communicate over shared
wireless channels. Indeed, distributed training is often com-
munication bound since the associated optimization algo-
rithms hinge on frequent transmissions of gradients between
nodes. These gradients are typically huge: it is not uncom-
mon for state-of-the-art models to have millions of param-
eters. To get a sense of the corresponding communication
cost, transmitting a single gradient or stochastic gradient us-
ing single precision (32 bits per entry) requires 40 MB for a
model with 10 million parameters. If we use 4G communica-
tions, this means that we can expect to transmit roughly one

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

gradient per second. The huge communication load easily
overburdens training even on loosely interconnected clus-
ters and may render federated learning on some IoT or edge
devices infeasible.

To alleviate the communication bottleneck, much re-
cent research has focused on compressed gradient methods.
These methods achieve communication efficiency by using
only the most informative parts of the gradients at each it-
eration. We may, for example, sparsify the gradient, i.e. use
only the most significant entries at each iteration and set the
rest to be zero (Alistarh et al. 2017, 2018; Stich, Cordon-
nier, and Jaggi 2018; Wen et al. 2017; Wang et al. 2018;
Khirirat, Johansson, and Alistarh 2018; Wangni et al. 2018).
We may also quantize the gradient elements or do some
mix of quantization and sparsification (Alistarh et al. 2017;
Khirirat, Feyzmahdavian, and Johansson 2018; Magnússon
et al. 2017; Wangni et al. 2018; Zhu et al. 2016; Rabbat
and Nowak 2005; Vogels, Karimireddy, and Jaggi 2020;
Magnússon, Shokri-Ghadikolaei, and Li 2020).

Several of the cited papers have demonstrated huge com-
munication improvements for specific training problems.
However, these communication benefits are often realized
after a careful tuning of the compression level before train-
ing, e.g. the number of elements to keep when sparsifying
the gradient. We cannot expect there to be a universally good
compressor that works well on all problems, as shown by the
worst-case communication complexity of any optimization
methods in (Tsitsiklis and Luo 1987). There is generally a
delicate problem-specific balance between compressing too
much or too little. Trying to strike the right balance by hyper-
parameter tuning is expensive and the resulting tuning pa-
rameters will be problem-specific. Moreover, most existing
compression schemes are agnostic of the disparate commu-
nication costs for different technologies. In contrast, our pro-
posed on-line mechanism adapts the compression level to
each gradient information and each platform-specific com-
munication cost.

Contributions: We consider deterministic and stochastic
gradient methods in distributed settings where compressed
gradients are communicated at every iteration. We propose
a flexible framework for an on-line adaption of the gradi-
ent compression level to the problem data and communi-
cation technology used. This Communication-aware Adap-
tive Tuning (CAT) optimally adjusts the compression of

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

8101

each communicated gradient by maximizing the ratio be-
tween the guaranteed objective function improvement and
the communication cost. The communication cost can be
easily adjusted to the technology used, either by analytical
models of the communication protocols or through empiri-
cal measurements. We illustrate these ideas on three state-
of-the-art compression schemes: a) sparsification, b) sparsi-
fication with quantization, and c) stochastic sparsification.
In all cases, we first derive descent lemmas specific to the
compression, relating the function improvement to the tun-
ing parameter. Using these results we can find the tuning that
optimizes the communication efficiency measured in the de-
scent direction relative to the given communication costs.
Even though most of our theoretical results are for a single
node case, we illustrate the efficiency of CAT to all three
compression schemes in large-scale experiments in multi-
node settings. For the stochastic sparsification we also prove
convergence for stochastic gradient methods in the multi-
node settings.

Related work on federated learning: Another approach
to improve communication efficiency is to increase local
computations in hope of reducing the number of iterations,
and thereby the number of communication rounds. This is
typically done by letting the nodes perform multiple gradient
or proximal gradient updates locally before communicating
their updated parameters, see, e.g., (Li et al. 2020; Khaled,
Mishchenko, and Richtárik 2019; Stich 2019; Yu, Yang, and
Zhu 2019; Wang and Joshi 2018),(Li et al. 2018). By adapt-
ing the number of local updates within a communication
time interval (Wang and Joshi 2019), it is possible to find a
good balance between the communication savings and sub-
optimality guarantees of the solution. In contrast, we focus
on adaptive compression, where our CAT framework strikes
this balance by adjusting the compression level online, e.g.
by optimizing the transmitted bits per iteration. In general,
these two adaptive strategies can be combined to obtain fur-
ther savings without compromising the convergence guaran-
tees. In other words, CAT can be seen as a complement to
existing adaptive schemes, addressing another dimension of
communication efficiency.

Notation: We let N, N0, and R be the set of natural num-
bers, the set of natural numbers including zero, and the set
of real numbers, respectively. The set {a, a + 1, . . . , b} is
denoted by [a, b] where a, b ∈ N0 and a ≤ b. For x ∈ Rd,
‖x‖ is the Euclidean norm and ‖x‖q is the `q norm with
q ∈ (0,∞]. A continuously differentiable function F :
Rd → R is L-smooth if ‖∇F (x) − ∇F (y)‖ ≤ L‖x − y‖
for all x, y ∈ Rd. We say that F is µ-strongly convex if
F (y) ≥ F (x) + 〈∇F (x), y − x〉+ (µ/2)‖y − x‖2.

Background
The main focus of this paper is empirical risk minimization

minimize
x∈Rd

F (x) =
1

|D|
∑

z∈D
L(x; z)

where D is a set of data points, x is the model parameters
and L(·) is a loss function.

Gradient Compression
Consider the standard compressed gradient iteration

xi+1 = xi − γiQT (∇F (xi)). (1)
Here, QT (·) is a compression operator and T is a parameter
that controls the compression level. The goal is to achieve
communication efficiency by using only the most significant
information. One of the simplest compression schemes is to
sparsify the gradient, i.e. we let

[QT (g)]j =

{
gj if j ∈ IT (g)

0 otherwise.
(2)

where IT (g) is the index set for the T components of g with
largest magnitude. The following combination of sparsifica-
tion and quantization has been shown to give good practical
performance (Alistarh et al. 2017):

[QT (g)]j =

{||g||sign(gj) if i ∈ IT (g)

0 otherwise.
(3)

In this case, we communicate only the gradient magnitude
and the sparsity pattern of the gradient. It is sometimes
advantageous to use stochastic sparsification. Rather than
sending the top T entries of each gradient, we then send T
components on average. We can achieve this by setting

[QT,p (g)]j = (gj/pj)ξj , (4)

where ξj ∼ Bernouli(pj) and T =
∑d
j=1 pj . Ideally, we

would like pj to represent the magnitude of gj , so that pj
should be large if |gj | is large relative to the other entries.
There are many heuristic methods to choose pj . For exam-
ple, if we set pj = |gj |/‖g‖q with q = 2, q = ∞, and
q ∈ (0,∞], then we get, respectively, the stochastic sparsifi-
cations in (Alistarh et al. 2017) with s = 1, the TernGrad in
(Wen et al. 2017), and `q-quantization in (Wang et al. 2018).
We can also optimize p, see (Wang et al. 2018) and the sec-
tion titled “Dynamic Sparsification” for details.

Experimental results have shown huge communication
savings by compressed gradient methods in large-scale ma-
chine learning (Shi et al. 2019a,b). Nevertheless, we can
easily create pedagogical examples where they are no more
communication efficient than full gradient descent. For spar-
sification, consider the function F (x) = ||x||2/2. Then, gra-
dient descent with the step-size γ = 1 converges in one it-
eration, and thus communicates only d floating points (one
for each element of ∇F (x) ∈ Rd) to reach any ε-accuracy.
On the other hand, T -sparsified gradient descent (where T
divides d) needs d/T iterations, which implies d communi-
cated floating points in total. In fact, the sparsified method
is even worse since it requires additional d log(d) communi-
cated bits to indicate the sparsity pattern.

This example shows that the benefits of sparsification can-
not be seen on worst-case problems, and that traditional
worst-case analysis (e.g. Khirirat, Johansson, and Alistarh
(2018)) is unable to guarantee the improved communication
complexity. Rather, sparsification is useful for exploiting the
structure that appears in real-world problems. The key in ex-
ploiting this structure is to choose T properly at each itera-
tion. In this paper we describe how to choose T dynamically
to optimize the communication efficiency of sparsification.

8102

Communication Cost: Bits, Packets, Energy and
Beyond
The compressors discussed above have a tuning parameter
T , which controls the sparsity budget of compressed gra-
dient descent. Our goal is to tune T adaptively to optimize
the communication efficiency. To explain how this is done,
we first need to discuss how to model the communication
cost. Let C(T) denote the communication cost per iteration
as a function of T , e.g., the total number of transmitted bits.
Then, C(T) consists of payload (actual data) and communi-
cation overhead. The payload is the number of bits required
to communicate the compressed gradient. For the sparsifica-
tion in Eq. (2) and the quantization in Eq. (3), the payload
consumes, respectively,

P S(T) = T × (dlog2(d)e+ FPP) bits and

P SQ(T) = FPP + T × dlog2(d)e bits,
(5)

where the log2(d) factor comes from indicating T indices
in the d-dimensional gradient vector. Here FPP is our float-
ing point precision, e.g., FPP = 32 or FPP = 64 for, re-
spectively, single or double precision floating-points. Our
simplest communication model accounts only for the pay-
load, i.e., C(T) = P (T). We call this the payload model. In
real-world networks, however, each communication also in-
cludes the overhead and set-up costs. A more realistic model
is therefore affine C(T) = c1P (T) + c0, where P (T) is the
payload. Here c0 is the communication overhead, while c1
is the cost of transmitting a single payload byte. For exam-
ple, if we just count transmitted bits (c1 = 1), then a single
UDP packet transmitted over the Ethernet requires an over-
head of c0 = 54 × 8 bits and can have a payload of up
to 1472 bytes. In the wireless standard IEEE 802.15.4, the
overhead ranges from 23-82 bytes, leaving 51 − 110 bytes
of payload before the maximum packet size of 133 bytes is
reached (Kozłowski and Sosnowski 2017). Another possi-
bility is to use a packet model, i.e. to have a fixed cost per
packet

C(T) = c1 × dP (T)/Pmaxe+ c0, (6)
where Pmax is the number of payload bits per packet. The
term dP (T)/Pmaxe counts the number of packets required
to send the P (T) payload bits, c1 is the cost per packet, and
c0 is the cost of initiating the communication. These are just
two examples; ideally, C(T) should be tailored to the spe-
cific communication standard used, and possibly even esti-
mated from system measurements.

Key Idea: Communication-Aware Adaptive Tuning
(CAT)
When communicating the compressed gradients, we would
like to use each bit as efficiently as possible. In optimization
terms, we would like the objective function improvement for
each communicated bit to be as large as possible. In other
words, we want to maximize the ratio

Efficiency(T) =
Improvement(T)

C(T)
, (7)

where Improvement(T) is the improvement in the ob-
jective function when we use T -sparsification as the

given compressor. We will demonstrate how the value of
Improvement(T) can be obtained from novel descent
lemmas and derive dynamic sparsification policies which, at
each iteration, find the T that optimizes Efficiency(T).
We derive optimal T -values for the three compressors and
two communication models introduced above. However, the
idea is general and can be used to improve the communica-
tion efficiency for many other compression algorithms.

We begin by describing how our CAT framework can be
applied to sparsified gradient methods. To this end, the fol-
lowing lemma introduces a useful measure α(T) of function
value improvement:
Lemma 1. Suppose that F : Rd → R is (possibly non-
convex) L-smooth and γ = 1/L. Then for any x, x+ ∈ Rd
with x+ = x− γQT (∇F (x)) we have

F (x+) ≤ F (x)− α(T)

2L
||∇F (x)||2,

where α(T) = ||QT (∇F (x))||2/||∇F (x)||2. Moreover,
there are L-smooth functions F (·) for which the inequality
is tight for every T = 1, . . . , d.

This lemma is in the category of descent lemmas, which
are standard tools to study the convergence for convex and
non-convex functions. In fact, Lemma 1 generalizes the stan-
dard descent lemma for L-smooth functions (see, e.g., in
Proposition A.24 in (Bertsekas 1999)). In particular, if the
gradient∇F (x) is T -sparse (or T = d) then Lemma 1 gives
the standard descent

F (x+) ≤ F (x)− 1

2L
||∇F (x)||2.

In the next subsection, we will use Lemma 1 to derive
novel convergence rate bounds for sparsified gradient meth-
ods, extending many standard results for gradient descent.
First, however, we will use Improvement(T) = α(T) to
define the following CAT mechanism for dynamic sparsifi-
cation:

Step 1: T i = argmax
T∈[1,d]

αi(T)

C(T)
, (8)

Step 2: xi+1 = xi − 1

L
QT i(∇F (xi)). (9)

The algorithm first finds the sparsity budget T i that opti-
mizes the communication efficiency defined in (7), and then
performs a standard sparsification using this value of T i.
Since ‖∇F (x)‖2/2L is independent of T , we can maximize
efficiency by maximizing α(T)/C(T).

To find T i at each iteration we need to solve the maxi-
mization problem in Eq. (9). This problem has one dimen-
sion, and even a brute force search would be feasible in many
cases. As the next two results show, however, the problem
has a favourable structure that allows the maximization to
be solved very efficiently. The first result demonstrates that
the descent always increases with T and is bounded.
Lemma 2. For g ∈ Rd the function α(T) =
||QT (g)||2/||g||2 is increasing and concave when extended
to the continuous interval [0, d]. Moreover, α(T) ≥ T/d

8103

for all T ∈ {0, . . . d} and there exists an L-smooth func-
tion such that ||QT (∇f(x))||2/||∇f(x)||2 = T/d for all
x ∈ Rd.

Lemma 2 results in many consequences in the next sec-
tion, but first we make another observation:
Proposition 1. Let α(T) be increasing and concave. If
C(T) = c̃1T + c0, then α(T)/C(T) is quasi-concave
and has a unique maximum on [0, d]. When C(T) =
c̃1dT/τmaxe + c0, on the other hand, α(T)/C(T) attains
its maximum for a T which is an integer multiple of τmax.

This proposition shows that the optimization in Eq. (9) is
easy to solve. For the affine communication model, one can
simply sort the elements in the decreasing order, initialize
T = 1 and increase T until α(T)/C(T) decreases. In the
packet model, the search for the optimal T is even more ef-
ficient, as one can increase T in steps of τmax.

Dynamic Sparsification Benefits in Theory and
Practice
Although the CAT framework applies to general commu-
nication costs, it is instructive to see what our results say
about the communication complexity, i.e., the number of bits
that needs to be communicated to guarantee that a solution
is found within an ε-accuracy. Table 1 compares the itera-
tion complexity of Gradient Descent (GD) in row 1 and T -
Sparsified Gradient Descent (T -SGD) in rows 2 and 3 with
constant T for strongly-convex, convex, and non-convex
problems. The results for gradient descent are well-known
and found in, e.g., (Nesterov 2018), while the worst-case
analysis is from (Khirirat, Johansson, and Alistarh 2018).
The results for T -sparsified gradient descent are derived us-
ing Lemma 1 instead of the standard descent lemma; see
proofs in the supplementary materials.

Comparing rows 1 and 3 in the table, we see that the
worst-case analysis does not guarantee any improvements in
the number of communicated floating points. Although T -
SGD only communicates T out of d gradient entries in each
round, we need to perform d/T times more iterations with
T -SGD than with SGD, so both of these approaches will
need to communicate the same number of floating points. In
fact, T -SGD will be worse in terms of communicated bits
since it requires T dlog2(d)e additional bits per iteration to
indicate the sparsity pattern.

Let us now turn our attention to our novel analysis shown
in row 2 of Table 1. Here, the parameter ᾱT is a lower bound
on αi(T) over every iteration, that is

αi(T) ≥ ᾱT for all i.

Unfortunately, ᾱT is not useful for algorithm development:
we know from Lemma 2 that it can be as low as T/d, and it
is not easy to compute a tight data-dependent bound off-line,
since ᾱT depends on the iterates produced by the algorithm.
However, ᾱT explains why gradient sparsification is com-
munication efficient. In practice, only few top entries cover
the majority of the gradient energy, so αi(T) grows rapidly
for small values of T and is much larger than T/d.

To illustrate the benefits of sparsification, let us look at
the concrete example of logistic regression on the standard

10−3 10−2 10−1 100 101 102
10−5

10−4

10−3

10−2

10−1

100

T/d (%)

ᾱ
T

ᾱT T/d SpeedUp(T)

10−3 10−2 10−1 100 101 102

100

101

102

T/d (%)

S
p
e
e
d
U
p
(T

)

(a) ᾱT and speedup

10−3 10−2 10−1 100 101 102

105

106

T/d (%)

C
(T

)/
α
(T

)

GD: payload GD: packet
SG: payload SG: packet

(b) Hypothetical: Communications to reach ε-
accuracy

10−3 10−2 10−1 100 101 102

107

108

109

T/d (%)

b
it
s

GD: payload GD: packet
SG: payload SG: packet

CAT SG: payload CAT SG: packet

(c) Experiments: Communications (in bits) to reach ε-
accuracy

Figure 1: CAT sparsified gradient descent on the RCV1 data
set.

8104

DETERMINISTIC SPARSIFICATION STOCHASTIC SPARSIFICATION

UPPER-BOUND µ-CONVEX CONVEX NONCONVEX µ-CONVEX CONVEX NONCONVEX

NO-COMPRESSION ASC
ε AC

ε ANC
ε BSC

ε BC
ε BNC

ε

DATA-DEPENDENT 1
ᾱT

·ASC
ε

1
ᾱT

·AC
ε

1
ᾱT

·ANC
ε

1
ω̄T

·BSC
ε

1
ω̄T

·BC
ε

1
ω̄T

·BNC
ε

WORST-CASE d
T
·ASC

ε
d
T
·AC

ε
d
T
·ANC

ε
d
T
·BSC

ε
d
T
·BC

ε
d
T
·BNC

ε

Table 1: Iteration complexity for T -sparsified (stochastic) gradient descent. We prove these results and analogous results for
S+Q compression in the Appendix. For Deterministic Sparsification,ASC

ε ,AC
ε , andANC

ε are standard upper bounds for gradient
descent on iteration counts needed to achieve ε-accuracy for, respectively, strongly-convex, convex, and non-convex problems.
In particular, ASC

ε = κ log(ε0/ε), AC
ε = 2LR2/ε, ANC

ε = 2Lε0/ε, where κ = L/µ, ε0 = F (x0) − F ?, and R is a constant
such that ||xi − x?|| ≤ R (for some optimizer x?). For Stochastic Sparsification, BSC

ε , BC
ε , and BNC

ε are standard upper
bounds for multi-node stochastic gradient descent on iteration counts needed to achieve ε-accuracy (in expected value) for,
respectively, strongly-convex, convex, and non-convex problems. In particular, BSC

ε = 2(1 + 2σ2/(µεL))(ASC
ε + δ), BC

ε =
2(1 + 2σ2/(εL))AC

ε , and BNC
ε = 2(1 + 2σ2/ε)ANC

ε , where δ = κ log(2) and σ2 is a variance bound of stochastic gradients. The
ε-accuracy is measured in E[F (x)− F (x?)] for convex problems, and in E‖∇F (x)‖2 otherwise.

benchmark data set RCV1 (with d = 47, 236 and 697, 641
data points). Figure 1a depicts ᾱT computed after running
1000 iterations of gradient descent and compares it to the
worst case bound T/d. The results show a dramatic differ-
ence between these two measures. We quantify this differ-
ence by the ratio

SpeedUp(T) =
d

T

/
1

ᾱT
=

ᾱT
T/d

.

Note that this measure is the ratio between rows 2 and 3
in Table 1, and hence tells us the hypothetical speedup by
sparsification, i.e., the ratio between the number of commu-
nicated floating points needed by GD and T -SGD to reach
ε-accuracy. The figure shows a dramatic speedup; for small
values of T , the speed-up is of three orders of magnitude (we
confirm this in experiments below).

Interestingly, the speedup decreases with T and is maxi-
mized at T = 1. This happens because doubling T doubles
the number of communicated bits, while the additional de-
scent is often less significant. Thus, an increase in T worsens
communication efficiency. This suggests that we should al-
ways take T = 1 if the communication efficiency in terms of
bits is optimized without considering overhead. In the con-
text of the dynamic algorithm in Eq. (9), this leads to the
following result:

Proposition 2. Consider the dynamic sparsified gradient al-
gorithm in Eq. (9) with C(T) = P S(T) given by Eq. (5).
Then, the maximization problem (9) has the solution T i = 1
for all i.

Figures 1b and 1c depict, respectively, the hypothetical
and true values of the total number of bits needed to reach
an ε-accuracy for different communication models. In par-
ticular, Figure 1b depicts the ratio C(T)/ᾱT (compare with
Table 1) and Figure 1c depicts the experimental results of
running T -SGD for different values of T . We consider: a)
the payload model with C(T) = P S(T) (dashed lines) and
b) the packet model in Eq. (6) with c1 = 128 bytes, c0 = 64
bytes and Pmax = 128 bytes (solid lines). In both cases,

the floating point precision is FPP = 64. We compare the
results with GD (blue lines) with payload d × FPP bits per
iteration. As expected, if we ignore overheads, then T = 1 is
optimal and the improvement compared to GD are of three
orders of magnitude. For the packet model, there is a deli-
cate balance between choosing T too small and too big. For
general communication models it is difficult to find the right
value of T a priori, and the costs of choosing a bad T can be
of many orders of magnitude. To find a good T we could do
a hyper-parameter search, e.g. by first estimating ᾱT from
data and then by using it to find the optimal T . However,
this will be expensive and moreover ᾱT might not be a good
estimate of αi(T) we get at each iteration. In contrast, our
CAT framework finds the optimal T at each iteration without
any hyper-parameter optimization. In Figure 1c we show the
number of communicated bits needed to reach ε-accuracy
with our algorithm. The results show that for both commu-
nication models, our algorithm achieves the same communi-
cation efficiency as if we would choose the optimal T .

Dynamic Sparsification + Quantization
We now describe how our CAT framework can improve the
communication efficiency of compressed gradient methods
that use sparsification combined with quantization, i.e., us-
ing QT (·) in Equation (3). As before, our goal is to choose
T i dynamically by maximizing the communication effi-
ciency per iteration defined in (7). This selection can be per-
formed based on the following descent lemma.
Lemma 3. Suppose that F : Rd → R is (possibly non-
convex) L-smooth. Then for any x, x+ ∈ Rd with x+ =
x− γQT (∇F (x)) where QT (·) is as defined in Eq. (3) and
γ =

√
β(T)/(

√
TL) then

F (x+) ≤ F (x)− β(T)

2L
||∇F (x)||2,

where β(T) = 〈∇F (x), QT (∇F (x))〉2/
(
T · ‖∇F (x)‖4

)
.

Since this compression operator affects the descent
differently from sparsification, this lemma differs from

8105

Lemma 1, e.g, in terms of the step-size and descent
measure (β(T) vs. α(T)). Unlike α(T) in Lemma 1,
β(T) does not converge to 1 as T goes to d. In fact,
β(T) is not even an increasing function, and QT (g)
does not converge to g when T increases. Nevertheless,
〈∇F (x), QT (∇F (x))〉2 is non-negative, increasing and
concave. Under the affine communication model, T ×
C(T) = c̃0T

2 + c1T is non-negative and convex, which
implies that β(T)/C(T) is quasi-concave. The optimal T
can then be efficiently found similarly to what was done for
the CAT-sparsification. Therefore, Lemma 3 allows us to ap-
ply the CAT framework for this compression. In particular,
with βi(T)=〈∇F (xi), QT (∇F (xi))〉2/

(
T · ‖∇F (xi)‖42

)
we get the algorithm

Step 1: T i = argmax
T∈[1,d]

βi(T)

C(T)
(10)

Step 2: γi=
√
βi(T i)√
T iL

(11)

Step 3: xi+1=xi−γiQT i(∇F (xi)). (12)

The algorithm optimizes T i, based on each gradient and the
actual communication cost. Note that Alistarh et al. (2017)
proposes a dynamic mechanism that chooses T i so that
IT i(gi) is the smallest subset such that

∑
j∈ITi (gi)

|gij | ≥
‖gi‖. However, this heuristic has no clear connection to the
descent or consideration for communication costs. Our ex-
periments show that our framework outperforms this heuris-
tic in both running time and communication efficiency.

We compared CAT to the dynamic tuning introduced
in (Alistarh et al. 2017). In Figure 2, algorithms with both
tuning rules are comparable if we only account for the pay-
load in Equation (5). However, the heuristic rule in (Alistarh
et al. 2017) is agnostic to the actual communication model
C(T) in Equation (6) with c1 = 128 bytes, c0 = 64 bytes
and Pmax = 128 bytes. The blue lines show that the CAT
is roughly two times more communication efficient than the
dynamic tuning rule in (Alistarh et al. 2017) for the packet
communication model.

Dynamic Stochastic Sparsification: Stochastic
Gradient & Multiple Nodes

We finally illustrate how the CAT framework can improve
the communication efficiency of stochastic sparsification.
Our goal is to choose T i and pi dynamically for the stochas-
tic sparsification in Eq. (4) to maximize the communication
efficiency per iteration. To this end, we need the following
descent lemma, similarly to the ones we proved for deter-
ministic sparsifications in the last two sections.
Lemma 4. Suppose that F : Rd → R is (possibly non-
convex) L-smooth. Then for any x, x+ ∈ Rd with x+ =
x−γQT,p(∇F (x)) where QT,p(·) is defined in (4) and γ =
ωp(T)/L we have

EF (x+) ≤ EF (x)− ωp(T)

2L
E||∇F (x)||2,

where ωp(T) = ||∇F (x)||2/E||QT,p(∇F (x))||2.

0 0.5 1 1.5 2

·107

0.4

0.6

0.8

1

Communications (bits)

(F
(x

i)
−
F

?
)/
(F

(x
0
)
−
F

?
)

Alistarh S+Q: payload Alistarh S+Q: packet
CAT S+Q: payload CAT S+Q: packet

Figure 2: CAT sparsification + quantization on the RCV1
data set.

Similarly as before, we optimize the descent and the com-
munication efficiency by maximizing, respectively, ωp(T)
and ωp(T)/C(T). For a given T , the p? minimizing ωp(T)
can be found efficiently, see (Wang et al. 2018) and our dis-
cussion in the supplementary materials. In this paper we al-
ways use p? and omit p in QT (·) and ω(T). We can now
use our CAT framework to optimize the communication effi-
ciency. If we set ωi(T)=||∇F (xi)||2/E||QT,p(∇F (xi))||2
we get the dynamic algorithm:

Step 1: T i = argmax
B∈[1,d]

ωi(T)

C(T)
(13)

Step 2: γi =
ωi(T i)

L
(14)

Step 3: xi+1 = xi − γiQT i(∇F (xi)). (15)

This algorithm can maximize communication efficiency by
finding the optimal sparsity budget T to the one-dimensional
problem. This can be solved efficiently since the sparsifica-
tion parameter ω(T) has properties that are similar to α(T)
for deterministic sparsification. Like Lemma 2 for determin-
istic sparsification, the following result shows that ω(T) is
increasing with the budget T ∈ [1, d] and is lower-bounded
by T/d.
Lemma 5. For any vector g ∈ Rd the function ω(T) =
‖g‖2/‖QT,p(g)‖2 is increasing over T ∈ [1, d]. Moreover,
ω(T) ≥ T/d for all T ∈ [1, d], where we obtain the equality
when pj = T/d for all j.

This lemma leads to many consequences for ω(T), analo-
gous to α(T). For instance, by following proof arguments
in Proposition 1, ω(T)/C(T) attains its maximum for a
T which is an integer multiple of τmax when C(T) =
c̃1dT/τmaxe+ c0.

Furthermore, stochastic sparsification has some favorable
properties that allow us to generalize our theoretical results
to stochastic gradient methods and to multi-node settings.
Suppose that we have n nodes that wish to solve the min-
imization problem with F (x) = (1/n)

∑n
j=1 fj(x) where

8106

101 103 105 107
100

101

102

103

∑
k C(T (i))

F
(x

i)
Single Node, Communication

0 1 2 3 ·105100

101

102

103

Time (sec)

F
(x

i)

Single Node, Convergence

0 1 2 3 ·109
10−3

10−2

10−1

100

Communications (bits)

F
(x

i)
−

F
?

Multi Node, Convergence

GD Alistarh S+Q CAT S+Q CAT SG CAT SS

Figure 3: Performance of CAT frameworks on three compressors for solving logistic regression problems. We used the URL
data set in the single-node (one master/one worker) architecture and RCV1 in the multi-node (one master/four worker) setting.

fj(·) is kept by node j. Then, we may solve the problem by
distributed compressed gradient descent

xi+1 = xi − γ 1

n

n∑

j=1

QT i
j

(
gj(x

i; ξij)
)
, (16)

where Q(·) is the stochastic sparsifier and gj(x; ξj) is a
stochastic gradient at x. We assume that gj(x; ξj) is un-
biased and satisfies a bounded variance assumption, i.e.
Eξgj(x; ξj) = ∇fj(x) and Eξ‖gj(x; ξj)−∇F (x)‖2 ≤ σ2.
The expectation is with respect to a local data distribution at
node j. These conditions are standard to analyze randomized
first-order algorithms in machine learning (Feyzmahdavian,
Aytekin, and Johansson 2016; Lian et al. 2015).

We can derive a descent lemma for Algorithm (16) simi-
larly as Lemma 4 for the single-node sparsification method
(see Theorem 3 in the Appendix). This means that we easily
prove similar data-dependent convergence results as we did
for deterministic sparsification in Table 1. To illustrate this,
suppose that for a given T there is ω̄T satisfying ωij(T) ≥
ω̄T where ωij(T) = ||∇Fj(xi)||2/E||QT (∇Fj(xi))||2.
Then, the iteration complexity of Algorithm (16) is as given
in the right part of Table 1. The parameter ω̄T captures
the sparsification gain, similarly as ᾱT did for determinis-
tic sparsification. In the worst case there is no communica-
tion improvement of sparsification compared to sending full
gradients, but when ω̄T is large the communication improve-
ment can be significant.

Experimental Results
Experiment 1 (single node). We evaluate the performance
of our CAT framework for dynamic sparsification and quan-
tization (S+Q) in the single-master, single-worker setup on
the URL data set with 2.4 million data points and 3.2 mil-
lion features. The master node, located 500 km away from
the worker node, is responsible for maintaining the deci-
sion variables based on the gradient information received
from the worker node. The nodes communicate with each
other over a 1000 Mbit Internet connection using the ZMQ

library. We implemented vanilla gradient descent (GD), Al-
istarh’s S+Q (Alistarh et al. 2017) and CAT- S+Q using the
C++ library POLO (Aytekin, Biel, and Johansson 2018). We
first set FPP = 32 and measure the communication cost in
a wall-clock time. After obtaining a linear fit to the mea-
sured communication cost (see the supplementary materials
for details), we ran 30, 000 iterations and with step-size ac-
cording to Lemma 3. Figure 3 shows the loss improvement
with respect to the total communication cost (leftmost) and
wall-clock time (middle). We observe that CAT S+Q outper-
forms GD and Alistarh’s S+Q up to two orders and one order
of magnitude, respectively, in communication efficiency. In
terms of wall-clock time, CAT S+Q takes 26% (respectively,
39%) more time to finish the full 30, 000 iterations than that
of GD (respectively, Alistarh’s S+Q). Note, however, that
CAT S+Q achieves an order of magnitude loss improvement
in an order of magnitude shorter time, and the loss value is
always lower in CAT S+Q than that in Alistarh’s S+Q. Such
a performance is desirable in most of the applications (e.g.,
hyper-parameter optimizations and day-ahead market-price
predictions) that do not impose a strict upper bound on the
iteration counts but rather on the wall-clock time of the al-
gorithm.

Experiment 2 (MPI - multiple nodes): We evaluate the
performance of our CAT tuning rules on deterministic spar-
sification (SG), stochastic sparsification (SS), and sparsifi-
cation with quantization (S+Q) in a multi-node setting on
RCV1. We compare the results to gradient descent and Al-
istarh’s S+Q (Alistarh et al. 2017). We implement all algo-
rithms in Julia, and run them on 4 nodes using MPI, split-
ting the data evenly between the nodes. In all cases we use
the packet communication model (6) with c1 = 576 bytes,
c0 = 64 bytes and Pmax = 512 bytes. The right-most plot
in Figure 3 shows that our CAT S+Q outperforms all other
compression schemes. In particular, CAT is roughly 6 times
more communication efficient than the dynamic rule in (Al-
istarh et al. 2017) for the same compression scheme (com-
pare number of bits needed to reach ε = 0.4).

8107

Conclusions
We have proposed communication-aware adaptive tun-
ing to optimize the communication-efficiency of gradi-
ent sparsification. The adaptive tuning relies on the data-
dependent measure of an objective function improvement,
and adapts the compression level to maximize the descent
per communicated bit. Unlike existing heuristics, our tun-
ing rules are guaranteed to save communications in realis-
tic communication models. In particular, our rules are more
communication-efficient when communication overhead or
packet transmissions are accounted for. We experimentally
showed how CAT can be used to optimize a transmission
time (Experiment 1) and communicated bits (Experiment 2).
Moreover, we illustrated the promise of CAT in multi-node
settings with all compressions considered (Experiment 2).

From the theoretical point of view we showed that worst-
case analysis of gradient compression does not guarantee
any advantages or provide insight into why compression
improves communication efficiency. However, we provide
problem/data dependent convergence results that demon-
strate these benefits of compression on problems with fa-
vorable structures. Our theoretical results cover multi-node
settings if the compression is stochastic and unbiased, and
single-node settings if the compression is deterministic. To
the best of our knowledge, all analytical results on multi-
node compression use such assumptions or assumptions on
the similarity of the nodes’ loss functions. The single-node
setting helps us quantify the communication-efficiency ratio
and develop the CAT framework. Moreover, this setting is
a representative abstraction of many industrial applications.
Consider the case in which either the problem data (avail-
able in workers) or the optimization problem (available in
the master) is not shared due to either privacy or intellectual
property concerns. In this case, the master node can com-
municate with a single “worker” node (e.g., on a Kubernetes
cluster), which in turn can aggregate (e.g., using Spark or
Ray) the gradient information from multiple worker nodes
in the cluster in the premises. We are interested in compress-
ing this aggregated gradient from the premises and sending
it over the network to a different site.

Acknowledgements
This work was partially supported by the Wallenberg Ar-
tificial Intelligence, Autonomous Systems and Software
Program (WASP) funded by Knut and Alice Wallenberg
Foundation. This work was also supported in parts by the
Swedish Research Council (Vetenskapsrådet) under grant
2020-03607.

References
Alistarh, D.; Grubic, D.; Li, J.; Tomioka, R.; and Vojnovic,
M. 2017. QSGD: Communication-efficient SGD via gradi-
ent quantization and encoding. In Advances in Neural Infor-
mation Processing Systems, volume 30, 1709–1720.
Alistarh, D.; Hoefler, T.; Johansson, M.; Konstantinov, N.;
Khirirat, S.; and Renggli, C. 2018. The convergence of spar-
sified gradient methods. In Advances in Neural Information
Processing Systems, volume 31, 5973–5983.

Aytekin, A.; Biel, M.; and Johansson, M. 2018. POLO:
a POLicy-based optimization library. arXiv preprint
arXiv:1810.03417 .
Bertsekas, D. P. 1999. Nonlinear programming: 2nd Edition.
Athena Scientific. ISBN 1-886529-00-0.
Feyzmahdavian, H. R.; Aytekin, A.; and Johansson, M.
2016. An asynchronous mini-batch algorithm for regular-
ized stochastic optimization. IEEE Transactions on Auto-
matic Control 61(12): 3740–3754.
Khaled, A.; Mishchenko, K.; and Richtárik, P. 2019. First
analysis of local gd on heterogeneous data. arXiv preprint
arXiv:1909.04715 .
Khirirat, S.; Feyzmahdavian, H. R.; and Johansson, M.
2018. Distributed learning with compressed gradients. arXiv
preprint arXiv:1806.06573 .
Khirirat, S.; Johansson, M.; and Alistarh, D. 2018. Gradient
compression for communication-limited convex optimiza-
tion. In 2018 IEEE Conference on Decision and Control
(CDC), 166–171.
Kozłowski, A.; and Sosnowski, J. 2017. Analysing effi-
ciency of IPv6 packet transmission over 6LoWPAN net-
work. In Romaniuk, R. S.; and Linczuk, M., eds., Photonics
Applications in Astronomy, Communications, Industry, and
High Energy Physics Experiments 2017, 456 – 467. SPIE.
Li, T.; Sahu, A. K.; Zaheer, M.; Sanjabi, M.; Talwalkar, A.;
and Smith, V. 2018. Federated optimization in heteroge-
neous networks. arXiv preprint arXiv:1812.06127 .
Li, X.; Huang, K.; Yang, W.; Wang, S.; and Zhang, Z. 2020.
On the convergence of FedAvg on Non-IID data. In Inter-
national Conference on Learning Representations.
Lian, X.; Huang, Y.; Li, Y.; and Liu, J. 2015. Asynchronous
parallel stochastic gradient for nonconvex optimization. In
Advances in Neural Information Processing Systems, vol-
ume 28, 2737–2745.
Magnússon, S.; Enyioha, C.; Li, N.; Fischione, C.; and
Tarokh, V. 2017. Convergence of limited communication
gradient methods. IEEE Transactions on Automatic Control
63(5): 1356–1371.
Magnússon, S.; Shokri-Ghadikolaei, H.; and Li, N. 2020. On
maintaining linear convergence of distributed learning and
optimization under limited communication. IEEE Transac-
tions on Signal Processing 68: 6101–6116.
Nesterov, Y. 2018. Lectures on convex optimization, volume
137. Springer.
Rabbat, M. G.; and Nowak, R. D. 2005. Quantized incre-
mental algorithms for distributed optimization. IEEE Jour-
nal on Selected Areas in Communications 23(4): 798–808.
Shi, S.; Wang, Q.; Zhao, K.; Tang, Z.; Wang, Y.; Huang,
X.; and Chu, X. 2019a. A distributed synchronous SGD al-
gorithm with global Top-k sparsification for low bandwidth
networks. In 2019 IEEE 39th International Conference on
Distributed Computing Systems (ICDCS), 2238–2247.
Shi, S.; Zhao, K.; Wang, Q.; Tang, Z.; and Chu, X.
2019b. A convergence analysis of distributed SGD with

8108

communication-efficient gradient sparsification. In Proceed-
ings of the Twenty-Eighth International Joint Conference on
Artificial Intelligence, IJCAI-19, 3411–3417.
Stich, S. U. 2019. Local SGD converges fast and communi-
cates little. In International Conference on Learning Repre-
sentations.
Stich, S. U.; Cordonnier, J.-B.; and Jaggi, M. 2018. Sparsi-
fied SGD with memory. In Advances in Neural Information
Processing Systems, volume 31, 4447–4458.
Tsitsiklis, J. N.; and Luo, Z.-Q. 1987. Communication com-
plexity of convex optimization. Journal of Complexity 3(3):
231–243.
Vogels, T.; Karimireddy, S. P.; and Jaggi, M. 2020. Prac-
tical low-rank communication compression in decentralized
deep learning. Advances in Neural Information Processing
Systems 33: 14171–14181.
Wang, H.; Sievert, S.; Liu, S.; Charles, Z.; Papailiopoulos,
D.; and Wright, S. 2018. ATOMO: Communication-efficient
learning via atomic sparsification. In Advances in Neural
Information Processing Systems, volume 31, 9850–9861.
Wang, J.; and Joshi, G. 2018. Cooperative SGD: A unified
framework for the design and analysis of communication-
efficient SGD algorithms. CoRR abs/1808.07576.
Wang, J.; and Joshi, G. 2019. Adaptive communication
strategies to achieve the best error-runtime trade-off in local-
update SGD. In Talwalkar, A.; Smith, V.; and Zaharia, M.,
eds., Proceedings of Machine Learning and Systems, vol-
ume 1, 212–229.
Wangni, J.; Wang, J.; Liu, J.; and Zhang, T. 2018. Gradient
sparsification for communication-efficient distributed opti-
mization. In Advances in Neural Information Processing
Systems, volume 31, 1299–1309.
Wen, W.; Xu, C.; Yan, F.; Wu, C.; Wang, Y.; Chen, Y.; and
Li, H. 2017. Terngrad: Ternary gradients to reduce commu-
nication in distributed deep learning. In Advances in neural
information processing systems, volume 30, 1509–1519.
Yu, H.; Yang, S.; and Zhu, S. 2019. Parallel restarted SGD
with faster convergence and less communication: Demysti-
fying why model averaging works for deep learning. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence,
volume 33, 5693–5700.
Zhu, C.; Han, S.; Mao, H.; and Dally, W. J. 2016. Trained
ternary quantization. arXiv preprint arXiv:1612.01064 .

8109

