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Abstract

Knowledge distillation extracts general knowledge from a pre-
trained teacher network and provides guidance to a target stu-
dent network. Most studies manually tie intermediate features
of the teacher and student, and transfer knowledge through
pre-defined links. However, manual selection often constructs
ineffective links that limit the improvement from the distilla-
tion. There has been an attempt to address the problem, but it
is still challenging to identify effective links under practical
scenarios. In this paper, we introduce an effective and effi-
cient feature distillation method utilizing all the feature levels
of the teacher without manually selecting the links. Specif-
ically, our method utilizes an attention-based meta-network
that learns relative similarities between features, and applies
identified similarities to control distillation intensities of all
possible pairs. As a result, our method determines competent
links more efficiently than the previous approach and provides
better performance on model compression and transfer learn-
ing tasks. Further qualitative analyses and ablative studies
describe how our method contributes to better distillation. The
implementation code is available at open sourced1.

Introduction
Knowledge distillation is the technique for transferring
knowledge from a source neural network to a target neu-
ral network (Hinton, Vinyals, and Dean 2015). The source
network, referred to as a teacher, indicates a large network
that is highly regularized via pre-training, and the target net-
work, referred to as a student, is a smaller network for a
specific task. The pre-trained teacher directly informs the
student of the solution and intermediate process of a problem,
and this informative supervision enables fast and effective
learning of the student. Based on knowledge distillation, re-
cent studies have shown significant improvements in model
compression (Hinton, Vinyals, and Dean 2015; Romero et al.
2014; Yim et al. 2017; Tian, Krishnan, and Isola 2019), cross-
domain transfer learning (Orbes-Arteainst et al. 2019; Li
et al. 2017; Asami et al. 2017), and continual learning (Li
and Hoiem 2017; Hou et al. 2018).

∗This work was done at internship in CLOVA AI Research,
NAVER Corp.
Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1github.com/clovaai/attention-feature-distillation.

For the success of knowledge distillation, various dis-
tillation methods were introduced. Starting from transfer-
ring output probability distributions of the teacher (Hinton,
Vinyals, and Dean 2015), intermediate features representa-
tions (Romero et al. 2014) and their variants (Zagoruyko
and Komodakis 2016a; Park et al. 2019; Tian, Krishnan, and
Isola 2019) are investigated to identify what knowledge of
the teacher helps to build a better student. However, most
studies manually links the teacher and student features and
perform distillation through the links individually. This man-
ual link selection does not consider the similarity between
the teacher and student features, so there is a risk of forcing
an incorrect intermediate process to the student. Furthermore,
the link selection has a limitation on fully utilizing the whole
knowledge of the teacher by choosing a few of all possible
links.

To compensate for the limitation, Jang et al. (Jang et al.
2019) apply a meta-networks, “learning to transfer (L2T)”,
automatically determining the links. In more details, the meta-
network consists of individual gates for all possible links, and
each gate determines whether distillation through the link
contributes to decreasing the classification loss of the stu-
dent. Their results prove that knowledge distillation with the
identified links provides better performance than those with
manually selected links. However, the individual gates are
not aware of each other although the distillation through the
gates simultaneously affect the student. Moreover, their meta-
learning scheme requires expensive inner-loop procedures to
learn their meta-networks, thus its application can be limited
under practical scenarios.

In this paper, we introduce a new feature linking method
based on an attention mechanism (Xu et al. 2015; Vaswani
et al. 2017), which is called attention-based feature distil-
lation (AFD). Specifically, AFD utilizes an attention-based
meta-network that identifies similar features between the
teacher and student. The identified similarities are applied
to control the distillation intensities for all possible feature
pairs. Figure 1 shows an overview of our proposed distillation
method to provide graphical descriptions.

When comparing from L2T, our proposed method con-
siders the granularity of the teacher and student features to
identify the importance of their links while L2T only uses
information for a single pair in a narrow perspective. In addi-
tion, AFD learns from feature similarities without any inner-
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Figure 1: Overview of AFD. An attention-based model determines similarities between the teacher and student features.
Knowledge from each teacher feature is transferred to the student with the identified similarities.

loop procedure but L2T learns from the classification loss,
which requires expensive Hessian computation. In our exper-
iment, we observe that L2T and ours have distinct linking
results from the different objectives, but our method shows
better or comparable results on multiple tasks with more
efficient computation.

We conduct experiments for model compression on three
image classification tasks such as CIFAR-100 (Krizhevsky,
Hinton et al. 2009), tinyImageNet, and ImageNet (Deng
et al. 2009) and for domain transfer on four specific tasks
such as CUB200 (Wah et al. 2011), MIT67 (Quattoni and
Torralba 2009), Stanford40 (Yao et al. 2011), and Stanford
Dogs (Khosla et al. 2011) with a pre-trained large network
on ImageNet. As a result, our method shows performance
gains in most of experiments and the analyses on the iden-
tified feature links explains how our method works. Further
ablation studies and sensitivity analysis provide a guideline
to use our method.

Related Work
Hinton et al. introduced the concept of knowledge distilla-
tion (Hinton, Vinyals, and Dean 2015) by utilizing the output
probability distributions of the teacher as a soft label to trans-
fer knowledge. Also, intermediate features from the teacher
have been proved to hold additional knowledge that can con-
tribute to improving the student performance. Romero et al.
(FitNet (Romero et al. 2014)) proposed feature-based distilla-
tion that couples the teacher and student features and induce
the student to mimic the paired teacher features. However,
due to a capacity gap between the teacher and the student,
it is challenging for the student to mimic the exact teacher
features.

To address the problem, recent works focused on propagat-
ing core knowledge from the teacher features. Zagoruyko et
al. (Zagoruyko and Komodakis 2016a) simplified teacher fea-
tures by applying channel-wise summations and led the stu-
dent to learn core knowledge of refined teacher features. Kim
et al. (Kim, Park, and Kwak 2018) extracted low-dimensional

representations of the features via multiple auto-encoders
and transfer them to the student. Relational knowledge dis-
tillation aims to transfer relation knowledge between data
instances (Park et al. 2019; Tung and Mori 2019; Peng et al.
2019; Liu et al. 2019). In the other direction of feature refine-
ment methods, the distillation regularization terms have been
explored to allow the student to accept more knowledge. Ahn
et al. (Ahn et al. 2019) transferred knowledge by maximizing
the mutual information between the feature of the teacher and
student. Huang et al. (Huang and Wang 2017) utilized the
maximum mean discrepancy to propagate knowledge from
the teacher features. Tian et al. (Tian, Krishnan, and Isola
2019) applied the contrastive learning scheme on relational
knowledge distillation.

Although distillation methods on how to refine and prop-
agate knowledge have been continuously advanced as the
above, it is still remaining problem how to link intermedi-
ate features between the teacher and student. Our method is
placed to solve the problem as like L2T (Jang et al. 2019).
However, L2T and ours have different properties to identify
the links.

Attention-based Feature Distillation
Let hT = {hT

1, ..., h
T
T } be a set of the feature candidates from

the teacher and hS = {hS
1, ..., h

S
S} be a set of feature candi-

dates from the student where T and S indicate the numbers
of the candidates from the teacher and student, respectively.
Each candidate has its own feature map size and channel
dimension as h ∈ RH×W×d where H , W , and d indicate the
height, width, and channel dimension, respectively. When
two sets of the candidates are given, AFD aims to identify
similarities for all possible combinations (S × T pairs) and
transfer knowledge of the teacher candidates to the student
with the identified similarities.

Figure 2 shows the overview of our proposed network.
As can be seen, the feature candidates are compared in two
directions with the two pooling methods: global average
pooling and channel-wise pooling. The similarity identified
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Figure 2: Overview of the proposed meta-network. The globally pooled features are utilized to estimate the similarities and the
channel-wisely averaged features are used to calculate the distance between the features.

by two globally pooled features is used as an intensity for
transferring knowledge through the distance defined by the
channel-wisely averaged features. In order to identify the
similarity between hT

t and hS
s, AFD adopts a query-key con-

cept of the attention mechanism (Xu et al. 2015; Vaswani
et al. 2017). Specifically, each teacher feature generates a
query, qt, and each student feature identifies a key, ks. The
followings describe qt and ks in mathematical expressions;

qt = fQ(WQ
t · φHW (hT

t )),

ks = fK(WK
s · φHW (hS

s)).
(1)

Here, φHW (·) indicates a global average pooling. fQ and fK
are activation function of the query and key. WQ

t ∈ Rd×dT
t

and WK
s ∈ Rd×dS

s are linear transition parameters for the t-th
query and the s-th key. It should be noted that the features
have different transition weights since they have different
properties through their different levels, i.e. a low-level vi-
sual feature can represent a line and a high-level visual fea-
tures can represent an object. Therefore, we apply different
transition weights to each features.

By utilizing the queries and keys, attention values that
represent relations between teacher and student candidates
are calculated with a “softmax” function;

αt = softmax([(q>t W
Q-K
1 kt,1 + (pT

t )>pS
1)/
√
d,

· · · , (q>t W
Q-K
S kt,S + (pT

t )>pS
S)/
√
d]).

(2)

Here, we introduce additional weight parameters; a bilinear
weight, WQ-K

t ∈ Rd×d, and positional encodings, pT
t ∈ Rd

and pS
s ∈ Rd. The bilinear weight is applied to general-

ize the attention value from different source ranks since the
query and key are identified from different dimensional fea-
tures (Pirsiavash, Ramanan, and Fowlkes 2009; Kim, Jun,
and Zhang 2018). The positional encodings are utilized to
share common information over different instances (Vaswani
et al. 2017). αt is the attention vector that capture relation
between the t-th teacher feature and whole student features.
By utilizing αt, the teacher feature, hT

t , enables to transfer its
knowledge selectively to student features.

The final distillation term forms as

LAFD = ΣtΣsαt,s

∥∥∥φ̃C(hT
t )− φ̃C(ĥS

s)
∥∥∥
2
, (3)

where φ̃C indicates a combined function of a channel-wise
average pooling layer with L2 normalization, v/ ‖v‖2, by

following (Zagoruyko and Komodakis 2016a). In addition,
ĥS
s is up-sampled or down-sampled from hS

s to match the
feature map size to those of the teacher features.

Finally, the regularization term is added to the total loss
function as following;

LStudent = Lcls + βLAFD, (4)

where Lcls is the classification loss with ground-truth labels
and β is a trade-off parameter controlling the impact of the
proposed distillation loss. We use cross entropy for Lcls. Us-
ing the loss, the student and the attention-based network are
trained simultaneously. It should be noted that the AFD net-
work is trained only with LAFD that represents the weighted
similarities for all possible feature pairs, so AFD does not
require expensive Hessian computations to connect its param-
eters with Lcls.

Experiments
We evaluate our proposed method on model compression
tasks that train a smaller, or better model under a limitation
of the model capacity and transfer learning tasks that obtain
a better model in a specific domain by utilizing a pre-trained
model. Following by the quantitative evaluations, we quali-
tatively analyze how our method works. Finally we provide
ablation studies to provide further properties of our methods.

In our experiment, our baseline methods are a traditional
knowledge distillation method (KD) firstly introduced by
Hinton et al. (Hinton, Vinyals, and Dean 2015), three popu-
lar feature-level distillation methods (FitNet (Romero et al.
2014), ATT (Zagoruyko and Komodakis 2016a), CRD (Tian,
Krishnan, and Isola 2019)) that require a manual feature
matching, and one feature-level distillation method (L2T) au-
tomatically linking the teacher and student features. For CRD,
we set the number of negative samples same as the batch size
of each experiment. Note that KD is applied to all baselines to
reveal additional gains from the feature distillation methods.

Model Compression
We demonstrate the effectiveness of the proposed distilla-
tion method on model compression tasks. The experiments
are conducted on three popular benchmark datasets such as
CIFAR-100 (Krizhevsky, Hinton et al. 2009), tinyImageNet,
and ImageNet (Deng et al. 2009). We utilize Residual Net-
work (ResNet) (He et al. 2016) and Wide Residual Network
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Same style Different style
Teacher ResNet56 ResNet110 ResNet110 WRN-40-2 WRN-40-2 WRN-40-2 ResNet34
Student ResNet20 ResNet20 ResNet56 WRN-16-2 WRN-40-2 ResNet56 WRN-28-2

Teacher 0.7254 0.7409 0.7409 0.7620 0.7620 0.7620 0.7860
Student 0.6940 0.6940 0.7254 0.7289 0.7620 0.7254 0.7532

KD 0.7098 0.7081 0.7483 0.7499 0.7763 0.7497 0.7648
FitNet 0.7005 0.7002 0.7411 0.7522 0.7766 0.7506 0.7644
ATT 0.7054 0.7081 0.7488 0.7520 0.7778 0.7516 0.7720
RKD 0.7043 0.7076 0.7477 0.7459 0.7762 0.7439 0.7632
CRD 0.7095 0.7091 0.7512 0.7515 0.7780 0.7525 0.7697
L2T 0.7037 0.7001 0.7457 0.7486 0.7678 0.7463 0.7640

Ours 0.7153 0.7138 0.7539 0.7547 0.7813 0.7540 0.7747

Table 1: Performance comparison on CIFAR-100. The teachers and the students have same or different architectural style. All
experiments are repeated 5 times.

(WRN) (Zagoruyko and Komodakis 2016b) architectural
styles. First, we conduct an experiment on CIFAR-100 that
consists of 32× 32 sized color images for 100 object classes
and has 50K training and 10K validation images. For data
augmentation, the horizontal flipping and random cropping
are applied. We set the batch size as 64 and the maximum
iteration as 240 epochs. All models are trained with stochas-
tic gradient descent with 0.9 of momentum, weight decay as
5× 10−4, initial learning rate as 0.05, and divide it by 10 at
150, 180, 210 epochs. For the baseline methods, we use their
official code and their hyper-parameters. For the distillation
loss of our model, we apply {30, 50, 100, 200} of beta, β,
and choose the best performer. We provide how the perfor-
mance changes depending on the value of β in Sensitivity
Analysis section. For the feature candidates of our method,
we use all output features of the teacher and student residual
blocks as candidate for all experiments, except ResNet110.
For ResNet110, we skip one for every two residual blocks
and used only half of the entire residual blocks. In detail,
the number of the candidates become 9 for ResNet20, 27
for ResNet56, 27 for ResNet110, 8 for ResNet18, 16 for
ResNet34, 6 for WRN-16-2, 12 for WRN-28-2, and 18 for
WRN-40-2.

Table 1 shows our experiment settings and results on the
CIFAR-100 dataset with various network architecture. We
pre-train large teacher networks and utilize them to train
smaller or same-scaled student networks. The experiments
are divided into two groups according to the architectural
style of the teacher and student. When considering the stu-
dent without knowledge distillation, all students shows the
worst performance over all experiment settings. With manu-
ally linked feature pairs, the baseline models including KD,
FitNet, ATT, RKD and CRD show better performances than
the vanilla students. When applying L2T that identifies fea-
ture links with individual gates, we observed worse perfor-
mance than other baseline methods even though it identifies
beneficial feature pairs to meet their objective. The reason
of the degradation is that L2T tends to propagate high-level
knowledge of the teacher to the low-level feature of the stu-
dent (See Qualitative Studies on Feature Attention section).

Tiny ImageNet ImageNet

Teacher ResNet34 ResNet34 ResNet34
Student ResNet18 ResNet34 ResNet18

Teacher 0.6750 0.6750 0.7355
Student 0.6530 0.6750 0.7028

KD 0.6818 0.6971 0.7066
FitNet 0.6779 0.6892 0.7085
ATT 0.6782 0.6961 0.7093
RKD 0.6772 0.6846 0.7137
CRD 0.6819 0.6968 0.7135

Ours 0.6880 0.6981 0.7138

Table 2: Performance comparison on large-scale datasets;
Tiny ImageNet and ImageNet.

Intuitively, the low-level of a small network cannot mimic
the high-level of a large network, which adversely affects
performance. Our method that utilizes an attention mech-
anism to identify similar features between the teacher and
student shows the best performance over all experiment set-
tings. In particular, our method shows an improvement over
ATT which uses the same feature distance for distillation.
In other words, the proposed linking method significantly
contributes to distillation performance.

In order to validate our method on more real world environ-
ment, we compare our method from other baseline methods
on tinyImageNet and ImageNet (Deng et al. 2009). The tiny-
ImageNet dataset consists of 64 × 64 sized 100K training
and 10K validation images for 200 object classes and the
ImageNet dataset includes 1.2M training and 50K validation
large-scale images for 1K object classes.

For tinyImageNet, we pad the images to 72× 72 and then
randomly cropped to 64× 64 and flipped for data augmenta-
tion. We set the batch size as 128 and the maximum iteration
as 200 epochs. All models are trained with stochastic gradient
descent with momentum 0.9. We set weight decay as 5×10−4,
initial learning rate as 0.1, and we divide the learning rate by
5 at 60, 120, 150 and 180 epochs. We adopt ResNet34 for
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Figure 3: Manual and attention-based feature links for knowledge distillation. Rows and columns of matrices indicate the
student and teacher features, respectively. Each matrix is the average overall α at the corresponding training epoch. The pairs are
compared on multiple distillation settings; ResNet56→ ResNet20 (Same architectural style), ResNet34→WRN-28-2 (Different
architectural style), and WRN-40-2→WRN-40-2 (Self). The manual feature links are not changed once they are selected, but
AFD are adaptively selected during the distillation.

the teacher and utilize ResNet34 and ResNet18 both for the
student. Unlike the ResNet34 and ResNet18 architecture for
large image classification, we resize the first convolutional
filter size from 7 to 3. For ImageNet, we randomly crop size
of 224× 224 of each of images and flipped for data augmen-
tation. We optimize the student with initial learning rate as
0.1, divide it by 10 at 30, 60, 90 epochs, and set the maximum
iteration as 100 epochs. We set weight decay as 10−4 and the
batch size as 256. We utilize ResNet34 for the teacher and
ResNet18 for the student. For tinyImageNet and ImageNet,
we set the hyperparameter, β, as 50.

Table 2 shows the experiment results on tinyImageNet and
ImageNet. The proposed method achieve better performance
on large-scale datasets than other baseline knowledge distilla-
tion methods. It should be noted that we do not conduct L2T
on these large-scaled datasets due to the heavy time com-
plexity to update their meta-network. In addition, our method
shows constantly better performances than ATT that holds
the same distillation loss for the manually selected feature
pairs.

Transfer Learning
Transfer learning with knowledge distillation utilizes the
teacher pre-trained on a source domain task to train the stu-
dent for a target domain task. We investigate the effective-
ness of our method on transfer learning tasks. We adopt a
ResNet34 pre-trained on ImageNet as the teacher network
and transfer its knowledge into the students for four tasks,
such as Caltech-UCSD Bird (CUB 200) (Wah et al. 2011),
MIT Indoor Scene Recognition (MIT67) (Quattoni and Tor-
ralba 2009), Stanford 40 Actions (Stanford40) (Yao et al.
2011) and Stanford Dogs (Khosla et al. 2011). CUB 200 con-
sists of 5k training and 6k validation images with 200 bird
species. MIT67 contains 5k training and 1k validation images

CUB200 MIT67 Stanford40 Stanford Dogs

Scratch 0.4215 0.4891 0.3693 0.5808
FitNet 0.4893 0.5488 0.4450 0.6725
ATT 0.5774 0.5918 0.5929 0.6970
L2T 0.6505 0.6485 0.6308 0.7808
Ours 0.6829 0.6647 0.6792 0.7606

Table 3: Performance comparison on multi-domain transfer
learning tasks; from a ResNet34 model pre-trained with Ima-
geNet (source domain) to a ResNet18 models for CUB200,
MIT67, Stanford40, and Stanford Dogs (target domains).
Scratch, ATT and L2T are referred from (Jang et al. 2019).
All experiments are repeated 3 times.

with 67 type of indoor scenes. Stanford40 has 4k training
and 5k validation images with 40 human actions. Stanford
Dogs consists of 12k training and 8k validation images with
120 dog species. The images of transfer learning datasets
consists of large scale images. The student architecture for
the specific target tasks are set as ResNet18. All experiment
settings are followed by those of L2T (Jang et al. 2019) and
our hyper-parameter, β, is set as 1,000.

Table 3 summarizes the experiment results for the multi-
domain transfer learning tasks. For most datasets, our method
shows better performance than L2T and ATT. In transfer
learning, dataset from target tasks give limited information.
Therefore, training without any knowledge transfer (scratch)
shows the worst performance with large margin. Comparing
ATT with L2T and our method, it can be seen that identifying
the feature links is effective in transfer learning tasks.
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Figure 4: Activation map corresponding to each distillation
methods and the teacher. The teacher is ResNet56 and the
students are ResNet20. The colored boxes indicate the links
from the teacher to the student.

Qualitative Studies on Feature Attention
Feature Links. Here, we analyze the attention values, α,
learned from our proposed method in order to provide its
further properties. First, we observe the attention maps of
various architecture pairs, such as the same architectural style,
different architectural style and identical architecture (self).

Figure 3 shows the feature links α during the training
phases. As can be seen, the traditional knowledge distillation
methods manually link the teacher and student features and
transfer teacher’s knowledge only through the pre-defined
links. In contrast to the manual feature links, our method
identifies feature links in a data-driven way and thus the fea-
ture links α are changed over training steps and converged at
the end. In the case of the same architectural style, low and
mid-levels of the teacher features are linked with a low-level
student feature. This indicates our method affects the student
to use more layers to learn high-level of the teacher features.
In the case of the different architectural style, the lowest-level
and the highest-level features are linked among themselves
and mid-level features are smoothly connected. These results
show that it is difficult to manually create feature links in
different architecture styles. In the case of the identical ar-
chitectures, the features are linked in the order of the levels
but the student tends to use more layers to extract high-level
features. Based on observations, we can infer that AFD tends
to link features in the same level. However, when the teacher
and student have different architectures, the connection is
extended to other levels. It is an advantage of our method
that the feature links can be changed and extended according
to the difference between the teacher and the student’s archi-
tecture, and improves the distillation performance in various
architecture settings.

Activation Map Figure 4 shows activation maps of a
teacher and a students trained with knowledge distillation
methods such as ATT with manual feature pairs, L2T, and
ours. When comparing links between the teacher and student
features, ATT has manually set ordered links through the
levels of the features. In the L2T, the identified links switch
the order of the levels; the last feature of the teacher is con-
nected with the mid-level feature of the student (green box),
and the mid-level feature of the teacher is linked to the last
feature of the student (blue box). The identified links of the

Figure 5: Sensitivity analysis for β. Red line indicates ac-
curacy of model compression task (WRN-40-2 → WRN-
16-2). Blue line indicates accuracy of transfer learning task
(ResNet34→ ResNet18)

L2T may hinder the student training by transferring different
order of features learned by the teacher, see green and blue
boxes. In contrast to both, our proposed method spreads the
high-level features of the teacher to various feature levels of
the student (blue, red, and green boxes) and identify links for
the student to train while keeping the order of the features
from the teacher. More interestingly, compared with ATT, the
low-level and the mid-level features of the AFD student tends
to mimic activated regions of the high-level features of the
teacher.

Sensitivity Analysis
To investigate the impact of the hyperparameter of AFD, β,
we evaluate our model by varying the value of β. β, is used
to train the attention map, α, which determines the links of
the AFD network, and to decide the degree of how much the
student mimic the teacher features. We perform the sensitivity
analysis for β with the model compression and the transfer
learning tasks. Figure 5 shows the accuracy of each task.

For the model compression task, we use WRN-40-2 as
the teacher network and WRN-16-2 as the student network
with CIFAR-100 dataset. As can be seen from the red line in
Figure 5, the accuracy decreases when β is more than 1,000
compared to the interval between 30 to 200. For the transfer
learning task, we use ResNet34 as the teacher network and
ResNet18 as the student network with MIT67 dataset. In
contrast with model compression task, the transfer learning
task shows better performance when the β value is relatively
large. However, we observe that the different result from the
model compression task using the same network architecture
of transfer learning setting with ImageNet dataset (we use
β as 50 for ImageNet). The rationale behind the gap of the
hyperparameter lies in the degree of reliance on teachers’
knowledge cased by the size of the dataset and the relevance
between source and target tasks (Tung and Mori 2019; Ahn
et al. 2019; Park et al. 2019)

Ablation Studies
Linking methods. In order to reveal the benefits of the
similarity-based links, we compare ours from other linking
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Teacher candi. Linking method ResNet56→ ResNet20

Random
Random link 0.6945 ± 0.002

Ordered 0.6999 ± 0.003
AFD (co-train) 0.7105 ± 0.002

Equal interval

Random link 0.6941 ± 0.005
Ordered 0.7025 ± 0.002

AFD (pre-trained) 0.7121 ± 0.001
AFD (co-train) 0.7135 ± 0.002

Table 4: Ablation studies on selecting the teacher candidates
and linking them to the student features. All experiments are
repeated 5 times.

# of candi. # of candi.(student)
(teacher) 3 6 9

3 0.7140 0.7097 0.7115
9 0.7109 0.7149 0.7135

27 0.7121 0.7152 0.7153

(a) ResNet56→ ResNet20

# of candi. # of candi.(student)
(teacher) 3 6 12

4 0.7698 0.7704 0.7730
8 0.7714 0.7717 0.7724

16 0.7706 0.7733 0.7747

(b) ResNet34→WRN-28-2

Table 5: Ablation studies on the numbers of the candidates
for both the teacher and the student. The candidates are set as
the output features of the residual blocks that are sequentially
equidistant between themselves.

methods in Table 4. In this experiment, we set the numbers
of the teacher and student candidates same as 9 for the same
architectural style (ResNet56→ReNet20) to use all possible
student features. We choose the teacher candidates in two
ways; “Random” that randomly selects the candidates from
all features upon all residual blocks and “Equal interval” that
selects the features that are sequentially equidistant between
themselves. For the linking method, we evaluate three linking
methods; “Random link”, “Ordered”, “AFD”.

As shown in Table 4, “Ordered” shows better performance
than “Random link”. It should be noted that the combination
of “Equal interval” and “Ordered” is usually used when man-
ually selecting links between the teacher and student features.
Interestingly, when applying the links identified from the
pre-trained AFD, we observe the performance improvement
although we only change links from the usually link setting.
The result proves that there is more effective way to set the
links than manually decided links. In addition, when training
AFD together, AFD shows the best performances. This ex-
periments prove the superiority of AFD on identifying links
of the feature pairs and transferring teacher’s knowledge to
the student.

Number of candidates. Here, we analyze the impact of
the numbers of the teacher and student candidates. For this

L1 L2 KL Cosine

0.7513 0.7547 0.7523 0.7541

Table 6: Accuracy according to distance metrics.

A1 A2 Max

0.7520 0.7547 0.7528

Table 7: Accuracy according to pooling methods.

experiment, the candidates are set as the output features of
the residual blocks that are sequentially equidistant between
themselves. Table 5 shows distillation performances over
varying numbers of the candidates. When the student can-
didates are more than half of the total features, and using
all teacher features (27 for ResNet56 and 16 for ResNet34)
provides better student performances. In the other hand, with
the small number of the student candidates, using all teacher
features causes a information bottleneck and degrades the
performances. This experiments provide a guidance to choose
the number of the candidates.

Distance Metrics and Pooling Methods We use L2 dis-
tance for distilling the teacher’s feature to the student ac-
cording to the trained link α, see equation 3. However, other
distance metric can used for distillation (Huang and Wang
2017; Ahn et al. 2019; Zagoruyko and Komodakis 2016a)
and it may affect the behavior of the student. Therfore, we
explore four distance metrics, L1, L2, KL divergence, and
cosine similarity, on model compression task with WRN-
40-2 as the teacher network and WRN-16-2 as the student
network. Table 6 shows that L2 distance is the optimal metric
for our experiments, so we use L2 distance for the whole
experiments.

Also, channel-wise pooling method, φ̃C , applied to fea-
ture in equation 3 may affect the performance of distillation.
Therefore, we compare three channel-wise pooling meth-
ods including max-pooling (maxi|hi|) and average-pooling
( 1dΣi|hi|p). We denote A1 and A2 as average pooling meth-
ods with p = 1 and p = 2, respectively. As can be seen in
the table 7, A2 shows the best performance. Therefore, we
use A2 for all experiment in this paper.

Conclusion
In this paper, we have proposed an attention-based distillation
method adaptively transferring knowledge of teacher features
to multiple levels of the student layers. With the proposed
method, the teacher features are linked with the student fea-
tures with the attention map and the student learns from the
teacher through the identified links. The proposed method is
efficiently learned simultaneously during the student’s train-
ing phase while the previous feature linking method requires
an additional inner-loop procedure. Our experiment proves
the benefits of the proposed method on two knowledge distil-
lation applications such as model compression and transfer
learning. Our further analysis shows that our method adjusts
the feature levels of the student regardless the architectural
styles of the teacher and student and provides better perfor-
mance than the baseline methods.
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