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Abstract

Generative adversarial networks (GANs) have achieved re-
markable progress in recent years, but the continuously grow-
ing scale of models makes them challenging to deploy widely
in practical applications. In particular, for real-time gener-
ation tasks, different devices require generators of different
sizes due to varying computing power. In this paper, we
introduce slimmable GANs (SlimGANs), which can flexi-
bly switch the width of the generator to accommodate vari-
ous quality-efficiency trade-offs at runtime. Specifically, we
leverage multiple discriminators that share partial parameters
to train the slimmable generator. To facilitate the consistency
between generators of different widths, we present a stepwise
inplace distillation technique that encourages narrow genera-
tors to learn from wide ones. As for class-conditional gener-
ation, we propose a sliceable conditional batch normalization
that incorporates the label information into different widths.
Our methods are validated, both quantitatively and qualita-
tively, by extensive experiments and a detailed ablation study.

Introduction

One of the main reasons for the tremendous success of deep
learning in recent years is the increasing scale of models.
In the branch of deep generative models, generative adver-
sarial networks (GANs) (Goodfellow et al. 2014) have re-
ceived widespread attention and evolved from the original
simple multi-layer perceptrons to the vast BigGAN frame-
work (Brock, Donahue, and Simonyan 2019) with residual
blocks (He et al. 2016) and self-attention layers (Zhang et al.
2019) to synthesize realistic images nowadays. The arms
race on increasing the model size is endless, while the com-
putational power and budget of devices are limited, espe-
cially for mobile phones. Several GAN applications such
as photograph (Kupyn et al. 2018) and autonomous driv-
ing (Zhang et al. 2018) require short response time and
hopefully run on devices with limited computing power. Re-
cently, researchers began to develop lightweight GAN mod-
els. However, different devices usually require customized
models of different sizes to meet the given response time
budget. Moreover, even a single device needs models of dif-
ferent sizes due to several switchable performance modes,
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e.g., the high-performance mode and power-saving mode.
Consequently, numerous models need to be trained and de-
ployed for a single task, which is also heavy work.

In this work, we are committed to developing a “once-
for-all” generator, which we only train and deploy once but
can flexibly switch the model size at runtime to address the
practical challenges. Inspired by slimmable neural networks
(SNNs) (Yu et al. 2019), we focus on developing a genera-
tor with configurable widths, where the width refers to the
number of channels in layers. In addition to saving inference
time, customization on width can reduce memory footprint
during the layer-by-layer inference, while reducing depth
cannot take this advantage.

Although several discriminative tasks such as image clas-
sification and object detection are well studied in SNNs,
applying slimmable operators to GANs suffers from three
following challenges: First, how to accurately and appropri-
ately estimate the divergence between generators at differ-
ent widths and the real data through discriminators? Second,
how to ensure consistency between generators of different
widths? Here, the consistency means that the generated im-
ages should be similar between these generators given the
same latent code. Third, how to incorporate the label in-
formation into generators at different widths in the class-
conditional generation?

In this paper, we propose slimmable generative adver-
sarial networks (SIimGAN) to combat the aforementioned
problems. First, we present discriminators with partially
shared parameters to serve the generators at different widths.
Second, to improve the consistency between generators at
different widths, we introduce a novel stepwise inplace dis-
tillation technique, which encourages narrow generators to
learn from the wide generators. Third, we propose a slice-
able conditional batch normalization (scBN) to incorpo-
rate the label information into different widths on the ba-
sis of switchable batch normalization (sBN) (Yu et al. 2019)
for the class-conditional generation. Extensive experiments
across several real-world datasets and two neural network
backbones demonstrate that SimGAN can compete with or
even outperform the individually trained GANs. Remark-
ably, our proposed scBN achieves better performance with
fewer parameters. A systematic ablation study verifies the
effectiveness of our design, including network framework
and loss function.



Related Work
Generative Adversarial Networks

Generative adversarial networks (GANs) (Goodfellow et al.
2014) were implemented by multi-layer perceptrons at
the beginning. To improve the capability of the generator
and the discriminator, convolutional layers were introduced
in DCGAN (Radford, Metz, and Chintala 2015). Later,
WGAN:-gp (Gulrajani et al. 2017) not only established flex-
ible Lipschitz constraints but also brought the ResNet (He
et al. 2016) backbone into the GAN literature. To further
impose the Lipschitz constraint, SNGAN (Miyato et al.
2018) introduced spectral normalization to the discrimina-
tor, which is also applied to the generator in SAGAN (Zhang
et al. 2019). For class-conditional generation tasks, cGAN-
pd (Miyato and Koyama 2018) injected the label information
to the generator by employing conditional batch normal-
ization (cBN) (de Vries et al. 2017), and the discriminator
with projection technique. Recently, BigGAN (Brock, Don-
ahue, and Simonyan 2019) was capable of generating di-
verse and realistic high-resolution images, mainly attributed
to the massive model.

Model Compression in GANs

The arms race on developing increasingly bloated network
architecture hinders the extensive deployment of GANSs in
practical applications. To reduce the size of the genera-
tor, Aguinaldo et al. (2019) compressed GAN models us-
ing knowledge distillation techniques. Li et al. (2020) pro-
posed a compression method for conditional GAN models.
Meanwhile, Yu and Pool (2020) developed a self-supervised
compression method that uses the trained discriminator to
supervise the training of a compressed generator. AutoGAN-
Distiller (Fu et al. 2020) compressed GAN models using
neural architecture search. Recently, Wang et al. (2020a) de-
veloped a unified GAN compression framework, including
model distillation, channel pruning, and quantization.

Dynamic Neural Networks

Unlike model compression, dynamic neural networks can
adaptively choose the computational graph to reduce com-
putation during training and inference. For example, Liu and
Deng (2018) presented an additional controller network to
decide the computational graph depends on the input. Sim-
ilarly, Hu et al. (2019) proposed to reduce the test time
by introducing an early-exit gating function. Different from
adjusting the depth of neural networks, slimmable neural
networks (SNNs) (Yu et al. 2019) trained neural networks
that can be executable at different widths, allowing imme-
diate and adaptive accuracy-efficiency trade-offs at runtime.
Later, US-Net (Yu and Huang 2019b) extended SNN to uni-
versally slimmable scenarios and proposed improved train-
ing techniques. AutoSlim (Yu and Huang 2019a) utilized
model pruning methods to obtain accuracy-latency optimal
models but introduced additional storage consumption. RS-
Nets (Wang et al. 2020b) proposed an approach to train neu-
ral networks which can switch image resolutions during in-
ference.
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Nevertheless, the aforementioned approaches are de-
signed for discriminative tasks with a single neural net-
work, while we focus on generative tasks based on GANSs.
Since GAN consists of two networks, i.e., the generator and
discriminator network, modifying the operational mecha-
nism of the generator may destroy the stability of the entire
system, which makes the training process of GAN with a
slimmable generator challenging.

Preliminaries
Generative Adversarial Networks

Generative adversarial networks (GANs) (Goodfellow et al.
2014) are typically composed of a generator and a discrimi-
nator. Specifically, the generator G : Z — X learns to gen-
erate fake samples by mapping a random noise vector z € Z
in the latent space endowed with a predefined prior P (e.g.,
multivariate normal distribution) to a sample z € X in
the high-dimensional complex data space. The discrimina-
tor D : X — [0,1] attempts to distinguish the synthetic
examples generated by the generator from real data. In con-
trast, the goal of the generator is to fool the discriminator
by mimicking real data. Formally, the objective function of
GAN is formulated as follows:

mén mgXEdem [log(D(x))]+
E.~p,[log(1 — D(G(z)))],

where Py represents the underlying distribution of real
data. As proved in (Goodfellow et al. 2014), this minimax
game is considered as minimizing the Jansen Shannon (JS)
divergence between the real data distribution and the gener-
ated one. Ideally, the generator is supposed to converge until
Pc = Paaa- The JS divergence estimated by the discrimi-
nator can be replaced with other f-divergences (Nowozin,
Cseke, and Tomioka 2016) or even true metrics such as
Wasserstein distance (Arjovsky, Chintala, and Bottou 2017)
by modifying the objective function.

(D

Slimmable Neural Networks

Slimmable neural networks (SNNs) (Yu et al. 2019) can in-
stantly adjust the network width according to the demands of
various devices with different capacities. Unlike other train-
ing lightweight model methods such as neural architecture
search and model compression, SNN is more flexible be-
cause it only needs to be trained and deployed once to ob-
tain multiple models at different widths from a pre-specified
width list W. In order to avoid the discrepancy of mean and
variance between networks at different widths, SNN pro-
posed a switchable batch normalization (sBN), i.e., using
independent BN learnable parameters for each width:

/ Lw; — M(‘T’wl)
U(«’Ewi)

2

T

w; = 'le + B’wm
where x,,, represents the data batch at current width w; €
W. Specifically, u(-) and o(-) compute the mean and stan-
dard deviation of this batch, v,,, and 3,,, are learnable scale

and shift, respectively, of the sBN at width w;.
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Figure 1: Illustration of SimGAN with width multiplier list WW = [0.25,0.5,0.75, 1.0] x. Wide generators contain the channels
of narrow ones. Multiple discriminators share first several layers. Blue dashed lines indicate the stepwise inplace distillation.

Methods

We aim to develop a size-flexible generator that can switch
its size to accommodate various computing power. Approx-
imatively, the size-flexible generator implies multiple gen-
erators: Gy, , Gy,, - - , Gy, with N incremental parameters
0, C 0, C --- C Oy, respectively. In this work, we fo-
cus on slimming the width (number of channels) of the
generator network instead of depth as reducing width can
save memory footprint during the layer-by-layer inference.
The width-slimmable generator contains several generators:
Guyy Gy o+ Gy at N = |W)] incremental widths wq <
Wy < < wy (w; € W), respectively. Particularly,
we train the generator via adversarial training and call our
method slimmable GAN (SIimGAN) !

Slimmable GAN Framework

We illustrate the overall framework of SlimGAN in Figure 1.
Specifically, the SimGAN consists of a slimmable genera-
tor with multi-width configurations and multiple discrimi-
nators that share the first several layers. Each discriminator
guides the generator at the corresponding width. Here, using
multiple shared discriminators, instead of a single discrim-
inator or multiple independent discriminators, is critical for
our SIimGAN model. This is also the first major novelty of
this model. The idea is motivated by two insights. On one
hand, using a single discriminator for all the generators with
different widths limits the flexibility and capability of dis-
criminators to discriminate generated data from real data,
and finally fails to obtain well-performed generators. On the
other hand, although assigning one discriminator for each
generator offers high flexibility, it is incapable of leverag-
ing the characteristic of data generated by slimmable gener-
ators. Therefore, we borrow the idea of multi-task learning
and design multiple parameter-shared discriminators. This
design not only offers high flexibility of discriminators but
also leverages the similar characteristic of data generated
by slimmable generators to improve the training of genera-
tors. In addition, sharing parameters with other tasks offers a

'Code is available at https://github.com/houliangict/SHmGAN
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kind of consistency regularization on discriminators, which
potentially improves the generalization of discriminators,
and hence promotes the performance of generators (Thanh-
Tung, Tran, and Venkatesh 2019).

As for training the generator-discriminator pair at width
w;, we utilize the Hinge version loss (Lim and Ye 2017;
Tran, Ranganath, and Blei 2017), which is prevalent and suc-
cessful in GAN literature.

E. ., [min(0, ~1 - Dy, (G, (2))]
mngszZ [Du, (G, (2))],i=1,2,--- | N

3)

Stepwise Inplace Distillation

Although a single slimmable generator implies multiple sub-
generators, we expect these generators to maintain the con-
sistency between them, like an identical generator. Imagine
that, a trained slimmable generator is deployed as clients
on various devices, and these devices may choose differ-
ent width configurations according to their diverse energy
budgets. We expect these clients to generate consistent sam-
ples for the same command (e.g., the latent code z), which
is broadcasted by the server. We characterize this require-
ment as spatial translation consistency. In addition, since a
single device has different performance modes, e.g., high-
power mode or power-saving mode, even the same device
may choose generators of different sizes. We also expect
this device to generate a consistent sample for the same la-
tent code at any mode, which is considered as time trans-
lation consistency. However, the adversarial training objec-
tive function cannot explicitly guarantee the consistency be-
tween generators of different widths because the discrimi-
nator only distinguishes real from fake but not distinguishes
similar from dissimilar.

To achieve consistency, we propose a novel stepwise in-
place distillation technique. Different from general-purpose
model distillation, we do not utilize knowledge distillation
to obtain a smaller model through an already trained one.
Instead, we train narrow networks by encouraging them
to learn from wide networks during the training process,



thereby improving consistency between them. Specifically,
the proposed distillation first distills the full generator to the
second widest one and then distills the second one to the
third one and so on. We employ the pixel mean square error
as the objective function in the distillation:

. A\ N—-1

mén mEZNPZ Zz; HGUM (Z) - Sg(Gwi+1 (Z))H%, )
where )\ is a hyper-parameter that balances the adversarial
objectives and the distillation, and sg(-) means to stop the
transfer of gradients in the computational graph. Stop updat-
ing the wide generator in distillation prevents it from learn-
ing from the narrow one.

Arguably, the distillation can effectively improve the per-
formance of narrow networks. Furthermore, the improve-
ment of narrow networks could also lead to an enhancement
of wide networks, because wide generators contain all the
channels of narrow generators, which forms a virtuous cycle
in SimGAN. As an alternative, leveraging the full network
to teach all narrow generators, however, may be contrary to
the assumption of width residuals (Yu and Huang 2019b). In
other words, forcing all narrow generators to learn from the
widest one would make no difference between them, which
may tend to strengthen the expression of parameters they
shared but reduce the capability of their specific.

Training Algorithm

Algorithm 1 shows the training procedure of SimGAN in
PyTorch-style pseudo-code. The main difference from train-
ing a normal GAN is that we enumerate all the widths in the
pre-specified width list at each iteration and switch the com-
putational graph according to the configured width. In the
adversarial training part, we sample random noises as the
input of each generator. This provides the diversity of fake
samples, encouraging models to explore wider optimization
space to achieve better results. In the consistency training
part, we sample the same latent code to optimize the discrep-
ancy of the outputs between generators at different widths.

Sliceable Conditional Batch Normalization

In the case of class-conditional generation, state-of-the-art
class-conditional GANS, e.g., BigGAN (Brock, Donahue,
and Simonyan 2019), follow the way of incorporating la-
bel information proposed in cGAN-pd (Miyato and Koyama
2018), i.e., conditional batch normalization (cBN) in the
generator and projection in the discriminator. In this work,
we follow the label projection technique in the discriminator.
As for the generator, however, how to introduce the label in-
formation under the width-switchable mechanism is the key
problem faced by SIimGAN in the class-conditional gener-
ation scenario. In other words, how to unify sBN and cBN?
A naive way to achieve this goal is to expand each sBN to a
cBN:

- /’(‘(xwi7cj)
U(l’wi’q)

where c¢; indicates the current label. However, the disadvan-
tages of this design are obvious from two perspectives. First,

:ZJ/ _ xwi,cj
wi,C5 wai,Cj

+ Buwie;s (5
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Algorithm 1 Training SlimGAN

Require: dataset D, switchable width multiplier list VW
Ensure: generator G

1. fort=1,...,7 do

2. fork=1,...,Kdo

3: Get mini-batch data, x = sample(D)
4: fori=1,...,Ndo
5: Generate samples, & = G, (z) with z ~ Py
6: Comp. D loss, loss = 10ssD (D, (z), Dy, (£))
7: Compute D gradients, loss.backward()
8: end for
9: Update D weights, optimizerD.step()
10:  end for
11:  Sample fixed noise Z ~ Pz and initialize T = [
122 fori=1,...,N do
13: Generate samples, & = G, (2) with z ~ Pz
14: Compute G loss, loss = [0ssG (D, (Z))
15: Compute G gradients, loss.backward)()
16: Generate fixed samples Z.append(G.,(Z))
17:  end for
18:  Compute distillation loss, loss = lossDistill(Z)
19:  Compute distillation gradients, loss.backward()
20:  Update G weights, optimizerG.step()
21: end for
22: return G

the number of parameters increased dramatically because of
N x C BN parameters (C' is the number of labels), which
is contradictory to our motivation, i.e., saving parameters to
reduce model size and computation. Second, the informa-
tion of the same label is separated for generators at different
widths.

To remedy the above issues, we propose a sliceable con-
ditional batch normalization (scBN) defined as follows:

- H(xwz‘,c‘j)
U(J'wi,c]-)

/ o 18 xu’iacj
wi,cj; ’ywq‘, (]

(6)

T

+ By + B

where 7., and ﬂcj are the learnable parameters of the cBN
with label c¢;. To incorporate the label embedding into dif-
ferent widths, we slice cBN vectors to sub-vectors with the
first s; = |y, | elements (s; is the number of channels in the
layer at current width w;). Since cBN and sBN are indepen-
dent, there are NV + C BN parameters in our proposed scBN,
which not only accordingly reduces the parameters but also
explicitly shares the information of the same label.

Experiments

In this section, we first evaluate our proposed SimGAN
across several datasets with two network backbones, com-
pared with the individually trained models. We then con-
duct class-conditional generation experiments to verify the
effectiveness of scBN. Besides, we report the qualitative
and quantitative results that indicate the consistency between
generators at different widths. We further demonstrate the
design of SiImGAN through an extensive ablation study. We
finally analyze the parameters complexities of generators.



FID ({) IS
Backbone Dataset Method 025x  0.5x 0.75%x 1.0x 0.25x 05x 0.75% 1.0x
ClEAR.1o  Individual 469 346 304 267 608 695 7.39 743
Slimmable 373 285 258 252 690 7.31 743 7.44
DCGAN (uncond) ¢y 1 Individual 931 69.1 618 574 651 7.82 7.96 838
Slimmable 689 609 562 551 7.67 800 834 838
Individual 244 132 104 98 - - - -
CelebA Slimmable 233 133 106 94 ] ] ] ]
ClEAR o Individual 418 241 216 203 736 768 7.93 791
Slimmable 209 216 196 200 732 802 815 8.09
ResNet (uncond) 11 10 Individual 66.6 535 563 529 790 852 830 8.60
Slimmable 691 590 508 506 T7.60 823 883 881
Individual 180 119 99 89 - - - -
CelebA Slimmable 139 106 98 85 - - - -
Individual 551 335 165 155 646 7.90 822 852
CIFAR-10  Slimmable (x) 21.7 17.2 161 162 7.87 831 849 834
¢GAN-pd (cond) Slimmable (+) 19.5 145 136 142 7.88 838 867 859
Individual 458 237 225 199 726 849 850 9.11
CIFAR-100 Slimmable (x) 268 19.9 189 19.0 813 890 9.14 922
Slimmable (+) 23.8 189 186 17.9 826 908 917 9.29

Table 1: FID and IS on both unconditional (uncond) and class-conditional (cond) generation. We do not calculate IS on CelebA
as it is a face dataset that lacking inter-class diversity, which IS measures. For class-conditional generation, (+) means our
proposed sliceable conditional batch normalization while () means the naive way that extends each sBN to cBN. Bold numbers
indicate our slimmable method outperforms the individually trained models.

Datasets

We employ the following datasets for main experiments:
CIFAR-10/100 consists of 50k training images and 10k val-
idation images with resolution of 32 x 32. CIFAR-10 has
10 classes while CIFAR-100 has 100 classes. STL-10 is re-
sized into the size of 48 x 48 as done in (Miyato et al. 2018).
There are 100k and 8k unlabeled images in the training set
and validation set, respectively. CelebA is a face dataset
with 202,599 celebrity images with resolution of 178 x 218
originally. We follow the practice in (Hou, Shen, and Cheng
2020) to center crop them to 178 x 178 and then resize them
to 64 x 64. We divide the last 19,962 images into the vali-
dation set and the remaining 182,637 images as the training
set. We use the training set for training the models and the
validation set for evaluation when calculating the statistics
of the real data.

Evaluation Metrics

For evaluating the performance of all models on genera-
tion, we adopt two widely used evaluation metrics: Incep-
tion Score (IS) (Salimans et al. 2016) and Fréchet Inception
Distance (FID) (Heusel et al. 2017). IS computes the KL
divergence between the conditional class distribution and
marginal class distribution. FID is the Fréchet distance (the
Wasserstein-2 distance between two Gaussian distributions)
between two sets of features obtained through the Inception
v3 network trained on ImageNet. We randomly generate 50k
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images to calculate IS on all datasets, and 10k images to
compute FID except STL-10, which we sample 8k images.

To measure the consistency between generators at differ-
ent widths of SlimGAN, we present a metric, called Incep-
tion Consistency (IC), which measure the expected feature
difference between two generators, GG,, and ij at width
w; and w;, respectively:

IC(Guys Guy) = Eanp, [|0(Gu, (2)) — (G, (2))I3],

where ®(-) outputs the feature of the last hidden layer of
Inception v3 network trained on ImageNet.

Given the width multiplier list W, we average IC between
all generator pairs as mean IC (mIC):

1 N N
mIC(G,W):mZ > IC(Guy, Guy)-

i=1 j=1,i%j

We randomly sample 10k images to estimate the mIC score.

Experimental Settings

We implement all models based on Mimicry (Lee and
Town 2020) using PyTorch framework. The optimizer is
Adam with betas (81, 52) = (0.5,0.999) for DCGAN and
(81, 2) = (0.0, 0.9) for ResNet based SNGAN. The learn-
ing rate is @« = 2 x 1074, except CelebA on DCGAN,
which is & = 10~%. The iterations of updating the genera-
tor are 7" = 100k for all methods. The discriminator update
steps per generator update step are K = 5 for ResNet and
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(b) Slimmable GAN with the stepwise inplace distillation, showing improved consistency.

Figure 2: Qualitative consistency on CelebA.

K = 1 for DCGAN. As for the detailed network architec-
ture, we exactly follow that in SNGAN (Miyato et al. 2018)
and cGAN-pd (Miyato and Koyama 2018). The width mul-
tiplier list is set to W = [0.25,0.5,0.75, 1.0] x

Experimental Results

Unconditional generation For unconditional generation,
we experiment with three datasets, CIFAR-10, STL-10,
and CelebA, on two backbones, DCGAN and ResNet. The
hyper-parameter is set as A = 20 for both backbones on
CIFAR-10 and CelebA datasets, A\ = 10 and A\ = 30
for DCGAN and ResNet, respectively, on STL-10. We re-
port the FID and IS results in Table 1. Individual repre-
sents individually trained GANs of each width. Our pro-
posed SIimGAN surpasses in most cases or competes with
the individually trained GANSs in terms of both FID and IS
scores, consistently demonstrating the effectiveness of Slim-
GAN across various datasets and network backbones. Sur-
prisingly, SimGAN outperforms the individual model at the
widest width. We argue that the reasons are twofold. First,
training narrow networks could provide extra informative
signals for shared parameters with wide networks. Second,
the parameter-shared discriminators have a certain regular-
ization, which may improve the generalization of each dis-
criminator. We believe this is a promising advanced training
technique for GANSs, and leave it for future work. Addition-
ally, some generators at width 0.75x reach or surpass the
widest generators, which are trained with only adversarial
objectives, reflecting the benefit of the combination of dis-
tillation and adversarial training.

Class-conditional generation For class-conditional gen-
eration experiments, we adopt cGAN-pd as the backbone on
both CIFAR-10 and CIFAR-100, and report both FID and
IS in the bottom of Table 1. The hyper-parameter is set as
A = 10 for CIFAR-10 and A = 20 for CIFAR-100. The
symbols in the parentheses after our slimmable methods rep-
resent different implementations of BN, i.e., (x) represents
the naive BN, and (+) represents our proposed scBN. Over-
all, the slimmable generators with different BNs outperform
the baseline heavily. Particularly, our proposed scBN gains
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IS (D) FID ()
Methods = " " T 0x  05x  1.0x
Individual 18.8 29.9 48.1 33.9
Slimmable 32.7 36.1 328 308

Table 2: BigGANs on ImageNet after 50k iterations.

further improvement compared with the naive BN due to
sharing the label information across different widths.

BigGANs on ImageNet We train our slimmable method
with BigGAN (Brock, Donahue, and Simonyan 2019) on
ImageNet (128 x 128) for 50k iterations. The width mul-
tiplier list is set as WW = [0.5,1.0]x. The IS and FID are
reported in Table 2. In a word, our slimmable method sur-
passes the individually trained BigGANSs, showing a strong
capability on large-scale dataset of high-resolution images.

SIimDCGAN CIFAR-10 STL-10 CelebA
+ w/o distillation 282.7 277.4 110.2
+ w/ distillation 231.3 243.2 96.1
SlimResGAN CIFAR-10 STL-10 CelebA
+ w/o distillation 285.7 342.4 116.9
+ w/ distillation 241.4 248.7 97.9

Table 3: mIC () on CIFAR-10, STL-10, and CelebA.

Consistency We first report the quantitative consistency
(mIC) in Table 3, which verifies that distillation can improve
the consistency. We also show the qualitative consistency re-
sults on CelebA in Figure 2. For each method, the top row
represents the narrowest generator and the bottom row indi-
cates the widest generator. The same column in each method
shows the images generated through the same latent code.
Compared with the method without distillation, our distil-
lation improves the consistency. For example, the method
without distillation synthesis faces with disparate hairs.



FID (1)

DCGAN on CIFAR-10 0.25% 0.5x 0.75% 1.0x AVG miIC (1)

Individual 46.9 34.6 30.4 27.4 34.8 -

Individual (full D) 45.6 33.2 29.4 27.4 33.9 -

Slimmable G 40.0 35.2 34.4 33.4 35.8 264.3

+ shared D 40.9 30.2 27.0 25.2 30.8 282.7

+ shared D + distillation (SlimGAN) 37.3 28.5 25.8 25.2 29.2 231.3

+ same D 180.4 136.9 141.3 158.6 154.3 376.8

+ slimmable D 43.6 35.8 31.0 33.0 35.9 269.5

+ distillation (w/o GAN loss for narrows) 87.9 56.2 37.8 28.9 52.7 204.8

+ shared D + naive distillation 36.6 29.8 26.3 25.5 29.6 232.5

Table 4: Ablation Study on CIFAR-10. AVG means the averaged FID across all widths.

Ablation Study CIFAR 0.25x 0.5x 0.75x 1.0x Total
In this section, we conduct an extensive ablation study on I-uncond 0.35 1.15 239 408 7.97
CIFAR-10 to verify the effectiveness of the design in Slim- I-cond-10 0.36 1.16 2.41 4.10 8.04
GAN, including network framework and objective function. I-cond-100 0.42 129 261 437 870
The first two rows in Table 4 are both individually trained
GANSs. Individual (full D) means the widths of all discrim- S-uncond - - - - 4.08
inators in these individual GANs are fixed as the widest S-cond-10 (+) - - - - 411
width, which is consistent with SlimGAN. Directly apply- S-cond-100 (+) - - - - 438
ing the slimmable operator to the generator with multiple in- S-cond-10 (x) } } } } 4.15
dependent discriminators (Slimmable G), unfortunately, ob- S-cond-100 (x) - - - - 4.81

tains degradation, especially for wide generators. Although
this issue is alleviated by sharing partial parameters of these
discriminators (shared D), it compromises consistency. For-
tunately, with stepwise inplace distillation, our final method
(SlimGAN) not only achieves further improvements for nar-
row generators on generation but also obtains remarkable
consistency. When utilizing the same discriminator (same
D) for all generators, the awful FID reveals that the one-to-
one relationship in the generator-discriminator pair should
be obeyed. As an alternative parameter-sharing way, slim-
ming the discriminator (slimmable D) does not gain satis-
factory results. This is because those narrow discriminators
would lack the capability to estimate the divergences, as they
are contained by wide discriminators. Without adversarial
training but only distillation for narrow generators, they tend
to produce blurry images and get inferior FID. Compared
with the stepwise distillation, only the narrowest network is
improved when using the naive distillation (all narrow gen-
erators learn from the widest one).

Complexity Analysis

Saving parameters is the major advantage of the slimmable
generator over the individually trained ones. We investi-
gate the number of parameters of unconditional (uncond)
and class-conditional generators in Table 5. Specifically,
cond10 and cond100 represent the class-conditional gen-
erators (cCGAN-pd) that trained with 10 (CIFAR-10) and
100 (CIFAR-100) labels, respectively. Individual (I-) meth-
ods require an independent generator on each width, while
the slimmable (S-) approach only needs one. Therefore, the
slimmable generator reduces parameters greatly compared
with the sum of all individuals. As for class-conditional gen-
erative models, our proposed scBN (+4) only adds negligible
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Table 5: The number of parameters (M) in the generators.

parameters on the widest individual generators compared to
the naive BN approach. This advantage would become more
obvious with the increase of labels or switches.

Conclusions

In this paper, we introduce slimmable generative adversarial
networks (SlimGAN), which can execute at different widths
at runtime according to various energy budgets of different
devices. To this end, we utilize multiple discriminators that
share partial parameters to train the slimmable generator. In
addition to the adversarial objectives, we introduce stepwise
inplace distillation to explicitly guarantee the consistency
between generators at different widths. In the case of class-
conditional generation, we propose a sliceable conditional
batch normalization to incorporate the label information un-
der the width-switchable mechanism. Comprehensive exper-
iments demonstrate that SImGAN reaches or surpasses the
individually trained GANSs. In the future, we will explore
more practical generation tasks, e.g., text-to-image genera-
tion and image-to-image translation.
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