Bayesian Dynamic Mode Decomposition with Variational Matrix Factorization
DOI:
https://doi.org/10.1609/aaai.v35i9.16985Keywords:
Bayesian Learning, Unsupervised & Self-Supervised Learning, Matrix & Tensor Methods, Time-Series/Data StreamsAbstract
Dynamic mode decomposition (DMD) and its extensions are data-driven methods that have substantially contributed to our understanding of dynamical systems. However, because DMD and most of its extensions are deterministic, it is difficult to treat probabilistic representations of parameters and predictions. In this work, we propose a novel formulation of a Bayesian DMD model. Our Bayesian DMD model is consistent with the procedure of standard DMD, which is to first determine the subspace of observations, and then compute the modes on that subspace. Variational matrix factorization makes it possible to realize a fully-Bayesian scheme of DMD. Moreover, we derive a Bayesian DMD model for incomplete data, which demonstrates the advantage of probabilistic modeling. Finally, both of nonlinear simulated and real-world datasets are used to illustrate the potential of the proposed method.Downloads
Published
2021-05-18
How to Cite
Kawashima, T., Shouno, H., & Hino, H. (2021). Bayesian Dynamic Mode Decomposition with Variational Matrix Factorization. Proceedings of the AAAI Conference on Artificial Intelligence, 35(9), 8083-8091. https://doi.org/10.1609/aaai.v35i9.16985
Issue
Section
AAAI Technical Track on Machine Learning II