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Abstract

In a data poisoning attack, an attacker modifies, deletes, and/or
inserts some training examples to corrupt the learnt machine
learning model. Bootstrap Aggregating (bagging) is a well-
known ensemble learning method, which trains multiple base
models on random subsamples of a training dataset using a
base learning algorithm and uses majority vote to predict labels
of testing examples. We prove the intrinsic certified robustness
of bagging against data poisoning attacks. Specifically, we
show that bagging with an arbitrary base learning algorithm
provably predicts the same label for a testing example when
the number of modified, deleted, and/or inserted training exam-
ples is bounded by a threshold. Moreover, we show that our de-
rived threshold is tight if no assumptions on the base learning
algorithm are made. We evaluate our method on MNIST and
CIFAR10. For instance, our method achieves a certified accu-
racy of 91.1% on MNIST when arbitrarily modifying, deleting,
and/or inserting 100 training examples. Code is available at:
https://github.com/jjy1994/BaggingCertifyDataPoisoning.

Introduction
Machine learning models trained on user-provided data are
vulnerable to data poisoning attacks (Nelson et al. 2008;
Biggio, Nelson, and Laskov 2012; Xiao et al. 2015; Li et al.
2016; Steinhardt, Koh, and Liang 2017; Shafahi et al. 2018),
in which malicious users carefully poison (i.e., modify, delete,
and/or insert) some training examples such that the learnt
model is corrupted and makes predictions for testing exam-
ples as an attacker desires. In particular, the corrupted model
predicts incorrect labels for a large fraction of testing exam-
ples indiscriminately (i.e., a large testing error rate) or for
some attacker-chosen testing examples. Unlike adversarial
examples (Szegedy et al. 2014; Carlini and Wagner 2017),
which carefully perturb each testing example such that a
model predicts an incorrect label for the perturbed testing
example, data poisoning attacks corrupt the model such that
it predicts incorrect labels for many clean testing examples.
Like adversarial examples, data poisoning attacks pose severe
security threats to machine learning systems.

To mitigate data poisoning attacks, various defenses (Cretu
et al. 2008; Barreno et al. 2010; Suciu et al. 2018; Tran, Li,
and Madry 2018; Feng et al. 2014; Jagielski et al. 2018;
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Ma, Zhu, and Hsu 2019; Wang et al. 2020; Rosenfeld et al.
2020) have been proposed in the literature. Most of these
defenses (Cretu et al. 2008; Barreno et al. 2010; Suciu et al.
2018; Tran, Li, and Madry 2018; Feng et al. 2014; Jagielski
et al. 2018) achieve empirical robustness against certain data
poisoning attacks and are often broken by strong adaptive
attacks. To end the cat-and-mouse game between attackers
and defenders, certified defenses (Ma, Zhu, and Hsu 2019;
Wang et al. 2020; Rosenfeld et al. 2020) were proposed. We
say a learning algorithm is certifiably robust against data poi-
soning attacks if it can learn a classifier that provably predicts
the same label for a testing example when the number of
poisoned training examples is bounded. For instance, (Ma,
Zhu, and Hsu 2019) showed that a classifier trained with dif-
ferential privacy certifies robustness against data poisoning
attacks. (Wang et al. 2020) and (Rosenfeld et al. 2020) lever-
aged randomized smoothing (Cao and Gong 2017; Cohen,
Rosenfeld, and Kolter 2019), which was originally designed
to certify robustness against adversarial examples, to certify
robustness against data poisoning attacks that modify labels
and/or features of existing training examples.

However, these certified defenses suffer from two major
limitations. First, they are only applicable to limited sce-
narios, i.e., (Ma, Zhu, and Hsu 2019) is limited to learning
algorithms that can be differentially private, while (Wang
et al. 2020) and (Rosenfeld et al. 2020) are limited to data
poisoning attacks that only modify existing training examples.
Second, their certified robustness guarantees are loose, mean-
ing that a learning algorithm is certifiably more robust than
their guarantees indicate. We note that (Steinhardt, Koh, and
Liang 2017) derives an approximate upper bound of the loss
function for data poisoning attacks. However, their method
cannot certify that the learnt model predicts the same label
for a testing example.

We aim to address these limitations in this work. Our ap-
proach is based on a well-known ensemble learning method
called Bootstrap Aggregating (bagging) (Breiman 1996).
Given a training dataset, we create a random subsample with
k training examples sampled from the training dataset uni-
formly at random with replacement. Moreover, we use a
deterministic or randomized base learning algorithm to learn
a base classifier on the subsample. Due to the randomness in
sampling the subsample and the (randomized) base learning
algorithm, the label predicted for a testing example x by the
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learnt base classifier is random. Therefore, we define pj as
the probability that the learnt base classifier predicts label j
for x, where j = 1, 2, · · · , c. We call pj label probability. In
bagging, the ensemble classifier essentially predicts the label
with the largest label probability for x.

Our first major theoretical result is that we prove the en-
semble classifier in bagging predicts the same label for a
testing example when the number of poisoned training ex-
amples is no larger than a threshold. We call the threshold
certified poisoning size. Our second major theoretical result is
that we prove our derived certified poisoning size is tight (i.e.,
it is impossible to derive a certified poisoning size larger than
ours) if no assumptions on the base learning algorithm are
made. Note that the certified poisoning sizes may be different
for different testing examples.

Our certified poisoning size for a testing example is the op-
timal solution to an optimization problem, which involves the
testing example’s largest and second largest label probabili-
ties predicted by the bagging’s ensemble classifier. However,
it is computationally challenging to compute the exact largest
and second largest label probabilities, as there are an expo-
nential number of subsamples with k training examples. To
address the challenge, we propose a Monto Carlo algorithm
to simultaneously estimate a lower bound of the largest label
probability and an upper bound of the second largest label
probability for multiple testing examples via training N base
classifiers on N random subsamples. Moreover, we design
an efficient algorithm to solve the optimization problem with
the estimated largest and second largest label probabilities to
compute certified poisoning size.

We empirically evaluate our method on MNIST and CI-
FAR10. For instance, our method can achieve a certified
accuracy of 91.1% on MNIST when 100 training examples
are arbitrarily poisoned, where k = 100 andN = 1, 000. Un-
der the same attack setting, (Ma, Zhu, and Hsu 2019), (Wang
et al. 2020), and (Rosenfeld et al. 2020) achieve 0 certified
accuracy on a simpler MNIST 1/7 dataset. Moreover, we
show that training the base classifiers using transfer learning
can significantly improve the certified accuracy.

Our contributions are summarized as follows:

• We derive the first intrinsic certified robustness of bagging
against data poisoning attacks and prove the tightness of
our robustness guarantee.

• We develop algorithms to compute the certified poisoning
size in practice.

• We evaluate our method on MNIST and CIFAR10.

All our proofs are shown in our technical report (Jia, Cao,
and Gong 2020).

Certified Robustness of Bagging
Assuming we have a training dataset D =
{(x1, y1), (x2, y2), · · · , (xn, yn)} with n examples,
where xi and yi are the feature vector and label of the ith
training example, respectively. Moreover, we are given
an arbitrary deterministic or randomized base learning
algorithm A, which takes a training dataset D as input and
outputs a classifier f , i.e., f = A(D). f(x) is the predicted
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Figure 1: An example to illustrate why bagging is robust
against data poisoning attacks, where (x5,y5) is the poisoned
training example. Base classifiers f1 and f2 are trained using
clean training examples and bagging predicts the correct label
for a testing example after majority vote among the three base
classifiers.

label for a testing example x. For convenience, we jointly
represent the training and testing processes as A(D,x),
which is x’s label predicted by a classifier that is trained
using algorithm A and training dataset D.

Data poisoning attacks: In a data poisoning attack, an at-
tacker poisons the training dataset D such that the learnt
classifier makes predictions for testing examples as the at-
tacker desires. In particular, the attacker can carefully modify,
delete, and/or insert some training examples in D such that
A(D,x) 6= A(D′,x) for many testing examples x or some
attacker-chosen x, where D′ is the poisoned training dataset.
We note that modifying a training example means modifying
its feature vector and/or label. We denote the set of poisoned
training datasets with at most r poisoned training examples
as follows:

B(D, r) = {D′|max{|D|, |D′|} − |D ∩ D′| ≤ r}. (1)

Intuitively, max{|D|, |D′|} − |D ∩D′| is the minimum num-
ber of modified/deleted/inserted training examples that can
change D to D′.
Bootstrap aggregating (Bagging) (Breiman 1996): Bag-
ging is a well-known ensemble learning method. Roughly
speaking, bagging creates many subsamples of a training
dataset with replacement and trains a base classifier on each
subsample. For a testing example, bagging uses each base
classifier to predict its label and takes majority vote among
the predicted labels as the label of the testing example. Fig-
ure 1 shows a toy example to illustrate why bagging certifies
robustness against data poisoning attacks. When the poisoned
training examples are minority in the training dataset, a ma-
jority of the subsamples do not include any poisoned training
examples. Therefore, a majority of the base classifiers and
the bagging’s predicted labels for testing examples are not
influenced by the poisoned training examples.

Next, we describe a probabilistic view of bagging, which
makes it possible to theoretically analyze its certified robust-
ness against data poisoning attacks. Specifically, we denote
by g(D) a random subsample, which is a list of k exam-
ples that are sampled from D with replacement uniformly
at random. We use the base learning algorithm A to learn
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a base classifier on g(D). Due to the randomness in sam-
pling the subsample g(D) and the (randomized) base learn-
ing algorithm A, the label A(g(D),x) predicted by the base
classifier learnt on g(D) for x is random. We denote by
pj = Pr(A(g(D),x) = j) the probability that the learnt base
classifier predicts label j for x, where j = 1, 2, · · · , c. We
call pj label probability. The ensemble classifier h in bagging
essentially predicts the label with the largest label probability
for x, i.e., we have:

h(D,x) = argmax
j∈{1,2,··· ,c}

pj , (2)

where h(D,x) is the predicted label for x when the ensemble
classifier h is trained on D.
Certified robustness of bagging: We prove the certified ro-
bustness of bagging against data poisoning attacks. In partic-
ular, we show that the ensemble classifier in bagging predicts
the same label for a testing example when the number of
poisoned training examples is no larger than some thresh-
old (called certified poisoning size). Formally, we aim to
show h(D′,x) = h(D,x) for ∀D′ ∈ B(D, r∗), where r∗ is
the certified poisoning size. For convenience, we define the
following two random variables:

X = g(D), Y = g(D′), (3)

where X and Y are two random subsamples with k exam-
ples sampled from D and D′ with replacement uniformly
at random, respectively. pj = Pr(A(X,x) = j) and p′j =
Pr(A(Y,x) = j) are the label probabilities of label j for
testing example x when the training dataset is D and its poi-
soned version D′, respectively. For simplicity, we use Ω to
denote the joint space of X and Y , i.e., each element in Ω is
a subsample of k examples sampled from D or D′ uniformly
at random with replacement.

Suppose the ensemble classifier predicts label l for x when
trained on the clean training dataset, i.e., h(D,x) = l. Our
goal is to find the maximal poisoning size r such that the
ensemble classifier still predicts label l for x when trained
on the poisoned training dataset with at most r poisoned
training examples. Formally, our goal is to find the maximal
poisoning size r such that the following inequality is satisfied
for ∀D′ ∈ B(D, r):

h(D′,x) = l⇐⇒ p′l > max
j 6=l

p′j . (4)

However, it is challenging to compute p′l and maxj 6=l p
′
j due

to the complicated base learning algorithm A. To address
the challenge, we aim to derive a lower bound of p′l and an
upper bound of maxj 6=l p

′
j , where the lower bound and upper

bound are independent from the base learning algorithm A
and can be easily computed for a given r. In particular, we
derive the lower bound and upper bound as the probabilities
that the random variable Y is in certain regions of the space
Ω via the Neyman-Pearson Lemma (Neyman and Pearson
1933). Then, we can find the maximal r such that the lower
bound is larger than the upper bound for any D′ ∈ B(D, r),
and such maximal r is our certified poisoning size r∗.

Next, we show the high-level idea of our approach to derive
the lower and upper bounds (details are in Supplemental

Material). Our key idea is to construct regions in the space Ω
such that the random variablesX and Y satisfy the conditions
of the Neyman-Pearson Lemma (Neyman and Pearson 1933),
which enables us to derive the lower and upper bounds using
the probabilities that Y is in these regions. Next, we discuss
how to construct the regions. Suppose we have a lower bound
pl of the largest label probability pl and an upper bound ps
of the second largest label probability ps when the ensemble
classifier is trained on the clean training dataset. Formally, pl
and ps satisfy:

pl ≥ pl ≥ ps ≥ ps = max
j 6=l

pj . (5)

We use the probability bounds instead of the exact label
probabilities pl and ps, because it is challenging to compute
them exactly. We first divide the space Ω into three regions B,
C, and E , which include subsamples with k examples sampled
from D, D′, and D ∩ D′, respectively. Then, we can find a
region B′ ⊆ E such that we have Pr(X ∈ B ∪ B′) = pl − δl,
where δl = pl − (bpl · nkc)/nk is a small residual. We have
the residual δl because Pr(X ∈ B∪B′) is an integer multiple
of 1

nk . The reason we assume we can find such region B′ is
that we aim to derive a sufficient condition. Similarly, we can
find Cs ⊆ E such that we have Pr(X ∈ Cs) = ps + δs, where
δs = (dps · nke)/nk − ps is a small residual. Given these
regions, we leverage the Neyman-Pearson Lemma (Neyman
and Pearson 1933) to derive a lower bound of p′l and an upper
bound of maxj 6=l p

′
j as follows:

p′l ≥ Pr(Y ∈ B ∪ B′), (6)

max
j 6=l

p′j ≤ Pr(Y ∈ C ∪ Cs), (7)

where the lower bound Pr(Y ∈ B ∪ B′) and upper bound
Pr(Y ∈ C ∪Cs) can be easily computed for a given r. Finally,
we find the maximal r such that the lower bound is still larger
than the upper bound, which is our certified poisoning size r∗.
The following Theorem 1 formally summarizes our certified
robustness guarantee of bagging.
Theorem 1 (Certified Poisoning Size of Bagging). Given
a training dataset D, a deterministic or randomized base
learning algorithmA, and a testing example x. The ensemble
classifier h in bagging is defined in Equation (2). Suppose l
and s respectively are the labels with the largest and second
largest label probabilities predicted by h for x. Moreover, the
probability bounds pl and ps satisfy (5). Then, h still predicts
label l for x when the number of poisoned training examples
is bounded by r∗, i.e., we have:

h(D′,x) = l, ∀D′ ∈ B(D, r∗), (8)

where r∗ is the solution to the following optimization prob-
lem:

r∗ = argmax
r

r

s.t. max
n−r≤n′≤n+r

(
n′

n
)k − 2 · (max(n, n′)− r

n
)k

+ 1− (pl − ps − δl − δs) < 0, (9)

where n = |D|, n′ = |D′|, δl = pl − (bpl · nkc)/nk, and
δs = (dps · nke)/nk − ps.
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Given Theorem 1, we have the following corollaries.
Corollary 1. Suppose a data poisoning attack only modi-
fies existing training examples. Then, we have n′ = n and
the solution to optimization problem (9) is r∗ = dn · (1 −
k

√
1− pl−ps−δl−δs

2 )− 1e.
Corollary 2. Suppose a data poisoning attack only deletes
existing training examples. Then, we have n′ = n − r and
r∗ = dn · (1− k

√
1− (pl − ps − δl − δs))− 1e.

Corollary 3. Suppose a data poisoning attack only inserts
new training examples. Then, we have n′ = n+ r and r∗ =

dn · ( k

√
1 + (pl − ps − δl − δs)− 1)− 1e.

The next theorem shows that our derived certified poison-
ing size is tight.
Theorem 2 (Tightness of the Certified Poisoning Size). As-
suming we have pl + ps ≤ 1, pl + (c − 1) · ps ≥ 1, and
δl = δs = 0. Then, for any r > r∗, there exist a base
learning algorithm A∗ consistent with (5) and a poisoned
training dataset D′ with r poisoned training examples such
that h(D′,x) 6= l or there exist ties.

We have several remarks about our theorems.
Remark 1: Our Theorem 1 is applicable for any base learn-
ing algorithm A, i.e., bagging with any base learning algo-
rithm is provably robust against data poisoning attacks.
Remark 2: For any lower bound pl of the largest label prob-
ability and upper bound ps of the second largest label proba-
bility, Theorem 1 derives a certified poisoning size. Moreover,
our certified poisoning size is related to the gap between the
two probability bounds. If we can estimate tighter probability
bounds, then the certified poisoning size may be larger.
Remark 3: Theorem 2 shows that when no assumptions
on the base learning algorithm are made, it is impossible to
certify a poisoning size that is larger than ours.

Computing the Certified Poisoning Size
Given a base learning algorithm A, a training dataset D, sub-
sampling size k, and e testing examples in De, we aim to
compute the label li predicted by the ensemble classifier and
the corresponding certified poisoning size r∗i for each testing
example xi. For a testing example xi, our certified poisoning
size relies on a lower bound pli of the largest label prob-
ability and an upper bound psi of the second largest label
probability. We design a Monte-Carlo algorithm to estimate
the probability bounds for the e testing examples simultane-
ously via training N base classifiers. Next, we first describe
estimating the probability bounds. Then, we describe our effi-
cient algorithm to solve the optimization problem in (9) with
the estimated probability bounds to compute the certified
poisoning sizes.
Computing the predicted label and probability bounds
for one testing example: We first discuss estimating the
predicted label li and probability bounds pli and psi for one
testing example xi. We first randomly sample N subsamples
L1,L2, · · · ,LN from D with replacement, each of which
has k training examples. Then, we train a base classifier fo

for each subsample Lo using the base learning algorithm
A, where o = 1, 2, · · · , N . We use the base classifiers to
predict labels for xi, and we denote by Nj the frequency of
label j, i.e., Nj is the number of base classifiers that pre-
dict label j for xi. We estimate the label with the largest
frequency as the label li predicted by the ensemble classifier
h for xi. Moreover, based on the definition of label prob-
ability, the frequency Nj of the label j among the N base
classifiers follows a binomial distribution with parameters N
and pj . Therefore, given the label frequencies, we can use the
Clopper-Pearson (Clopper and Pearson 1934) based method
called SimuEM (Jia et al. 2020a) to estimate the following
probability bounds simultaneously:

pli = Beta(
α

c
;Nli , N −Nli + 1) (10)

pj = Beta(1− α

c
;Nj , N −Nj + 1), ∀j 6= li, (11)

where 1− α is the confidence level and Beta(β;λ, θ) is the
βth quantile of the Beta distribution with shape parameters
λ and θ. One natural method to estimate psi is that psi =
maxj 6=li pj . However, this bound may be loose. For example,
pli + psi may be larger than 1. Therefore, we estimate psi as
psi = min(maxj 6=li pj , 1− pli).
Computing the predicted labels and probability bounds
for e testing examples: One way of estimating the predicted
labels and probability bounds for e testing examples is to ap-
ply the above process for each testing example separately.
However, such process requires trainingN base classifiers for
each testing example, which is computationally intractable.
To address the challenge, we propose a method to estimate
them for e testing examples simultaneously via training N
base classifiers in total. Our key idea is to divide the confi-
dence level among the e testing examples such that we can
estimate their predicted labels and probability bounds using
the same N base classifiers with a simultaneous confidence
level at least 1 − α. Specifically, we still use the N base
classifiers to predict the label for each testing example as we
described above. Then, we follow the above process to esti-
mate the probability bounds pli and psi for a testing example
xi via replacing α as α/e in Equation (10) and (11). Based
on the Bonferroni correction, the simultaneous confidence
level of estimating the probability bounds for the e testing
examples is at least 1− α.
Computing the certified poisoning sizes: Given the esti-
mated probability bounds pli and psi for a testing example
xi, we solve the optimization problem in (9) to obtain its
certified poisoning size r∗i . We design an efficient binary
search based method to solve r∗i . Specifically, we use binary
search to find the largest r such that the constraint in (9) is
satisfied. We denote the left-hand side of the constraint as
maxn−r≤n′≤n+r L(n). For a given r, a naive way to check
whether the constraint maxn−r≤n′≤n+r L(n′) < 0 holds is
to check whether L(n′) < 0 holds for each n′ in the range
[n− r, n+ r], which could be inefficient when r is large. To
reduce the computation cost, we derive an analytical form of
n′ at which L(n′) reaches its maximum value. Our analytical
form enables us to only check whether L(n′) < 0 holds for
at most two different n′ for a given r. The details of deriving
the analytical form are shown in Supplemental Material.
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Algorithm 1 CERTIFY

Input: A, D, k, N , De, α.
Output: Predicted label and certified poisoning size for
each testing example.
f1, f2, · · · , fN ← TRAINUNDERSAMPLE(A,D, k,N)
for xi in De do

counts[j]←
∑N
o=1 I(fo(xi) = j), j ∈ {1, 2, · · · , c}

li, si ← top two indices in counts (ties are broken uni-
formly at random).
pli , psi ← SIMUEM(counts, αe )
if pli > psi then
r∗i ← BINARYSEARCH(pli , psi , k, |D|)

else
li, r
∗
i ← ABSTAIN,ABSTAIN

end if
end for
return l1, l2, · · · , le and r∗1 , r

∗
2 , · · · , r∗e

Complete certification algorithm: Algorithm 1 shows our
certification process to estimate the predicted labels and cer-
tified poisoning sizes for e testing examples in De. The func-
tion TRAINUNDERSAMPLE randomly samples N subsam-
ples and trains N base classifiers. The function SIMUEM
estimates the probability bounds pli and psi with confidence
level 1 − α

e . The function BINARYSEARCH solves the op-
timization problem in (9) using the estimated probability
bounds pli and psi to obtain the certified poisoning size r∗i
for testing example xi.

Since the probability bounds are estimated using a Monte
Carlo algorithm, they may be estimated incorrectly, i.e.,
pli > pli or psi < psi . When they are estimated incorrectly,
our algorithm CERTIFY may output an incorrect certified
poisoning size. However, the following theorem shows that
the probability that CERTIFY returns an incorrect certified
poisoning size for at least one testing example is at most α.
Theorem 3. The probability that CERTIFY returns an incor-
rect certified poisoning size for at least one testing example
in De is at most α, i.e., we have:

Pr(∩xi∈De((∀D
′ ∈ B(D, r∗i ), h(D′,xi) = li)|li 6= ABSTAIN))

≥ 1− α. (12)

Experiments
Experimental Setup
Datasets and classifiers: We use MNIST and CIFAR10
datasets. The base learning algorithm is neural network, and
we use the example convolutional neural network architec-
ture and ResNet20 (He et al. 2016) in Keras for MNIST and
CIFAR10, respectively. The number of training examples in
the two datasets are 60, 000 and 50, 000, respectively, which
are the training datasets that we aim to certify. Both datasets
have 10,000 testing examples, which are the De in our algo-
rithm. When we train a base classifier, we adopt the example
data augmentation in Keras for both datasets.
Evaluation metric: We use certified accuracy as our evalu-
ation metric. In particular, we define the certified accuracy at

r poisoned training examples of a classifier as the fraction of
testing examples whose labels are correctly predicted by the
classifier and whose certified poisoning sizes are at least r.
Formally, we have the certified accuracy CAr at r poisoned
training examples as follows:

CAr =

∑
xi∈De

I(li = yi) · I(r∗i ≥ r)
|De|

, (13)

where yi is the ground truth label for testing example xi,
and li and r∗i respectively are the label predicted by the clas-
sifier and the corresponding certified poisoning size for xi.
Intuitively, CAr of a classifier means that, when the number
of poisoned training examples is r, the classifier’s testing
accuracy for De is at least CAr no matter how the attacker
manipulates the r poisoned training examples. Based on The-
orem 3, the CAr computed using the predicted labels and
certified poisoning sizes outputted by our CERTIFY algorithm
has a confidence level 1− α.
Parameter setting: Our method has three parameters, i.e.,
k, α, and N . Unless otherwise mentioned, we adopt the
following default settings for them: α = 0.001, N = 1, 000,
k = 30 for MNIST, and k = 500 for CIFAR10. We will study
the impact of each parameter while setting the remaining
parameters to their default values. Note that training the N
base classifiers can be easily parallelized. We performed
experiments on a server with 80 CPUs@2.1GHz, 8 GPUs
(RTX 6,000), and 385 GB main memory.

Experimental Results
Comparing different data poisoning attacks: An attacker
can modify, delete, and/or insert training examples in data
poisoning attacks. We compare the certified accuracy of our
method when an attacker only modifies, deletes, or inserts
training examples. Our Corollary 1-3 show the certified poi-
soning sizes for such attacks. Figure 2(a) shows the com-
parison results, where “All” corresponds to the attacks that
can use modification, deletion, and insertion. Our method
achieves the best certified accuracy for attacks that only delete
training examples. This is because deletion simply reduces
the size of the clean training dataset. The curves correspond-
ing to Modification and All overlap and have the lowest
certified accuracy. This is because modifying a training ex-
ample is equivalent to deleting an existing training example
and inserting a new one. In the following experiments, we
use the All attacks unless otherwise mentioned.
Impact of k, α, and N : Figure 2 shows the impact of k,
α, and N on the certified accuracy of our method. As the
results show, k controls a tradeoff between accuracy under
no poisoning and robustness. Specifically, when k is larger,
our method has a higher accuracy when there are no data poi-
soning attacks (i.e., r = 0) but the certified accuracy drops
more quickly as the number of poisoned training examples
increases. The reason is that a larger k makes it more likely
to sample poisoned training examples when creating the sub-
samples in bagging. The certified accuracy increases as α
or N increases. The reason is that a larger α or N produces
tighter estimated probability bounds, which make the certi-
fied poisoning sizes larger. We also observe that the certified
accuracy is relatively insensitive to α.
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Figure 2: (a) Comparing different data poisoning attacks. (b)-(d) Impact of k, α, and N on the certified accuracy of our method.
The first row is the result on MNIST and the second row is the result on CIFAR10.
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Figure 3: (a) Transfer learning improves our certified accuracy on CIFAR10. Comparing our method with existing methods with
respect to (b) certified accuracy and (c) running time on the MNIST 1/7 dataset.

Transfer learning improves certified accuracy: Our
method trains multiple base classifiers and each base clas-
sifier is trained using k training examples. Improving the
accuracy of each base classifier can improve the certified
accuracy. We explore using transfer learning to train more
accurate base classifiers. Specifically, we use the Inception-
v3 classifier pretrained on ImageNet to extract features and
we use a public implementation1 to train our base classifiers
on CIFAR10. Figure 3(a) shows that transfer learning can
significantly increase our certified accuracy, where k = 100,
α = 0.001, and N = 1, 000. Note that we assume the pre-
trained classifier is not poisoned in this experiment.
Comparing with (Ma, Zhu, and Hsu 2019), (Wang et al.
2020), and (Rosenfeld et al. 2020): Since these methods
are not scalable because they train N classifiers on the entire
training dataset, we perform comparisons on the MNIST 1/7
dataset that just includes digits 1 and 7. This subset includes
13,007 training examples and 2,163 testing examples. Note
that our above experiments used the entire MNIST dataset.

• (Ma, Zhu, and Hsu 2019). Ma et al. showed that a clas-
sifier trained with differential privacy achieves certified
robustness against data poisoning attacks. Suppose ACCr
is the testing accuracy for De of a differentially private
classifier trained on a poisoned training dataset with r poi-
soned training examples. Based on the Theorem 3 in (Ma,

1https://github.com/alexisbcook/keras transfer cifar10

Zhu, and Hsu 2019), we have the expected testing accu-
racy E(ACCr) is lower bounded by a certain function
of E(ACC), r, and (ε, δ) (the function can be found in
their Theorem 3), where E(ACC) is the expected testing
accuracy of a differentially private classifier that is trained
using the clean training dataset and (ε, δ) are the differ-
ential privacy parameters. The randomness in E(ACCr)
and E(ACC) are from differential privacy. This lower
bound is the certified accuracy that the method achieves.
A lower bound of E(ACC) can be further estimated with
confidence level 1−α via training N differentially private
classifiers on the entire clean training dataset. For simplic-
ity, we estimateE(ACC) as the average testing accuracies
of the N differentially private classifiers, which gives ad-
vantages for this method. We use DP-SGD (Abadi et al.
2016) implemented in TensorFlow to train differentially
private classifiers. Moreover, we set ε = 0.3 and δ = 10−5

such that this method and our method achieve comparable
certified accuracies when r = 0.

• (Wang et al. 2020) and (Rosenfeld et al. 2020). Wang
et al. proposed a randomized smoothing based method to
certify robustness against backdoor attacks via randomly
flipping features and labels of training examples as well
as features of testing examples. Rosenfeld et al. leveraged
randomized smoothing to certify robustness against label
flipping attacks. Both methods can be generalized to cer-
tify robustness against data poisoning attacks that modify
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both features and labels of existing training examples via
randomly flipping features and labels of training examples.
Moreover, the two methods become the same after such
generalization. Therefore, we only show results for (Wang
et al. 2020). In particular, we binarize the features to apply
this method. We train N classifiers to estimate the certified
accuracy with a confidence level 1−α. Unlike our method,
when training a classifier, they flip each feature/label value
in the training dataset with probability β and use the entire
noisy training dataset. When predicting the label of a test-
ing example, this method takes a majority vote among the
N classifiers. We set β = 0.3 such that this method and
our method achieve comparable certified accuracies when
r = 0. We note that this method certifies the number of
poisoned features/labels in the training dataset. We trans-
form this certificate to the number of poisoned training
examples as b F

d+1c, where F is the certified number of
features/labels and d + 1 is the number of features/label
of a training example (d features + one label). We have
d = 784 for MNIST.

Figure 3(b) shows the comparison results, where k = 50,
α = 0.001, and N = 1, 000. To be consistent with previous
work, we did not use data augmentation when training the
base classifiers for all three methods in these experiments.
Our method significantly outperforms existing methods. For
example, our method can achieve 96.95% certified accuracy
when the number of poisoned training examples is r = 50,
while the certified accuracy is 0 under the same setting for
existing methods. Figure 3(c) shows that our method is also
more efficient than existing methods. This is because our
method trains base classifiers on a small number of training
examples while existing methods train classifiers on the en-
tire training dataset. Ma et al. outperforms Wang et al. and
Rosenfeld et al. because differential privacy directly certifies
robustness against modification/deletion/insertion of train-
ing examples while randomized smoothing was designed to
certify robustness against modifications of features/labels.

Related Work
Data poisoning attacks carefully modify, delete, and/or in-
sert some training examples in the training dataset such that
a learnt model makes incorrect predictions for many test-
ing examples indiscriminately (i.e., the learnt model has a
large testing error rate) or for some attacker-chosen testing
examples. For instance, data poisoning attacks have been
shown to be effective for Bayes classifiers (Nelson et al.
2008), SVMs (Biggio, Nelson, and Laskov 2012), neural
networks (Yang et al. 2017; Muñoz-González et al. 2017;
Suciu et al. 2018; Shafahi et al. 2018), linear regression
models (Mei and Zhu 2015b; Jagielski et al. 2018), PCA (Ru-
binstein et al. 2009), LASSO (Xiao et al. 2015), collaborative
filtering (Li et al. 2016; Yang, Gong, and Cai 2017; Fang
et al. 2018; Fang, Gong, and Liu 2020), clustering (Biggio
et al. 2013, 2014), graph-based methods (Zügner, Akbarne-
jad, and Günnemann 2018; Wang and Gong 2019; Jia et al.
2020b; Zhang et al. 2020), federated learning (Fang et al.
2020; Bhagoji et al. 2019; Bagdasaryan et al. 2020), and oth-
ers (Mozaffari-Kermani et al. 2014; Mei and Zhu 2015a; Koh,

Steinhardt, and Liang 2018; Zhu et al. 2019). We note that
backdoor attacks (Gu et al. 2019; Liu et al. 2018) also poison
the training dataset. However, unlike data poisoning attacks,
backdoor attacks also inject perturbation (i.e., a trigger) to
testing examples.

One category of defenses (Cretu et al. 2008; Barreno et al.
2010; Suciu et al. 2018; Tran, Li, and Madry 2018) aim to
detect the poisoned training examples based on their negative
impact on the error rate of the learnt model. Another category
of defenses (Feng et al. 2014; Jagielski et al. 2018) aim to
design new loss functions, solving which detects the poisoned
training examples and learns a model simultaneously. For
instance, (Jagielski et al. 2018) proposed to jointly optimize
the selection of a subset of training examples with a given
size and a model that minimizes the loss function; and the
unselected training examples are treated as poisoned ones.
(Steinhardt, Koh, and Liang 2017) assumes that a model is
trained only using examples in a feasible set and derives an
approximate upper bound of the loss function for any data
poisoning attacks under these assumptions. However, all of
these defenses cannot certify that the learnt model predicts
the same label for a testing example under data poisoning
attacks.

(Ma, Zhu, and Hsu 2019) shows that differentially pri-
vate models certify robustness against data poisoning attacks.
(Wang et al. 2020) proposes to use randomized smoothing to
certify robustness against backdoor attacks, which is also ap-
plicable to certify robustness against data poisoning attacks.
(Rosenfeld et al. 2020) leverages randomized smoothing to
certify robustness against label flipping attacks. However,
these defenses achieve loose certified robustness guarantees.
Moreover, (Ma, Zhu, and Hsu 2019) is only applicable to
learning algorithms that can be differentially private, while
(Wang et al. 2020) and (Rosenfeld et al. 2020) are only appli-
cable to data poisoning attacks that modify existing training
examples. (Biggio et al. 2011) proposed bagging as an empiri-
cal defense against data poisoning attacks. However, they did
not derive the certified robustness of bagging. We note that a
concurrent work (Levine and Feizi 2021) proposed to certify
robustness against data poisoning attacks via partitioning the
training dataset using a hash function. However, their results
are only applicable to deterministic learning algorithms.

Conclusion
Data poisoning attacks pose severe security threats to ma-
chine learning systems. In this work, we show the intrinsic
certified robustness of bagging against data poisoning at-
tacks. Specifically, we show that bagging predicts the same
label for a testing example when the number of poisoned
training examples is bounded. Moreover, we show that our
derived bound is tight if no assumptions on the base learning
algorithm are made. We also empirically demonstrate the ef-
fectiveness of our method using MNIST and CIFAR10. Our
results show that our method achieves much better certified
robustness and is more efficient than existing certified de-
fenses. Interesting future work includes: 1) generalizing our
method to other types of data, e.g., graphs, and 2) improving
our method by leveraging meta-learning.
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