Power up! Robust Graph Convolutional Network via Graph Powering
DOI:
https://doi.org/10.1609/aaai.v35i9.16976Keywords:
Graph-based Machine Learning, Adversarial Learning & Robustness, Semi-Supervised Learning, Graph Mining, Social Network Analysis & CommunityAbstract
Graph convolutional networks (GCNs) are powerful tools for graph-structured data. However, they have been recently shown to be vulnerable to topological attacks. To enhance adversarial robustness, we go beyond spectral graph theory to robust graph theory. By challenging the classical graph Laplacian, we propose a new convolution operator that is provably robust in the spectral domain and is incorporated in the GCN architecture to improve expressivity and interpretability. By extending the original graph to a sequence of graphs, we also propose a robust training paradigm that encourages transferability across graphs that span a range of spatial and spectral characteristics. The proposed approaches are demonstrated in extensive experiments to simultaneously improve performance in both benign and adversarial situations.Downloads
Published
2021-05-18
How to Cite
Jin, M., Chang, H., Zhu, W., & Sojoudi, S. (2021). Power up! Robust Graph Convolutional Network via Graph Powering. Proceedings of the AAAI Conference on Artificial Intelligence, 35(9), 8004-8012. https://doi.org/10.1609/aaai.v35i9.16976
Issue
Section
AAAI Technical Track on Machine Learning II