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Abstract
This paper explores the problem of clustering ensemble,
which aims to combine multiple base clusterings to produce
better performance than that of the individual one. The ex-
isting clustering ensemble methods generally construct a co-
association matrix, which indicates the pairwise similarity
between samples, as the weighted linear combination of the
connective matrices from different base clusterings, and the
resulting co-association matrix is then adopted as the input
of an off-the-shelf clustering algorithm, e.g., spectral cluster-
ing. However, the co-association matrix may be dominated
by poor base clusterings, resulting in inferior performance. In
this paper, we propose a novel low-rank tensor approxima-
tion based method to solve the problem from a global per-
spective. Specifically, by inspecting whether two samples are
clustered to an identical cluster under different base cluster-
ings, we derive a coherent-link matrix, which contains lim-
ited but highly reliable relationships between samples. We
then stack the coherent-link matrix and the co-association
matrix to form a three-dimensional tensor, the low-rankness
property of which is further explored to propagate the infor-
mation of the coherent-link matrix to the co-association ma-
trix, producing a refined co-association matrix. We formulate
the proposed method as a convex constrained optimization
problem and solve it efficiently. Experimental results over 7
benchmark data sets show that the proposed model achieves
a breakthrough in clustering performance, compared with 11
state-of-the-art methods. To the best of our knowledge, this
is the first work to explore the potential of low-rank tensor
on clustering ensemble, which is fundamentally different from
previous approaches. Last but not least, our method only
contains one parameter, which can be easily tuned.

Introduction
Clustering is an important but very challenging unsuper-
vised task, the goal of which is to partition a set of sam-
ples into homogeneous groups (Jia et al. 2018). Numer-
ous applications can be formulated as a clustering prob-
lem, such as recommender systems (Song, Tekin, and Van
Der Schaar 2014), community detection (Wu et al. 2018),
and image segmentation (Li et al. 2019). Over the past
decades, a large number of clustering techniques were pro-
posed, e.g., K-means (Jain 2010), spectral clustering (Ulrike
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2007), matrix factorization (Jia et al. 2020a; Wu et al. 2018;
Jia et al. 2020c), hierarchical clustering (Johnson 1967),
Gaussian mixture models (Moore 1999), and so on. As
each method has its own advantages as well as drawbacks,
no method could always outperform others (Vega-Pons and
Ruiz-Shulcloper 2011). Additionally, a clustering method
usually contains a few hyper-parameters, on which its per-
formance heavily depends (Jia, Hou, and Kwong 2020).
Moreover, the hyper-parameters are difficult to tune, and
some methods are quite sensitive to initialization, like K-
means. Those dilemmas increase the difficulty in choos-
ing an appropriate clustering method for a typical clus-
tering task. To this end, clustering ensemble was intro-
duced, i.e., given a set of base clusterings produced by dif-
ferent methods or the same method with different hyper-
parameters/initializations, it aims to generate a consensus
clustering with better clustering performance than the base
clusterings (Sagi and Rokach 2018; Boongoen and Iam-On
2018). Unlike supervised ensemble learning, clustering en-
semble is more difficult (Tao et al. 2017, 2016), as the com-
monly used strategies in supervised ensemble learning, such
as voting, cannot be directly applied to clustering ensemble,
when labels of samples are unavailable.

To realize clustering ensemble, the existing methods gen-
erally first learn a pairwise relationship matrix from the base
clusterings, and then apply off-the-shelf clustering methods
like spectral clustering to the resulting matrix to produce the
final clustering result (Tao, Liu, and Fu 2017). Based on how
to generate the pairwise relationship matrix, we roughly di-
vide the existing methods into two categories. (1) The first
kind of methods treat the base clusterings as new feature rep-
resentations (as shown in Fig. 1-A), to learn a pairwise rela-
tionship matrix. For example, (Gao et al. 2016) formulated
clustering ensemble as a convex low-rank matrix represen-
tation problem. (Zhou, Zheng, and Pan 2019) used a Frobe-
nius norm regularized self-representation model to seek a
dense affinity matrix for clustering ensemble. (2) The sec-
ond kind of methods rely on the co-association matrix (as
shown in Fig. 1-C), which summarizes the co-occurrence of
samples in the same cluster of the base clusterings. The con-
cept of co-association matrix was first proposed by (Fred and
Jain 2005), and since then it became popular as an impor-
tant fundamental method in clustering ensemble. (Liu et al.
2017) theoretically bridged the co-association based method
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to weighted K-means clustering, which largely reduces the
computational complexity. Recently, many advanced co-
association matrix construction methods were proposed. For
example, (Huang, Wang, and Lai 2018) considered the un-
certainty of each base clustering and proposed a locally
weighted co-association matrix. (Huang et al. 2018) used
the cluster-wise similarities to enhance the traditional co-
association matrix. (Zhou et al. 2020) proposed a self-paced
strategy to learn the co-association matrix. See the detailed
discussion about the related works in the next section. We
observe that, the constructed co-association matrices of the
prior works are variants of a weighted linear combination of
the connective matrices (as shown in Fig. 1-B) from differ-
ent base clusterings. When the performance of some base
clusterings are poor, they will dominate the co-association
matrix and degrade the clustering performance severely.

In this paper, we propose a novel constrained low-
rank tensor approximation (LTA) model to refine the co-
association matrix from a global perspective. Specifically, as
shown in Fig. 1-D, we first construct a coherent-link matrix,
whose element examines whether two samples are from the
same cluster in all the base clusterings or not. We then stack
the coherent-link matrix and the conventional co-association
matrix to form a 3-dimensional (3-D) tensor shown in Fig. 1-
E, which is further low-rank approximated. By exploring the
low-rankness, the proposed model can propagate the highly
reliable information of the coherent-link matrix to the co-
association matrix, producing a refined co-association ma-
trix, which is adopted as the input of an off-the-shelf clus-
tering method to produce the final clustering result. Tech-
nically, the proposed model is formulated as a convex op-
timization problem and solved by an alternative iterative
method. We evaluate the proposed model on 7 benchmark
data sets, and compare it with 11 state-of-the-art clustering
ensemble methods. The experimental comparisons substan-
tiate that the proposed model significantly outperforms state-
of-the-art methods. To the best of our knowledge, this is the
first work to explore the potential of low-rank tensor on clus-
tering ensemble.

Related Work
Notation. We denote tensors by boldface swash letters,
e.g., A, matrices by boldface capital letters, e.g., A, vectors
by boldface lowercase letters, e.g., a, and scalars by lower-
case letters, e.g., a. Let A(i, j, k) denote the (i, j, k)-th el-
ement of 3-D tensor A, A(i, j) denote the (i, j)-th element
of matrix A, and a(i) denote the i-th entry of vector a. The
i-th frontal slice of tensor A is denoted as A(:, :, i).

Rank of tensors. In this paper, we use the tensor nuclear
norm induced by tensor singular value decomposition (t-
SVD) (Kilmer et al. 2013) to measure the rank of a tensor.
Specifically, the t-SVD of a 3-D tensor A ∈ Rn1×n2×n3 can
be represented as

A = U ∗ S ∗ VT, (1)

where U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 are two or-
thogonal tensors, S ∈ Rn1×n1×n3 is an f-diagonal tensor,
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Figure 1: Illustration of the proposed method by taking 3
base clusterings denoted by π1, π2 and π3, and 6 input sam-
ples denoted by x1, · · · ,x6 as an example. By exploring
the low-rankness of the formed 3-D tensor, the limited but
highly reliable information contained in the coherent-link
matrix can be leveraged to enhance the quality of the co-
association matrix.

Algorithm 1 t-SVD of a 3-D tensor (Zhang et al. 2014)

Input: 3-D tensor A ∈ Rn1×n2×n3 .
1: Perform FFT on A, i.e., Af = fft(A, [ ], 3);
2: for k = 1 : n3; do
3: Perform SVD on each frontal slice of Af , i.e.,

[U,S,V]=SVD(Af (:, :, k)) ;
4: Uf (:, :, k) = U, Sf (:, :, k) = S, Vf (:, :, k) = V;
5: end
6: Perform inverse FFT on Uf , Sf and Vf , i.e., U =

ifft(U f , [], 3), S = ifft(Sf , [], 3) and V = ifft(V f , [], 3);
Output: U , S and V .

∗ and ·T denote tensor product and tensor transpose, respec-
tively. The detailed definitions of the above-mentioned ten-
sor related operators can be find in (Zhang et al. 2014). Since
the tensor product can be efficiently computed in the Fourier
domain (Kilmer et al. 2013), the t-SVD form of a tensor can
be obtained with fast Fourier transform (FFT) efficiently as
shown Algorithm 1. Given t-SVD, the tensor nuclear norm
(Zhang et al. 2014) is defined as the sum of the absolute val-
ues of the diagonal entries of S, i.e.,

‖A‖©? =

min(n1,n2)∑
i=1

n3∑
k=1

|S(i, i, k)|. (2)

Formulation of Clustering Ensemble. Given a data set
X = [x1,x2, · · · ,xn] ∈ Rd×n of n samples with
each sample xi ∈ Rd×1, and m base clusterings Π =
[π1,π2, · · · ,πm] ∈ Rn×m, where each base clustering
πi ∈ Rn×1 is an n-dimensional vector with the j-th element
πi(j) indicating the clustering membership of the j-th sam-
ple xj in πi. For clustering ensemble, the cluster indicators
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in different base clusterings are generally different. Fig. 1-A
shows a toy example of 6 samples and 3 base clusterings.
The objective of clustering ensemble is to combine multiple
base clusterings to produce better performance than that of
the individual one.

Prior Art. Based on how to use Π, we roughly divide
previous clustering ensemble methods into two categories.
The methods in the first category treat Π as a representa-
tion of samples and then construct a pairwise affinity matrix
P ∈ Rn×n accordingly, which can be generally expressed
as

min
P

f(Π,P) + λφ(P), (3)

where f(Π,P) is the fidelity term and φ(P) imposes spe-
cific regularization on P. For example, in (Gao et al. 2016),
f(·, ·) and φ(·) denote the Frobenius norm and the nuclear
norm, respectively, while those in (Zhou, Zheng, and Pan
2019) are both the Frobenius norm. The second kind of
methods first transform each base clustering as a connective
matrix (as shown in Fig. 1-B), i.e.,

Ak(i, j) = δ(πk(i), πk(j)), (4)

where Ak ∈ Rn×n is the k-th connective matrix constructed
from πk, and

δ(πk(i), πk(j)) =

{
1 if πk(i) = πk(j)

0 otherwise.
(5)

And then, the methods in the second category build a co-
association matrix A ∈ Rn×n (Fred and Jain 2005) accord-
ing to the connective matrices, i.e.,

A(i, j) =
1

m

m∑
k=1

Ak(i, j). (6)

As the co-association matrix naturally converts the base
clusterings to a pairwise similarity measure, it becomes
the cornerstone of clustering ensemble. Recently, many ad-
vanced co-association matrix construction methods were
proposed to enhance the clustering performance, which can
be generally unified in the following formula:

A(i, j) =

m∑
k=1

ω(k)×Ak(i, j), (7)

where ω ∈ Rm×1 is the weight vector constructed with dif-
ferent strategies. For example, (Zhou et al. 2020) used a self-
paced learning strategy to construct ω. (Huang, Wang, and
Lai 2018) considered the uncertainties of the base cluster-
ing, and proposed a locally-weighted weight vector. (Huang
et al. 2018) used the cluster-wise similarities to construct the
weight vector.

Proposed Method
As shown in Eq. (7), the previous methods construct a co-
association matrix as the linear combination of connective
matrices, and thus are vulnerable to some poor base clus-
terings. To this end, we propose a novel low-rank tensor ap-
proximation based method to refine the initial co-association
matrix from a global perspective.

Problem Formulation
To refine the co-association matrix, we first construct a
coherent-link matrix (as shown in Fig. 1-D), which inspects
whether two samples are clustered to the same category un-
der all the base clusterings. It is worth pointing out that
the elements of the coherent-link matrix are highly reli-
able information we could infer from the base clusteirngs.
Specifically, we could directly get the coherent-link matrix
M ∈ Rn×n from the co-association matrix in Eq. (6), i.e,

M(i, j) =

{
1 if A(i, j) = 1

0 otherwise.
(8)

We then stack the coherent-link matrix and the co-
association matrix to form a 3-D tensor P ∈ Rn×n×2, with
P(:, :, 1) = M, and P(:, : 2) = A. As the elements of both
the coherent-link matrix and the co-association matrix ex-
press the pairwise similarity between samples, ideally, the
formed tensor should be low-rank. Moreover, the non-one
elements of M are limited but express the highly reliable
similarity between samples, and we thus try to complement
the zero elements with reference to the non-zero ones and
the co-association matrix. On the contrary, the elements of
the co-association matrix is dense but with many error con-
nections, and we try to refine it by removing the incorrect
connections which is depicted by E ∈ Rn×n, by leverag-
ing the information from the coherent-link matrix. In ad-
dition, the elements of P should be bounded in [0, 1], and
each frontal slice of P should be symmetric. Taking all the
above analyses into account, the proposed method is mathe-
matically formulated as a constrained optimization problem,
written as

min
P,E
‖P‖©? + λ‖E‖2F

s.t. P(i, j, 1) = M(i, j), if M(i, j) = 1,

P(:, :, 1) = P(:, :, 1)T, 0 ≤ P(i, j, 1) ≤ 1, ∀i, j,
P(:, :, 2) + E = A,

P(:, :, 2) = P(:, :, 2)T, 0 ≤ P(i, j, 2) ≤ 1, ∀i, j,

(9)

where λ > 0 is the coefficient to balance the error matrix,
and a Frobenius norm is imposed on E to avoid trivial so-
lution, i.e., P(:, :, 2) = 0. By optimizing Eq. (9), it is ex-
pected that the limited but highly reliable information in M
could be propagated to the co-association matrix, while the
coherent-link matrix is complemented according to the in-
formation from the co-association matrix at the same time.

After solving the problem in Eq. (9), we can obtain a re-
fined co-association matrix P∗(:, :, 2) with P∗ being the op-
timized solution. Then, one can apply any clustering meth-
ods based on pairwise similarity on P∗(:, :, 2) to generate
the final clustering result. In this paper, we investigate two
popular clustering methods, i.e., spectral clustering (Ng, Jor-
dan, and Weiss 2002) and agglomerative hierarchical clus-
tering (Fred and Jain 2005).

Numerical Solution
We propose an optimization method to solve Eq. (9), based
on the inexact Augmented Lagrangian method (Jia, Kwong,
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and Hou 2018). Specifically, we first introduce two auxiliary
matrices B,C ∈ Rn×n to deal with the bounded and sym-
metric constraints on P(:, :, 1) and P(:, :, 2), respectively,
and Eq. (9) can be equivalently rewritten as

argmin
P,E,B,C

‖P‖©? + λ‖E‖2F

s.t. B(i, j) = M(i, j), if M(i, j) = 1, B = BT,

0 ≤ B(i, j) ≤ 1, ∀i, j, B = P(:, :, 1),

P(:, :, 2) + E = A, C = P(:, :, 2),

C = CT, 0 ≤ C(i, j) ≤ 1, ∀i, j.

(10)

To handle the equality constraints, we introduce three La-
grange multipliers Λ1,Λ2 and Λ3 ∈ Rn×n, and the aug-
mented Lagrangian form of Eq. (10) becomes

argmin
P,E,B,C

‖P‖©? + λ‖E‖2F +
µ

2

∥∥∥∥P(:, :, 2) + E−A +
Λ2

µ

∥∥∥∥2

F

+
µ

2

∥∥∥∥P(:, :, 1)−B +
Λ1

µ

∥∥∥∥2

F

+
µ

2

∥∥∥∥P(:, :, 2)−C +
Λ3

µ

∥∥∥∥2

F

s.t. B(i, j) = M(i, j), if M(i, j) = 1, 0 ≤ B(i, j) ≤ 1, ∀i, j,

B = BT,C = CT, 0 ≤ C(i, j) ≤ 1, ∀i, j, (11)

where µ > 0 is the penalty coefficient. Then Eq. (11) can be
optimized by solving the following four subproblems itera-
tively and alternately, i.e., only one variable is updated with
the remaining ones fixed at each time.

The P subproblem. Removing the irrelevant terms, Eq.
(11) with respect to P is written as

argmin
P

1

µ
‖P‖©? +

1

2
‖P − T ‖2F , (12)

where{
T (:, :, 1) = B− Λ1

µ

T (:, :, 2) = 1
2

(
A + C−E− Λ2+Λ3

µ

)
.

(13)

According to (Zhang et al. 2014), Eq. (12) has a closed-
form solution with the soft-thresholding operator of the ten-
sor singular values. Moreover, according to Algorithm 1, t-
SVD computes FFT and SVD on the frontal slices of the
input 3-D tensor T (:, :, i) and its FFT version T f (:, : .i),
respectively, which mainly emphasizes the low-rankness of
the frontal slices. Differently, we aim to take advantage of
the correction between the original co-association matrix
and the coherent-link matrix. Therefore, we perform FFT
and SVD on the lateral slices of the tensors T (:, i, :), and
T f (:, i, :), respectively, to get the t-SVD representation.

The E subproblem. Without the irrelevant terms, the E
subproblem becomes:

min
E
λ‖E‖2F +

µ

2

∥∥∥∥P(:, :, 2) + E−A +
Λ2

µ

∥∥∥∥2
F

. (14)

Since Eq. (14) is quadratic function of E, we can get its
global minimum by setting the derivative of it to 0, i.e.,

E =
µA−Λ2 − µP(:, :, 2)

2λ+ µ
. (15)

The B subproblem. The B subproblem is written as

min
B

µ

2

∥∥∥∥B− (P(:, :, 1) +
Λ1

µ

)∥∥∥∥2
F

s.t. B(i, j) = M(i, j), if M(i, j) = 1,

B = BT, 0 ≤ B(i, j) ≤ 1, ∀i, j,

(16)

which is a symmetric and bounded constrained least squares
problem, and has an optimal solution in element-wise (Jia
et al. 2020d), i.e.,

B(i, j) =


M(i, j) if M(i, j) = 1,

0 if T1(i, j) ≤ 0 & M(i, j) 6= 1,

1 if T1(i, j) ≥ 1 & M(i, j) 6= 1,

T1(i, j) if 0 ≤ T1(i, j) ≤ 1 & M(i, j) 6= 1,
(17)

where

T1 =
1

2

(
P(:, :, 1) + P(:, :, 1)T +

Λ1 + ΛT
1

µ

)
. (18)

The C subproblem. The C subproblem is identical to the
B subproblem without a set of element-wise equality con-
straints, which is written as

min
C

µ

2

∥∥∥∥C− (P(:, :, 2) +
Λ3

µ

)∥∥∥∥2
F

s.t. C = CT, 0 ≤ C(i, j) ≤ 1, ∀i, j,
(19)

and the optimal solution of it is

C(i, j) =


T2(i, j) if 0 ≤ T2(i, j) ≤ 1,

0 if T2(i, j) ≤ 0,

1 if T2(i, j) ≥ 1,

(20)

where

T2 =
1

2

(
P(:, :, 2) + P(:, :, 2)T +

Λ3 + ΛT
3

µ

)
. (21)

Update Λ1, Λ2, Λ3 and µ The Lagrange multipliers and
µ are updated by

Λ1 = Λ1 + µ(P(:, :, 1)−B)

Λ2 = Λ2 + µ(P(:, :, 2) + E−A)

Λ3 = Λ3 + µ(P(:, :, 2)−C)

µ = min(1.1µ, µmax),

(22)

where µ is initialized to 0.0001 (Liu et al. 2019), and µmax

is the upper-bound for µ. The overall numerical solution is
summarized in Algorithm 2, where the stopping conditions
is max(‖B−P(:, :, 1)‖∞, ‖C−P(:, :, 2)‖∞, ‖A−E−P(:
, :, 2)‖∞) < 10−8 with ‖ · ‖∞ being the maximum of the
absolute values of a matrix.

Experiment
We conducted extensive experiments to evaluate the
proposed model. To reproduce the results, we made
the code publicly available at https://github.com/jyh-
learning/TensorClusteringEnsemble.

7973



Algorithm 2 Numerical solution to Eq. (9)

Input: Base clusterings matrix Π;
Initialize: P = 0, E = 0, B = 0, C = 0, and µmax = 108;

1: Construct the co-association matrix A by Eq. (6);
2: Construct the coherent-link matrix M by Eq. (8);
3: while not converged do
4: Update P by solving Eq. (12);
5: Update E by Eq. (15);
6: Update B by Eq. (17);
7: Update C by Eq. (20);
8: Update Λ1, Λ2, Λ3 and µ by Eq. (22);
9: Check the convergence conditions;

10: end while
Output: P(:, :, 2) as the refined co-association matrix.

Data Sets. Following recent clustering ensemble papers
(Huang, Wang, and Lai 2018; Huang, Lai, and Wang 2016;
Zhou, Zheng, and Pan 2019), we adopted 7 commonly used
data sets, i.e., BinAlpha, Multiple features (MF), MNIST,
Semeion, CalTech, Texture and ISOLET. Following (Huang,
Wang, and Lai 2018), we randomly selected 5000 samples
from MNIST and used the subset in the experiments, and
for CalTech, we used 20 representative categories out of 101
categories and denoted it as CalTech20.

Generation of Base Clusterings. Following (Huang,
Wang, and Lai 2018), we first generated a pool of 100 can-
didate base clusterings for all the data sets by applying the
the K-means algorithm with the value of K randomly vary-
ing in the range of [2,

√
n], where n is the number of input

data samples.

Methods under Comparison. We compared the proposed
model with 11 state-of-the-art clustering ensemble methods,
including TA-CL, TA-SL and PTGP (Huang, Lai, and Wang
2016), LWSC, LWEA and LWGP (Huang, Wang, and Lai
2018), E-HC and E-MC (Huang et al. 2018), DREC (Zhou,
Zheng, and Pan 2019), SPCE (Zhou et al. 2020), and SEC
(Liu et al. 2017). The codes of all the compared methods are
provided by the authors. Ours-EA and Ours-SC denote the
proposed model equipped with agglomerative hierarchical
clustering and spectral clustering, respectively, to generate
the final clustering result.

Evaluation Metrics. We adopted 7 commonly used met-
rics to evaluate clustering performance, i.e., clustering accu-
racy (ACC), normalized mutual information (NMI), purity,
adjust rand index (ARI), F1-score, precision, and recall. For
all the metrics, a larger value indicates better clustering per-
formance, and the values of all the metrics are up-bounded
by 1. The detailed definitions of those metrics can be found
in (Zhang et al. 2020; Jia et al. 2020b).

Experiment Settings. For each data set, we randomly se-
lected 10 base clusterings from the candidate base cluster-
ing pool, and performed different clustering ensemble meth-
ods on the selected base clusteirngs. To reduce the influence
of the selected base clusterings, we repeated the random
selection 20 times, and reported the average performance
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Figure 2: The NMI of our methods against the average NMI
of the base clusteings in the candidate base clustering pool.
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Figure 3: The NMI of our methods against different λ.
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Figure 4: The NMI of our methods with different numbers
of base clusterings, where the vertical error bar indicates the
standard deviation over 20 repetitions.

over the 20 repetitions. For the compared methods, we set
the hyper-parameters according to their original papers. If
there are no suggested values, we exhaustively searched the
hyper-parameters, and used the ones producing the best per-
formance. The proposed model only contains one hyper-
parameter λ, which was set to 0.002 for all the data sets.

Analysis of the Clustering Performance
Tables 1-7 show the clustering performance of all the meth-
ods over 7 data sets, where we have the following observa-
tions. First, the proposed methods including both Ours-EA
and Ours-SC almost always outperform all the compared
methods under various metrics, which proves the univer-
sality of the refined co-association matrix of the proposed

7974



BinAlpha TA-CL TA-SL PTGP LWSC LWEA LWGP E-HC E-MC DREC SPCE SEC Ours-EA Ours-SC
ACC 0.429 0.186 0.429 0.424 0.403 0.431 0.375 0.454 0.375 0.298 0.443 0.712 0.858
NMI 0.577 0.300 0.574 0.570 0.553 0.575 0.537 0.592 0.518 0.541 0.585 0.824 0.916
Purity 0.451 0.197 0.446 0.444 0.413 0.457 0.383 0.478 0.396 0.285 0.470 0.718 0.876
ARI 0.291 0.081 0.291 0.284 0.289 0.287 0.269 0.300 0.248 0.227 0.291 0.643 0.817
F1-score 0.312 0.126 0.313 0.306 0.313 0.308 0.295 0.320 0.271 0.302 0.311 0.654 0.822
Precision 0.276 0.071 0.277 0.272 0.248 0.277 0.220 0.305 0.238 0.294 0.296 0.559 0.801
Recall 0.361 0.635 0.361 0.349 0.426 0.348 0.451 0.337 0.323 0.314 0.327 0.791 0.845

Table 1: Clustering Performance on BinAlpha (# samples: 1404, dimension: 320, # clusters: 36)

MF TA-CL TA-SL PTGP LWSC LWEA LWGP E-HC E-MC DREC SPCE SEC Ours-EA Ours-SC
ACC 0.606 0.507 0.648 0.671 0.609 0.649 0.589 0.652 0.362 0.581 0.592 0.718 0.990
NMI 0.638 0.536 0.654 0.655 0.650 0.655 0.618 0.652 0.347 0.621 0.602 0.790 0.979
Purity 0.644 0.533 0.677 0.690 0.650 0.673 0.616 0.676 0.387 0.615 0.623 0.719 0.990
ARI 0.500 0.371 0.523 0.533 0.514 0.530 0.481 0.526 0.257 0.459 0.472 0.685 0.979
F1-score 0.554 0.457 0.575 0.583 0.567 0.582 0.541 0.576 0.370 0.527 0.528 0.724 0.981
Precision 0.511 0.344 0.534 0.551 0.517 0.530 0.472 0.541 0.311 0.424 0.496 0.586 0.981
Recall 0.608 0.712 0.627 0.619 0.628 0.647 0.637 0.618 0.739 0.713 0.566 0.960 0.981

Table 2: Clustering Performance on MF (# samples: 2000, dimension: 649, # clusters: 10)

MNIST TA-CL TA-SL PTGP LWSC LWEA LWGP E-HC E-MC DREC SPCE SEC Ours-EA Ours-SC
ACC 0.654 0.207 0.665 0.613 0.658 0.573 0.609 0.656 0.480 0.543 0.539 0.797 0.977
NMI 0.610 0.133 0.622 0.612 0.635 0.594 0.608 0.635 0.434 0.482 0.521 0.806 0.979
Purity 0.668 0.209 0.685 0.663 0.676 0.626 0.624 0.691 0.498 0.557 0.585 0.798 0.980
ARI 0.504 0.051 0.522 0.483 0.531 0.460 0.495 0.524 0.342 0.429 0.384 0.735 0.969
F1-score 0.557 0.219 0.572 0.540 0.582 0.522 0.558 0.574 0.427 0.445 0.450 0.767 0.972
Precision 0.523 0.124 0.541 0.490 0.536 0.459 0.448 0.543 0.373 0.316 0.420 0.666 0.968
Recall 0.596 0.952 0.607 0.603 0.641 0.609 0.745 0.610 0.576 0.831 0.485 0.918 0.977

Table 3: Clustering Performance on MNIST (# samples: 5000, dimension: 784, # clusters: 10)

Semeion TA-CL TA-SL PTGP LWSC LWEA LWGP E-HC E-MC DREC SPCE SEC Ours-EA Ours-SC
ACC 0.700 0.425 0.692 0.682 0.739 0.620 0.638 0.679 0.450 0.571 0.594 0.846 0.983
NMI 0.634 0.418 0.631 0.630 0.656 0.598 0.601 0.635 0.386 0.571 0.569 0.831 0.962
Purity 0.707 0.449 0.703 0.702 0.739 0.651 0.645 0.705 0.460 0.607 0.634 0.847 0.983
ARI 0.510 0.248 0.507 0.507 0.540 0.465 0.480 0.508 0.290 0.401 0.418 0.790 0.962
F1-score 0.563 0.360 0.560 0.559 0.588 0.525 0.540 0.560 0.391 0.477 0.481 0.813 0.966
Precision 0.522 0.246 0.522 0.523 0.552 0.466 0.468 0.527 0.329 0.381 0.448 0.748 0.966
Recall 0.611 0.712 0.606 0.601 0.631 0.603 0.644 0.599 0.664 0.660 0.524 0.893 0.966

Table 4: Clustering Performance on Semeion (# samples: 1593, dimension: 256, # clusters: 10)

CalTech20 TA-CL TA-SL PTGP LWSC LWEA LWGP E-HC E-MC DREC SPCE SEC Ours-EA Ours-SC
ACC 0.343 0.421 0.345 0.324 0.423 0.336 0.450 0.363 0.340 0.495 0.297 0.726 0.418
NMI 0.402 0.269 0.401 0.396 0.454 0.406 0.455 0.428 0.350 0.452 0.381 0.620 0.621
Purity 0.639 0.520 0.637 0.642 0.665 0.646 0.645 0.660 0.590 0.664 0.633 0.730 0.788
ARI 0.265 0.184 0.267 0.222 0.359 0.224 0.351 0.258 0.225 0.395 0.202 0.785 0.328
F1-score 0.337 0.363 0.338 0.291 0.432 0.298 0.437 0.332 0.316 0.457 0.269 0.823 0.384
Precision 0.561 0.284 0.563 0.529 0.612 0.510 0.538 0.543 0.479 0.503 0.525 0.764 0.743
Recall 0.241 0.562 0.243 0.201 0.335 0.211 0.373 0.239 0.253 0.449 0.181 0.898 0.259

Table 5: Clustering Performance on CalTech20 (# samples: 2386, dimension: 30,000, # clusters: 20)

Texture TA-CL TA-SL PTGP LWSC LWEA LWGP E-HC E-MC DREC SPCE SEC Ours-EA Ours-SC
ACC 0.714 0.410 0.732 0.719 0.793 0.686 0.675 0.675 0.416 0.634 0.614 0.863 0.993
NMI 0.721 0.438 0.731 0.742 0.782 0.739 0.703 0.718 0.419 0.693 0.638 0.868 0.995
Purity 0.729 0.427 0.746 0.744 0.798 0.728 0.685 0.698 0.441 0.658 0.647 0.864 0.995
ARI 0.600 0.237 0.619 0.628 0.696 0.609 0.569 0.585 0.298 0.534 0.486 0.816 0.993
F1-score 0.639 0.350 0.656 0.663 0.724 0.648 0.614 0.626 0.397 0.590 0.537 0.834 0.993
Precision 0.598 0.228 0.627 0.631 0.700 0.592 0.543 0.582 0.337 0.465 0.500 0.780 0.991
Recall 0.690 0.897 0.689 0.700 0.752 0.719 0.710 0.677 0.752 0.827 0.586 0.895 0.996

Table 6: Clustering Performance on Texture (# samples: 5500, dimension: 20, # clusters: 11)
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ISOLET TA-CL TA-SL PTGP LWSC LWEA LWGP E-HC E-MC DREC SPCE SEC Ours-EA Ours-SC
ACC 0.540 0.394 0.539 0.556 0.578 0.527 0.451 0.581 0.324 0.574 0.554 0.575 0.675
NMI 0.718 0.587 0.715 0.721 0.743 0.710 0.667 0.743 0.413 0.818 0.719 0.752 0.831
Purity 0.572 0.407 0.567 0.594 0.605 0.564 0.467 0.619 0.350 0.301 0.590 0.583 0.707
ARI 0.498 0.316 0.495 0.485 0.552 0.472 0.449 0.516 0.251 0.367 0.483 0.563 0.639
F1-score 0.520 0.356 0.517 0.506 0.571 0.495 0.477 0.536 0.303 0.384 0.505 0.584 0.654
Precision 0.467 0.237 0.462 0.458 0.511 0.437 0.352 0.496 0.253 0.584 0.463 0.481 0.625
Recall 0.591 0.787 0.590 0.568 0.648 0.573 0.748 0.584 0.690 0.327 0.555 0.752 0.685

Table 7: Clustering Performance on ISOLET (# samples: 7791, dimension: 617, # clusters: 26)

Coherent-Link Matrix Coherent-Link Matrix LWCA SPCE Proposed Ideal

Figure 5: Visual comparison of the learned pairwise similarity matrices for different methods. All the matrices share the same
color bar, and the brighter color indicates a larger value.

model to different clustering methods. Moreover, Ours-SC
usually performs better than Ours-EA, which means the re-
fined co-association is more suitable for spectral cluster-
ing. Second, the improvements of the proposed methods are
significant. For example, on BinAlpha, compared with the
best method under comparison, Ours-SC increases the ACC
from 0.454 to 0.858. On CalTech20, the highest ACC of the
compared methods is 0.495, while the ACC of Ours-EA is
0.726. The improvements of the proposed methods in terms
of other metrics are also significant. Moreover, the perfor-
mance of Ours-SC on MF, MNIST, Semeion, Texture are ex-
tremely good, i.e., all the metrics are quite close to 1. Those
phenomena suggest that the proposed model brings a break-
through in clustering ensemble. Third, the highly competi-
tive performance of the proposed model is achieved with a
fixed hyper-parameter, proving the practicability of the pro-
posed model. Besides, the proposed model is also robust
to different data sets, as both Ours-EA and Ours-SC con-
sistently produce superior clustering performance on all the
data sets.

Comparison Against Base Clusterings. We compared
the average NMI of the our methods with that of all the base
clusterings from the candidate clustering pool in Fig. 2. It is
clear that, on all the data sets, both Ours-SC and Ours-EA
can significantly improve the NMI of the base clusterings,
and Ours-SC outperforms Ours-EA in the majority cases.

Sensitivity to Hyper-parameter. Fig. 3 shows the NMI of
the proposed methods with different λ on all the data sets,
where we can conclude that: first, a smaller λ usually leads
to better clustering performance for both Ours-EA and Ours-
SC, which demonstrates the importance of removing the in-
correct connections from the original co-association matrix;
and second, for the majority data sets, the highest NMI oc-
curs when λ = 0.002 for both Ours-EA and Ours-SC, which
proves the highly robustness of the proposed model to dif-

ferent data sets.

Performance with Different Number of Base Cluster-
ings. Fig. 4 illustrates the influence of different numbers of
the base clusterings to the proposed model, where we have
the following observations. First, with the increase of the
number of base clusterings, the NMIs of both Ours-EA and
Ours-SC generally increase, indicating that more base clus-
tering are beneficial to the clustering performance. Second,
with more base clusterings, the standard deviations gener-
ally become smaller for all the data sets, which suggests that
more base clusterings can enhance the stability our meth-
ods. Third, for the majority data sets, 20 base clusterings are
sufficient for our methods to generate high value of NMI.

Comparison of the Learned Pairwise Similarity Matrix.
Fig. 5 presents the cohere-link matrix, the traditional co-
association matrix, the learned co-association matrices by
LWCA (Huang, Wang, and Lai 2018), SPCE (Zhou et al.
2020) and the proposed model, and the ideal affinity matrix
of BinAlpha, where all the matrices are normalized to [0, 1]
and share the same color bar. Form 5, we can observe that
the coherent-link matrix is sparse, but its majority connec-
tions are correct, while on the contrary, the co-association
matrix is dense, but with many incorrect connections in it.
By exploiting the the low-rankness of the 3-D tensor stacked
by the coherent-link matrix and the association matrix, the
refined co-association matrix of the proposed model is quite
close to the ideal one. Although there are some error correc-
tions in it, almost all the relationships of two samples be-
longing to the same cluster have been correctly recovered,
leading to high clustering performance. In contrast, there are
many incorrect connections, but without enough correct con-
nections in both the affinity matrices of LWCA and SPCE,
which explains why they produced inferior clustering per-
formance than the proposed model.
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Conclusion
As the first work, we introduced low-rank tensor approxima-
tion to clustering ensemble. Different from previous meth-
ods, the proposed model solves clustering ensemble from
a global perspective, i.e., exploiting the low-rankness of a
3-D tensor formed by the coherent-link matrix and the co-
association matrix, such that the valuable information of the
coherent-link matrix can be effectively propagated to the co-
association matrix. Extensive experiments have shown that
i), the proposed model improves current state-of-the-art per-
formance of clustering ensemble to a new level; ii), the rec-
ommended value for the hyper-parameter of the proposed
model is robust to different data sets; and iii), only a few
base clusterings are required to generate high clustering per-
formance.
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