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Abstract

With increasing reliance on the outcomes of black-box mod-
els in critical applications, post-hoc explainability tools that
do not require access to the model internals are often used
to enable humans understand and trust these models. In par-
ticular, we focus on the class of methods that can reveal the
influence of input features on the predicted outputs. Despite
their wide-spread adoption, existing methods are known to
suffer from one or more of the following challenges: com-
putational complexities, large uncertainties and most impor-
tantly, inability to handle real-world domain shifts. In this pa-
per, we propose PRoFILE (Producing Robust Feature Impor-
tances using Loss Estimates), a novel feature importance es-
timation method that addresses all these challenges. Through
the use of a loss estimator jointly trained with the predic-
tive model and a causal objective, PRoFILE can accurately
estimate the feature importance scores even under complex
distribution shifts, without any additional re-training. To this
end, we also develop learning strategies for training the loss
estimator, namely contrastive and dropout calibration, and
find that it can effectively detect distribution shifts. Using em-
pirical studies on several benchmark image and non-image
data, we show significant improvements over state-of-the-art
approaches, both in terms of fidelity and robustness.

Introduction
With the increased adoption of machine learning (ML)
models in critical decision-making, post-hoc interpretability
techniques are often required to enable decision-makers un-
derstand and trust these models. The black-box nature of ML
models in most real-world settings (either due to their high
complexity or proprietary nature) makes it challenging to in-
terrogate their functioning. Consequently, attribution meth-
ods, which estimate the influence of different input features
on the model output, are commonly utilized to explain de-
cisions of such black-box models. Existing approaches for
attribution, or more popularly feature importance estima-
tion, range from sensitivity analysis (Ribeiro, Singh, and
Guestrin 2016; Lundberg and Lee 2017), studying change in
model confidences through input feature masking (Schwab
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and Karlen 2019) to constructing simpler explanation mod-
els (e.g. linear, tree- or rule-based) that mimic a black-box
model (Schwab and Hlavacs 2015; Lakkaraju et al. 2019).

Though sensitivity analysis techniques such as
LIME (Ribeiro, Singh, and Guestrin 2016) and
SHAP (Lundberg and Lee 2017) are routinely used to
explain individual predictions of any black-box classifier,
they are computationally expensive. This challenge is
typically handled in practice by constructing a global set of
explanations using a sub-modular pick procedure (Ribeiro,
Singh, and Guestrin 2016). On the other hand, despite
being scalable, methods that construct simpler explanation
models (Lakkaraju et al. 2019) are not guaranteed to match
the behavior of the original model. While the recently
proposed CXPlain (Schwab and Karlen 2019) addresses
the scalability issue of feature masking methods, they are
specific to the type of masking (e.g., zero masking) and the
explainer needs to be re-trained if that changes (e.g., mean
masking). Finally, and most importantly, it has been well
documented that current approaches are highly sensitive to
distribution shifts (Lakkaraju, Arsov, and Bastani 2020) and
vulnerable to even small perturbations. Recently, Lakkaraju
et al. (Lakkaraju, Arsov, and Bastani 2020) formalized this
problem for the case of model mimicking approaches, and
showed how adversarial training can be used to produce
consistent explanations. In CXPlain, Schwab et al. proposed
an ensembling strategy to effectively augment explanations
with uncertainty estimates to better understand the explana-
tion quality. However, they did not study the consistency of
inferred explanations under distribution shifts.

In this work, we propose PRoFILE (Producing Robust
Feature Importances using Loss Estimates), a novel feature
importance estimation method that is highly accurate, com-
putationally efficient, consistent with the black-box model
being explained and robust under distribution shifts. The
key idea of our approach is to jointly train a loss estima-
tor while building the predictive model, and generate post-
hoc explanations by measuring the influence of input fea-
tures on the model output using a causal objective defined on
the loss estimates. Furthermore, we introduce two different
learning objectives to optimize the loss estimator, namely
contrastive training and dropout calibration. Note that, once
trained, the loss estimator can also be treated as a black-
box. Interestingly, we find that the loss estimator is easier
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to train than obtaining calibrated uncertainty estimates, yet
produces higher fidelity explanations. Further, unlike exist-
ing approaches, PRoFILE requires no re-training at explana-
tion time and natively supports arbitrary masking strategies.
Finally, using a variety of benchmarks, we show that the re-
sulting explanations are robust under regimes of distribution
shifts where the black-box generalizes to. In summary, our
contributions are:

• A computational efficient feature masking-based explain-
ability method that is agnostic to the type of masking;

• Our approach is applicable to any data modality, deep ar-
chitecture, or task;

• Learning objectives to train a loss estimator alongside the
classifier;

• Experiments on a wide variety of both synthetic and real
world data demonstrating the efficacy of PRoFILE under
distribution shifts.

Related Work
Post-hoc explanation methods are the modus-operandi in
interpreting the decisions of a black box model. Broadly,
these approaches can be categorized as methods that gen-
erate explanations based on (a) sensitivity analysis; (b) gra-
dients between the output and the input features; (c) change
in model confidence through input feature masking; and (d)
constructing simpler explanation models that can well ap-
proximate the black box predictor. LIME (Ribeiro, Singh,
and Guestrin 2016) and SHAP (Lundberg and Lee 2017) are
two popular sensitivity analysis methods, and they produce
sample-wise, local explanations based on regression mod-
els by measuring the sensitivity of the black-box to per-
turbations in the input features. However, these methods
are known to involve significant computational overheads.
On the other hand, Saliency Maps (Simonyan, Vedaldi,
and Zisserman 2013), Integrated Gradients (Sundararajan,
Taly, and Yan 2017), Grad-CAM (Selvaraju et al. 2017),
DeepLIFT (Shrikumar, Greenside, and Kundaje 2017) and
a gradient based version of SHAP - DeepSHAP (Lundberg
and Lee 2017), are examples of gradient-based methods
which are computationally effective. More recently, Schwab
et al. proposed CXPlain (Schwab and Karlen 2019) and
Attentive Mixture of Experts (Schwab, Miladinovic, and
Karlen 2019), which are popular examples for methods
that estimate model confidences through feature masking.
Trained using a Granger causality-based objective (Granger
1969), these methods produce attention scores reflective of
the feature importances, at a significantly lower compu-
tational cost. Finally, global explanation methods rely on
mimicking the black-box using simpler explainer functions.
For instance, ROPE (Lakkaraju, Arsov, and Bastani 2020)
and MUSE (Lakkaraju et al. 2019) construct scalable, sim-
ple linear models and decision sets, to emulate black-box
models. An inherent challenge of this class of approaches is
that the simple explainers are not guaranteed to match the
behavior of the original model.

While these classes of methods vary in terms of their fi-
delity and complexity, a common limitation that has come to

Figure 1: An illustration of the proposed approach, PRo-
FILE, for feature importance estimation. (top) During the
training phase, we train a loss estimator along with the pre-
dictive model; (bottom) We use a Granger causality-based
objective to generate post-hoc explanations using the loss
estimates with no re-training.

light recently is that explanations from most existing meth-
ods are associated with large uncertainties (Zhang et al.
2019) and are not robust under distribution shifts. Recently,
Lakkaraju et al. (Lakkaraju, Arsov, and Bastani 2020) ex-
plored the use of adversarial minmax training to ensure that
the mimicking explainer model is consistent with the black-
box under adversarial perturbations. In contrast, we find that,
without any adversarial training, PRoFILE estimates fea-
ture importances robustly under distribution shifts, is com-
putationally scalable compared to existing local explanation
methods, and produces higher fidelity explanations.

Proposed Approach
Predictive Model Design with Loss Estimation. We con-
sider the setup where we build a predictive model F(Θ)
which takes as input a sample x ∈ Rd with d features and
produces the output ŷ ∈ Rk of dimensionality k. Note that
this setup is deliberately unspecific in terms of both model
architecture and data modality as PRoFILE is agnostic to
either. Given a training set {(xi,yi)}Ni=1, we optimize for
the parameters Θ using the loss function L : y × ŷ → s,
where s ∈ R. In other words, L measures the discrepancy
between the true and predicted outputs using a pre-specified
error metric. Examples include categorical cross-entropy for
classification or mean-squared error for regression.

While our approach does not need access to the train-
ing data or specifics of the training procedure while gen-
erating explanations, similar to any post-hoc interpretabil-
ity method, our approach requires the training of an auxil-
iary network G(Φ; Θ) that takes the same input x and pro-
duces the output ŝ ≈ L(y,F(x)). The objective of this net-
work is to directly estimate the fidelity for the prediction
that F makes for x, which we will use in order to construct
our post-hoc explanations without any additional re-training.
Note that, the loss estimates implicitly provide information
about the inherent uncertainties; for example, in (Ash et al.
2020), the gradients of loss estimates have been used to cap-
ture the model uncertainties. We define the auxiliary objec-
tive Laux : s × ŝ → R, in order to train the parameters
Φ of model G. As showed in Figure 1(top), the loss esti-
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mator G uses the latent representations from different stages
of F (e.g., every layer in the case of an FCN or every con-
volutional block in a CNN) to estimate ŝ. We use a linear
layer along with non-linear activation (ReLU in our experi-
ments) to transform each of the latent representations from
F and they are finally concatenated to predict the loss. Dur-
ing training, the gradients from both the losses are used to
update the parameters Θ of model F .
Learning Objectives. Since the proposed feature estimation
strategy relies directly on the quality of the loss estimator,
the choice of the loss function Laux is crucial. In particular,
our approach (see Figure 1(bottom)) is based on ranking in-
put features using the loss values obtained by masking those
features. Consequently, we expect the loss estimator to pre-
serve the ordering of samples (based on their losses), even
if the original scale is discarded. Here, we explore the use
of two different objectives to minimize the discrepancy be-
tween true and estimated losses.
(a) Contrastive Training: This is a widely adopted strategy
when relative ordering of samples needs to be preserved.
Given the loss values {si, sj} for a pair of samples {xi,xj}
in a mini-batch, we adopt an objective similar to (Yoo and
Kweon 2019), which ensures that the sign of the difference
(si − sj) is preserved in the corresponding loss estimates
(ŝi − ŝj). Formally, we use the following contrastive loss:

LCaux =
∑
(i,j)

max

(
0,−I(si, sj).(ŝi − ŝj) + γ

)
, (1)

where I(si, sj) =

{
1 if si > sj ,

−1 otherwise.
Note, when the sign of si − sj is positive, we assign a non-
zero penalty if the estimates ŝj > ŝi, i.e., there is a dis-
agreement in the ranking of samples. Here, γ is an optional
margin hyper-parameter.
(b) Dropout Calibration: In this formulation, we utilize pre-
diction intervals from the model F and adjust the loss es-
timates from G using an interval calibration objective. The
notion of interval calibration comes from the uncertainty
quantification literature and is used to evaluate uncertainty
estimates in continuous-valued regression problems (Thia-
garajan et al. 2020). In particular, we consider the epistemic
uncertainties estimated using Monte Carlo dropout (Gal and
Ghahramani 2016) to define the prediction interval [µsi −
σsi , µsi + σsi ] for a sample xi. More specifically, we per-
form T independent forward passes with F to compute the
mean µsi and standard deviation σsi . For the loss estima-
tor G, we use the latent representations averaged across T
passes (for every block in Figure 1(top)) to obtain the esti-
mate ŝi. Finally, we use a hinge loss objective to calibrate
the estimates:

LDCaux =
∑
i

max

(
0, ŝi − (µsi + σsi) + ξ

)
(2)

+ max

(
0, (µsi − σsi)− ŝi + ξ

)
(3)

Here, ξ is the optional margin parameter and the objective
encourages the estimates ŝi to lie in the prediction interval
for s from the model F .

Figure 2: Demonstration of PRoFILE using the UCI hand-
written digits dataset. Here, we show an example where the
loss estimator was trained using the contrastive loss. For this
test sample, the ranking obtained using the estimated loss
agrees with that from the true loss (known ground truth).
When we mask the top 10 features from PRoFILE and as
expected, there is a change in the model prediction.

Feature Importance Estimation. Given the loss estima-
tor G, we estimate the feature importance using a Granger
causality-based objective, similar to (Schwab and Karlen
2019). The Humean definition of causality adopted by
Granger (Granger 1969) postulates that a causal relationship
exists between random variables xj and y, i.e., xj → y, if
we can better predict using all available information than the
case where the variable xj was excluded. This definition is
directly applicable to our setting since it satisfies the key as-
sumptions of Granger causality analysis, our data sample x
contains all relevant variables required to predict the target
and x temporally precedes y. Mathematically,

∆εx,j = εx\{j} − εx, (4)

where ε denotes the model error. For a sample x, we can
compute this objective for each feature j to construct the ex-
planation. As showed in Figure 1(bottom), we use the loss
estimator to measure the predictive model’s error in the pres-
ence and absence of a variable xj to check if xj causes
the predicted output. There are a variety of strategies that
can be adopted to construct x \ {j}. In the simplest form,
we can mask the chosen feature by replacing it with zero
or a pre-specified constant. However, in practice, one can
also adopt more sophisticated masking strategies that take
into account the underlying data distribution (Janzing et al.
2013; Štrumbelj, Kononenko, and Šikonja 2009). Interest-
ingly, our approach is agnostic to the masking strategy and
the loss estimator can be used to compute the causal objec-
tive in Eqn.(4) for any type of masking. In contrast, existing
approaches such as CXPlain requires re-training of the ex-
planation model for the new masking strategy.

Since the loss estimator is jointly trained with the main
predictor, our approach does not require any additional ad-
versarial training as done in (Lakkaraju, Arsov, and Bastani
2020) to ensure that the explanations are consistent with the
black-box. It must be noted that adversarial training for im-
proving the robustness of the black box is independent of
the design of PRoFILE. As the black box becomes more ro-
bust to arbitrary shifts/adversarial perturbations, we expect
PRoFILE explanations to still be consistent.
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(a) UCI Digits (k = 15%) (b) Kropt (k = 15%) (c) RBF (k = 15%)

(d) Poker (k = 15%) (e) Handwritten Letters (k = 15%) (f) Cifar-10 (k = 15%)

Figure 3: Comparing the fidelity of feature importances inferred using different methods. We use the ∆log-odds score (higher
the better) obtained by masking the most influential input features. For each of the datasets, the ratio of features masked is also
included in parentheses. Across all benchmarks, the proposed approach is consistently superior over the baselines.

Existing works in the active learning literature have also
found that the loss function (Yoo and Kweon 2019) or its
gradients (Ash et al. 2020) effectively capture the inherent
uncertainties in a model and hence can be used for select-
ing informative samples. Using a similar argument, we show
that even though our causal objective is similar to CXPlain,
our approach more effectively generalizes to even complex
distribution shifts where CXPlain fails.
Demonstration. For demonstrating the behavior of our ap-
proach, we consider the UCI handwritten digits dataset (Dua
and Graff 2017) comprised of 8 × 8 grayscale images. In
Figure 2, we show predictions from our loss estimator (con-
trastive training) for a test image, when each of the 64 pixels
were masked (replaced with zero). We find that, though the
scale of the loss function is discarded, the ordering of the
features is well preserved. We also illustrate the explanation
obtained by masking the top 10 features identified using the
causal objective in Eqn.(4). The observed changes in the pre-
diction (from class 2 to class 9) is intuitive and demonstrates
the effectiveness of our approach.

Empirical Results
In this section, we present empirical studies to compare
PRoFILE against popular baselines using both non-image
and image benchmark datasets. More importantly, we eval-
uate the fidelity of the inferred explanations under challeng-
ing distribution shifts and demonstrate the effectiveness of

PRoFILE. Before we present our findings, we will discuss
the datasets, baselines and metrics used in our study.

Datasets. We consider a suite of synthetic and real-world
datasets to evaluate the fidelity and robustness of our
approach. For the fidelity comparison study under stan-
dard testing conditions, we use the: (a) UCI Handwrit-
ten Digits dataset, (b) OpenML benchmarks (Vanschoren
et al. 2013), Kropt, Letter Image Recognition, Pokerhand
and RBF datasets and (c) Cifar10 image classification
dataset (Krizhevsky and Hinton 2009). The dimensionality
of the input data ranges from 10 to 64 and the total number
of examples varies between 1797 and 13750 for different
benchmarks. For each of the UCI and OpenML datasets, we
utilized ∼ 90% of the data while for Cifar10, we used the
prescribed dataset of 50K RGB images of size 32×32 for
training our proposed model.

For the robustness study, we used the following datasets:
(a) Synthetic dataset: In order to study the impact of distribu-
tion shifts on explanation fidelity, we constructed synthetic
data based on correlation and variance shifts to the data gen-
eration process defined using a multi-variate normal distri-
bution. More specifically, we generated multiple synthetic
datasets of 5K samples, where the number of covariates was
randomly varied between 10 and 50. In each case, the sam-
ples were drawn from N (µ,Σ), where µii = α,Σii = 1
and Σij = β and the values α, β (the correlation be-
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Figure 4: Effectiveness of our loss estimator G in detecting distribution shifts, even though the shifts are not known during
training. In the MNIST-USPS case, it attributes non-typical writing styles from the USPS dataset, that are not found in MNIST,
with high loss values. Similarly, in the case of Cifar-10C, the loss estimates from G, averaged across 500 test samples, mono-
tonically grows as the severity of the corruption increases.

tween any two variables) were randomly chosen from the
uniform intervals [−2, 2] and [−1, 1] respectively. The la-
bel for each sample was generated using their correspond-
ing quantiles (i.e., defining classes separated by nested con-
centric multi-dimensional spheres). To generate correlation
shifts, we created new datasets following the same proce-
dure, but using a different correlation β̄ = β + δβ . Here, δβ
was randomly drawn from the uniform interval [−0.2, 0.2].
Next, we created a third dataset to emulate variance shifts,
wherein we changed the variance Σii = Σii + κ and κ was
drawn from the uniform interval [0.25, 0.75]. While the pre-
dictive model was trained only using the original dataset,
the explanations were evaluated using both correlation- and
variance-shifted datasets. We generated 10 different realiza-
tions with this process and report the explanation fidelity
metrics averaged across the 10 trials; (b) Cifar10 to Cifar10-
C (Hendrycks and Dietterich 2019): This is a popular bench-
mark for distribution-shift studies, wherein we train the pre-
dictive model and loss estimator using the standard Ci-
far10 dataset and generate explanations for images from the
Cifar10-C dataset containing wide-variety of natural image
corruptions; and (c) MNIST-USPS: In this case, we train the
predictive model using only the MNIST handwritten digits
dataset (LeCun, Cortes, and Burges 2010) and evaluate the
explanations on the USPS dataset (Hull 1994) at test time.

Baselines. We compared PRoFILE against the following
baseline methods that are commonly adopted to produce
sample-level explanations. All baseline methods considered
belong to the class of post-hoc explanation strategies which
aim to construct interpretable models that can approximate
the functionality of any black-box predictor.
(i) LIME (Ribeiro, Singh, and Guestrin 2016)1: LIME con-
structs linear models, which can locally approximate a black
box predictor, by fitting a weighted regression model around
the sample to be explained based on variants of the sample

1code: https://github.com/marcotcr/lime

Figure 5: Using a synthetic dataset to study the robustness
of explanations obtained using different approaches, under
correlation and variance shifts. We mask the top 25% of fea-
tures in the data to obtain the ∆log-odds scores.

obtained by perturbing or zero-masking the input features.
The intuition is that the post-hoc regression model obtained
is reflective of the sensitivity of the black-box predictor to
the modifications in the input features. The coefficients of
the obtained post-hoc model serve as attribution scores for
each feature in the given sample.
(ii) Shap (Lundberg and Lee 2017)2: SHAP determines the
feature attribution scores for a sample by marginalizing the
individual contributions of every feature towards a predic-
tion. SHAP, more specifically KernelSHAP, fits a local re-
gression model around the sample to be explained using
multiple realizations of the sample by zero masking single or
groups of features. A fundamental difference between LIME
and SHAP lies in the SHAP kernel used, which is a function
of the cardinality of the features present in a group. The co-

2code: https://github.com/slundberg/shap
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Figure 6: Cifar-10C dataset: We study the fidelity of explanations generated on different types of corrupted images using the
loss estimator trained on the original Cifar-10 data.

efficients of the obtained model are the SHAPLey attribution
scores for every feature in the given sample.
(iii) CXPlain (Schwab and Karlen 2019)3: This determines
feature attribution scores by training a post-hoc model that
learns to approximate the distribution of Granger causal er-
rors (Granger 1969), i.e., the difference between the black-
box prediction loss when no feature is masked and the loss
when features are zero-masked one at a time. The feature at-
tribution scores obtained from the model are thus reflective
of the global distribution of the causality based error metric.
Similar to (Schwab and Karlen 2019), we use an MLP and
a U-Net model as the post-hoc explainer for the non-image
and the image datasets respectively in our experiments.
(iv) Deep Shap (Lundberg and Lee 2017) DeepSHAP is a
fast and scalable approximation of SHAP and also closely
related to the DeepLIFT algorithm. We utilize this baseline
on datasets where LIME and SHAP were expensive to run.

Evaluation Metric. To evaluate the explanation fidelity,
we utilize the commonly used difference in log-odds metric,
which is a measure of change in prediction when k% of the
most relevant features in the input data are masked.

∆log-odds = log-odds(pref)− log-odds(pmasked) (5)
Here log-odds(p) = log( p

1−p ) and pref is the reference pre-
diction probability of the original data and pmasked refers
to the prediction probability when a subset of features are
masked. A higher value for ∆log-odds implies higher fi-
delity of the feature importance estimation. More specifi-
cally, for: (a) Non-Image Datasets. We sort the feature attri-
bution scores obtained from the explainability method (PRo-
FILE and baselines) and zero mask the top k% important
features in the input sample to evaluate the metric, and (b)
Image Datasets. We use the SLIC (Achanta et al. 2012) seg-
mentation algorithm to generate superpixels, which are then
used to compute the feature importance scores. For CXPlain
and DeepSHAP, we aggregate the pixel-level feature impor-
tance scores to estimate attributions for each superpixel.

3code: https://github.com/d909b/cxplain

Hyperparameters. For all non-imaging datasets, the
black-box model was a 5 layer MLP with ReLU activations,
each fully-connected (FC) layer in the loss estimator con-
tained 16 units. In the case of Cifar-10, we used the standard
ResNet-18 architecture, and the loss estimator used outputs
from each residual blocks (with fully connected layers con-
taining 128 hidden units). Finally, for the MNIST-USPS ex-
periment, we used a 3−layer CNN with 2 FC layers. The
loss estimator was designed to access outputs from the first
4 layers of the network and utilized FC layers with 16 units
each. All networks were trained using the ADAM optimizer
with a learning rate 0.001 and batch size 128.

Findings
PRoFILE Produces Higher Fidelity Explanations Fig-
ure 3 illustrates the ∆log-odds obtained using PRoFILE
with both the proposed learning strategies (Ours(C) and
Ours(DC)) in comparison to the baselines. Note that, for the
UCI and OpenML datasets, we used the held-out test set for
our evaluation (90-10 split), while for Cifar-10, we used 50
randomly chosen test images for computing the fidelity met-
ric. While PRoFILE and CXPlain are scalable to larger test
sizes, the small subset of test samples was used to tractably
run the other baselines. For each dataset, we show the me-
dian (orange), along with the 25th and the 75th percentiles,
of the ∆log-odds scores across the test samples. We find that
PRoFILE consistently outperforms the existing baselines on
all benchmarks. In particular, both contrastive training and
dropout calibration strategies are effective and perform sim-
ilarly in all cases. The improved fidelity can be attributed
directly to the efficacy of the loss estimator and the causal
objective used for inferring the feature attribution. In com-
parison, both LIME and SHAP produce lower fidelity expla-
nations, while also being computationally inefficient. Inter-
estingly, though CXPlain also uses a causal objective similar
to us, the resulting explanations are of significantly lower fi-
delity. In terms of computational complexity for generating
post-hoc explanations, PRoFILE which requires p evalua-
tions (number of features that need to be masked and can
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Figure 7: Examples of explanations generated using the proposed approach (with dropout calibration) on USPS and Cifar-10C
datasets using models trained with MNIST and Cifar-10 respectively.

be parallelized) of the loss estimator and is only marginally
more expensive than CXPlain.

Loss Estimator Detects Distribution Shifts At the core
of our approach is the pre-trained loss estimator, which en-
ables us to utilize the Granger causality objective to generate
high-quality explanations. Consequently, the robustness of
PRoFILE directly relies on how well the loss estimator can
generalize under distribution shifts. We investigate the em-
pirical behavior of the loss estimator using (i) MNIST-USPS
and (ii) Cifar10 to Cifar10-C benchmarks. In both cases, we
train the predictor and loss estimator using the original data
(MNIST, Cifar10) and evaluate on the shifted data. In Fig-
ure 4(a), we show USPS images from class 8 with the low-
est (in-distribution) and highest (out-distribution) loss esti-
mates. While the former resemble the prototypical exam-
ples, the latter contains uncommon writing styles not found
in the MNIST dataset. In case of Cifar10-C, we show the
loss estimates for 5 different natural image corruptions (av-
eraged across 500 examples). We observe a monotonic in-
crease in the average loss estimates as the severity of the
corruptions grow, thus demonstrating the ability of the loss
estimator to detect distribution shifts.

PRoFILE Explanations are More Robust Following our
observations on the behavior of the loss estimator, we now
evaluate the fidelity of PRoFILE explanations in those sce-
narios. Figure 5 illustrates the median ∆log-odds and error
bars obtained by masking the top 25% of features on 10
realizations of the synthetic dataset. In particular, we show
the results for the held-out correlation and variance shifted
data, while the models were trained only using the origi-
nal synthetic data. We find that by utilizing a pre-trained
loss estimator, PRoFILE significantly outperforms the base-
lines, even under complex shifts, indicating the robustness of
our approach. Similar to the findings in (Lakkaraju, Arsov,
and Bastani 2020), we note that the widely-adopted base-

lines are not immune to shifts. Figure 6 shows a detailed
comparison of ∆log-odds for the Cifar10-C dataset. Note,
we show the median, 25th and 75th percentiles. We find that
PRoFILE consistently achieves superior fidelity, when com-
pared to existing baselines, except in the case of glass blur
where the scores are comparable.

Figure 7 shows examples of explanations obtained us-
ing PRoFILE on the USPS and Cifar10-C datasets. We ob-
serve from Figure 7 (top) that our method adapts well across
domains to identify critical pixels that characterize class-
specific decision regions. Interestingly, these are examples
where digit 8 is suitably masked by PRoFILE (only 5% of
pixels) to be predicted as one of the other classes sharing the
decision boundary. It can also be seen from Figure 7 (bot-
tom) that PRoFILE explanations obtained under different
domain shifts are consistent. In all cases except glass blur,
it identifies the hull of the boat and the mouth of the dog
as critical features. These observations strongly corroborate
with the performance improvements in Figure 6.

Conclusions
In this paper, we proposed PRoFILE, a novel post-hoc fea-
ture importance estimation method applicable to any data
modality or architecture. In particular, PRoFILE trains an
auxiliary estimator to estimate the expected loss, for a given
sample, from the primary predictor model. To this end,
we introduced two learning objectives, contrastive training
and dropout calibration. Using the pre-trained loss estimator
along with a causality based objective, PRoFILE can accu-
rately estimate feature importance scores that are immune to
a wide variety of distribution shifts. Through extensive ex-
perimental studies on different data modalities, we demon-
strate that PRoFILE provides higher fidelity explanations, is
robust under real-world distribution shifts and is computa-
tional effective when compared to commonly adopted fea-
ture importance estimation methods.

7897



References
Achanta, R.; Shaji, A.; Smith, K.; Lucchi, A.; Fua, P.; and
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