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Abstract

The development of a satisfying and rigorous mathematical
understanding of the performance of neural networks is a
major challenge in artificial intelligence. Against this back-
ground, we study the expressive power of neural networks
through the example of the classical NP-hard Knapsack Prob-
lem. Our main contribution is a class of recurrent neural net-
works (RNNs) with rectified linear units that are iteratively
applied to each item of a Knapsack instance and thereby com-
pute optimal or provably good solution values. We show that
an RNN of depth four and width depending quadratically on
the profit of an optimum Knapsack solution is sufficient to
find optimum Knapsack solutions. We also prove the follow-
ing tradeoff between the size of an RNN and the quality of the
computed Knapsack solution: for Knapsack instances con-
sisting of n items, an RNN of depth five and width w com-
putes a solution of value at least 1 — O(n?/y/w) times the
optimum solution value. Our results build upon a classical dy-
namic programming formulation of the Knapsack Problem as
well as a careful rounding of profit values that are also at the
core of the well-known fully polynomial-time approximation
scheme for the Knapsack Problem. Finally, we point out that
our results can be generalized to many other combinatorial
optimization problems that admit dynamic programming so-
lution methods, such as various Shortest Path Problems, the
Longest Common Subsequence Problem, and the Traveling
Salesperson Problem.

1 Introduction

Deep learning and neural networks (NNs) are at the heart
of some of the greatest advances in modern computer sci-
ence. They enable huge breakthroughs in applications like
computer vision, translation, speech recognition, and au-
tonomous driving, to name just a few; see, e.g., LeCun,
Bengio, and Hinton (2015). While numerous computational
studies present impressive empirical proof of neural net-
works’ computational power, we are still far away from a
more rigorous theoretical explanation of these observations.

Apart from the popular applications named above, it
has been shown that NNs have high potential for practi-

*The full version of this article is available on arXiv (Hertrich
and Skutella 2020).

Supported by DFG-GRK 2434 Facets of Complexity.
Copyright (© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

7685

cally solving combinatorial optimization (CO) problems or
empirically improving classical solution methods (Bengio,
Lodi, and Prouvost 2018). For example, Yang et al. (2018)
and Xu et al. (2020) utilize NNs in order to empirically en-
hance dynamic programming, a very classical CO method.
While the methods used in these papers indeed provide fast
and empirically near-optimal solutions, their use of NNs
makes it virtually impossible to give theoretical optimality
or worst-case approximation guarantees. Motivated by this
imbalance, and focusing on the Knapsack Problem, which is
a prime example of CO problems that can be solved via dy-
namic programming, we investigate the following question:

Which neural network size is theoretically sufficient to find
solutions of provable quality for the Knapsack Problem?

We give an answer to this question by presenting a class of
carefully constructed NNs with provable quality guarantees.
In addition, we argue that our approach is not at all specific
for the Knapsack Problem, but can be generalized to many
other CO problems, e.g., various Shortest Path Problems, the
Longest Common Subsequence Problem, and the Traveling
Salesperson Problem.

The Knapsack Problem. The Knapsack Problem consti-
tutes one of the oldest and most studied problems in Com-
binatorial Optimization (CO). Given a set of items with cer-
tain profit and size values, as well as a Knapsack capacity,
the Knapsack Problem asks for a subset of items with max-
imum total profit such that the total size of the subset does
not exceed the capacity.

The Knapsack Problem is one of Karp’s 21 original NP-
complete problems (Karp 1972) and has numerous applica-
tions in a wide variety of fields, ranging from production and
transportation, over finance and investment, to network se-
curity and cryptography. It often appears as a subproblem at
the core of more complex problems; see, e.g., Martello and
Toth (1990); Kellerer, Pferschy, and Pisinger (2004). This
fact substantiates the Knapsack Problem’s prominent impor-
tance as one of the key problems in CO. In particular, the
Knapsack Problem is frequently being used as a testbed for
measuring the progress of various exact and heuristic solu-
tion approaches and computational methods such as, e.g., in-
teger programming, constraint programming, or evolution-
ary algorithms. In integer programming, for example, the



Knapsack Problem and so-called ‘Knapsack Inequalities’
play a central role, both with respect to theory as well as
in the development of modern computational methods; see,
e.g., Bertsimas and Weismantel (2005); Fischetti and Lodi
(2010). The Knapsack Problem is therefore a natural and
important object of study in order to advance our theoretical
understanding of neural networks and get closer to a rigor-
ous explanation of their stunning success in so many appli-
cations, including miscellaneous optimization problems.

Related work. The idea of using neural networks (NN5s)
to practically solve CO problems became popular with the
work of Hopfield and Tank (1985). Hopfield NNs are spe-
cial versions of recurrent neural networks (RNNSs) that find
solutions to optimization problems by converging towards a
minimum of an energy function. Smith (1999) reviews this
early stream of research. While most authors mainly focus
on the Traveling Salesperson Problem (TSP), Ohlsson, Pe-
terson, and Soderberg (1993) study a so-called mean field
NN for (generalizations of) the Knapsack Problem and em-
pirically assess the quality of its solutions.

While there has been less research at the intersection of
CO and NNs in the 2000s, modern advances in the area
of deep learning have boosted the interest in this direction
again. Bengio, Lodi, and Prouvost (2018) review these de-
velopments from a practical perspective. Common appli-
cations include speeding up solvers for mixed-integer lin-
ear programs, for instance, by automatically learning on
which variables to branch in branch-and-bound algorithms;
see Lodi and Zarpellon (2017) for a survey. Machine learn-
ing has also been applied to modeling aspects of CO, as
reviewed by Lombardi and Milano (2018), and to several
specific CO problems, where the TSP is often one of them
(Vinyals, Fortunato, and Jaitly 2015; Bello et al. 2016;
Khalil et al. 2017; Nowak et al. 2017; Emami and Ranka
2018; Kool, van Hoof, and Welling 2019). The different
methods used by these authors include feedforward and
recurrent neural networks, reinforcement learning, atten-
tion mechanisms, pointer networks, graph embeddings, and
graph neural networks. For example, Bello et al. (2016) uti-
lize an RNN trained by reinforcement learning and present
a computational study demonstrating their approach’s em-
pirical effectiveness for the TSP and the Knapsack Problem.
Particularly related to our work, Yang et al. (2018) and Xu
et al. (2020) use NNs to speed up dynamic programming al-
gorithms for CO problems. The key difference to our work,
however, is that NNs are used as heuristics in these papers,
making it virtually impossible to give any meaningful worst-
case performance guarantees.

The recent success of deep neural networks has also trig-
gered a lot of research on their expressivity. As we do in
this paper, many authors focus on the simple but practi-
cally powerful model of feedforward NNs with activations
in the form of rectified linear units (ReLU). Since Glo-
rot, Bordes, and Bengio (2011) corroborated their empirical
success, such ReLU NNs have been established as a stan-
dard model in Machine Learning within the past decade.
ReLU NNs can compute any continuous piecewise linear
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function (Goodfellow et al. 2013; Arora et al. 2018). This
fact implies universal approximation properties. A variety
of results has been achieved on depth vs. width tradeoffs
(Telgarsky 2015; Eldan and Shamir 2016; Telgarsky 2016;
Hanin and Sellke 2017; Liang and Srikant 2017; Safran and
Shamir 2017; Yarotsky 2017; Arora et al. 2018; Nguyen,
Mukkamala, and Hein 2018; Hanin 2019). Closely related
are investigations concerning the number and structure of
linear regions that NNs with certain size and depth may
have (Montufar et al. 2014; Pascanu, Montufar, and Bengio
2014; Raghu et al. 2017; Hanin and Rolnick 2019). Serra,
Tjandraatmadja, and Ramalingam (2018) use mixed-integer
programming for precisely counting the number of such re-
gions. Mukherjee and Basu (2017) prove size lower bounds
to represent Boolean functions with NN of limited depth.

Our contribution. We present a rigorous mathematical
study on the expressivity of NNs through the example of
the NP-hard Knapsack Problem. To this end, we show that
there is a class of feedforward ReLU NNs of bounded size
that compute provably good solutions to the NP-hard Knap-
sack Problem. In Section 3, we first present such an NN of
depth O(n) and width O((p*)?) that always finds the exact
value of an optimum Knapsack solution. Here, n is the num-
ber of items in the Knapsack instance, and p* is an a priori
known upper bound on the value of an optimum solution.
More precisely, the optimum solution value is found by iter-
atively applying an RNN of depth four and width O((p*)?)
to the n items of a Knapsack instance. As p* can, e.g., be
chosen as the total size of all items, the RNN’s width is
pseudo-polynomially bounded in the input size of the Knap-
sack instance. Due to the Knapsack Problem’s NP-hardness,
however, there is no polynomial-size NN that always finds
the optimum solution value, unless P = NP.

In Section 4, we prove that the width of the NNs can be
drastically decreased while still obtaining solution values of
provable quality in the worst case. We construct an RNN of
depth five and fixed width w which, when applied iteratively
to the n items of a Knapsack instance, always produces a
solution value of at least 1 — O(n?/,/w) times the optimum
solution value. In particular, an e-approximate solution value
can be guaranteed by choosing width w € O(n*/e?). The
dependence of the width on ¢ is unavoidable, unless P = NP.
To the best of our knowledge, our results establish the first
rigorous tradeoff between the size of neural networks for CO
problems and their worst-case solution quality.

The idea behind our construction of the NN is to mimic
the classical dynamic program for the Knapsack Problem.
More precisely, the output neurons of the RNN can be seen
as elements of the dynamic programming state space while
the hidden neurons and the network itself implement the re-
cursive dynamic programming formula. Here, the main tech-
nical difficulty is to always filter out the correct entries of the
previous state space (input neurons) needed in the recursive
formula. In addition, our NNs of fixed width rely on a sub-
tle variant of the rounding procedure that turns the pseudo-
polynomial dynamic program into a fully polynomial-time
approximation scheme for the Knapsack Problem.



In this paper, the Knapsack Problem mainly serves as a
prominent showcase for a novel approach to the rigorous
analysis of neural networks’ expressivity. This approach is
by no means specific for the Knapsack Problem. In Sec-
tion 5, we discuss how it can be applied to NNs for other
combinatorial optimization problems that can be solved via
dynamic programming. In Particular, we establish similar re-
sults for the Longest Common Subsequence Problem, the
Single-Source and All-Pairs Shortest Path Problems, as well
as the NP-hard Traveling Salesperson Problem and the Con-
strained Shortest Path Problem. For the latter problem one
can show similar results on the tradeoff between the size of
NNs and their solution quality.

2 Preliminaries

Neural networks with rectified linear units. We use def-
initions and notations similar to Shalev-Shwartz and Ben-
David (2014, Chapter 20). A feedforward neural network
with rectified linear units, abbreviated by ReLU NN, or sim-
ply NN, is a finite directed acyclic graph (V, E), equipped
with arc weights w,,, € R, for each (u,v) € E, and node
biases b, € R, for each node v € V' \ V;. Here, V} is the
set of nodes with in-degree zero. The nodes in V' are called
neurons. The depth k is the length of a longest path in the
graph. In the following we suppose that neurons are grouped
into layers V. = Vo U V1 U+ - - UV}, such that the layer index
strictly increases along each arc.! Further, we assume that Vj
and V}, are precisely the sets of neurons with in-degree and
out-degree zero, respectively. Consequently, they are called
input neurons and output neurons, respectively. Neurons in
V\ (Vo U V},) are called hidden neurons. Let ny = |V;| be
the number of neurons in the ¢-th layer. The width and size of

the NN are defined to be max{ny,...,n;_1} and Z;:ll ng,
respectively.

Every NN computes a function R™ — R™ as follows.
Given an input vector x € R™°, we associate an activa-
tion a(v) with every neuron v € V' \ V4 and an output o(v)
with every neuron v € V' \ V;. First, the output values o(v),
v € Vjp, of the ng input neurons equal the ny components of
input vector z. Second, the activation of a neuronv € V\V;
is the weighted sum of outputs of all predecessors plus its
bias, that is, a(v) = b, +3_,,. (,,1)ep Wuwwo(u). Third, for
each hidden neuron v € V'\ (Vj U V%), the output is deter-
mined by o(v) = o(a(v)), where o is the so-called activa-
tion function. In this paper, o is always the rectifier function
o(z) = max{0, z}. Neurons having this activation function
are called rectified linear units (ReLUs). Finally, the output
vector y € R™ consists of the ny, activation values a(v) of
the nj output neurons v € Vj. Figure 1 gives an example,
which will also be used as a subnetwork in later sections.

Since feedforward NNs have a fixed input size, a com-
mon way of handling sequential inputs of arbitrary length
is to use recurrent neural networks (RNNs). This type of

!Some authors only allow connections between successive lay-
ers. One can create such a structure by adding additional neurons
propagating the values of neurons from former layers through the
network. For our purposes, however, it is convenient to omit this
restriction.
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Figure 1: An NN with two input neurons, labeled x; and

T9, one hidden neuron, labeled with the shape of the rec-

tifier function, and one output neuron, labeled y. The arcs

are labeled with their weights and all biases are zero. The

network has depth 2, width 1, and size 1. It computes the

function z — y = x5 — max{0, 22 — 21} = min{x1, z2}.
cell cell

EE

RNN RNN
Figure 2: Basic structure of an (unfolded) RNN.

NN has become very popular, e.g., for tasks in language or
speech processing. Essentially, an RNN is a feedforward NN
that is used repeatedly for every piece of the input sequence
and maintains a hidden state by passing (part of) its output
in each step as an additional input to the next step. More
precisely, in the ¢-th step, the input of the RNN consists of
the i-th input vector x;, as well as, the previous hidden state
vector h;_1. In the same manner as a feedforward NN de-
scribed above, it then computes the ¢-th output vector y;, as
well as, the new hidden state vector h;. The basic structure
of an RNN is shown in Figure 2. Sometimes it holds that
y; = hy, that is, the i-th output is actually equal to the i-th
hidden state.

Notations and Algorithms for the Knapsack Problem.
An instance of the Knapsack Problem consists of n items
1,2,...,n, where each item ¢ € [n| comes with a given
profit p; € N and size s; € |0, 1], together with a Knap-
sack that can hold any subset M C [n] of items of total
size ) ;cps Si at most 1. The task is to find such a sub-
set M C [n] that maximizes the total profit ), p;. Here
and in the following, we use N := {1,2,3,...} to denote
the natural numbers (without zero), and for every k € N, we
let [k] .= {1,2,...,k}.

We outline a classical dynamic programming formulation
for the Knapsack Problem. Let p* be an upper bound on the
optimum solution value, e.g., p* = Y., p;. For i € [n]
and p € [p*], let

f(p,i) mln{ZjGM 5 ‘ M C [i], ZJ.GM;D] _p}
be the minimum size of a subset of the first ¢ items with
total profit at least p. With f(p,7) := 0 for p < 0 and

f(p,0) == 4oo for p € [p*], the values of f can be com-
puted recursively by

f(p,i) =min{f(p,i — 1), f(p—pi,i—1) +si} (1)



for i € [n], p € [p*], where the first option corre-
sponds to not using the ¢-th item, while the second op-
tion corresponds to using it. The optimum solution value is
max{p € [p*] | f(p,n) < 1}, and the optimum subset can
easily be found by backtracking. The runtime of the dy-
namic program is O(np*), thus pseudo-polynomial in the
input size.

Due to NP-hardness of the Knapsack Problem, one can-
not expect to find an exact algorithm with polynomial run-
ning time. However, by carefully downscaling and rounding
the profit values in the dynamic program, for each ¢ > 0,
one can achieve a feasible solution with guaranteed profit
of at least 1 — ¢ times the optimal profit, while the running
time can be bound polynomially in the input size and 1/¢.
Such a class of algorithms with arbitrary good approxima-
tion guarantees is called a fully polynomial-time approxi-
mation scheme (FPTAS). For more details, we refer to the
books by Hochbaum (1997), Vazirani (2001), or Williamson
and Shmoys (2011).

Usually, the Knapsack Problem is defined with integer
size values s; € N and some Knapsack capacity S € N,
bounding the total size of chosen items. Dividing all item
sizes by S transforms such an instance into an instance of
the type considered here. For the case of integral item sizes,
there is also a pseudo-polynomial dynamic programming
formulation parameterized by the size instead of the profit
values; see, e.g., Kleinberg and Tardos (2006, Section 6.4).
Our construction in Section 3 can analogously be applied
to this formulation. This variant, however, does not eas-
ily extend to an FPTAS. We therefore stick to the variant
parametrized by the profit values as introduced above.

3 An Exact RNN for the Knapsack Problem

In this section we introduce the DP-NN, an NN that exactly
executes the dynamic program described in Section 2. In
fact, the DP-NN is an RNN that receives the items one by
one and computes the state space of the dynamic program
for the items seen so far.

Like the dynamic program in Section 2, the DP-NN re-
quires a fixed upper bound p* on the optimal objective value
of the Knapsack Problem. We relax this condition in Sec-
tion 4, when we investigate how the FPTAS for the Knap-
sack Problem can be implemented as an NN.

In the ¢-th step, the DP-NN receives p* + 2 inputs, namely
f(p,i—1) for p € [p*], as well as p; and s;. It computes p*
output values, namely f(p,i) for p € [p*]. Hence, overall
it has p* + 2 input neurons and p* output neurons. Figure 3
illustrates the recurrent structure of the NN, which computes
the state space of the dynamic program.

In the following it is very important to distinguish fixed
parameters of the NN from activation and output values of
neurons that depend on the particular Knapsack instance. We
denote the latter by bold symbols in order to make the differ-
ence visible. Moreover, in order to make the recurrent struc-
ture of our NN obvious, we do not use the index 7 in the
following description of the network. Instead, we denote the
ng = p* + 2 input values by fi,,(p) for p € [p*], as well as
Pin and s;,. The p* output values are denoted by f,,¢(p) for
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Figure 3: Recurrent structure of the DP-NN to solve the
Knapsack Problem.

() ()
fin(p — pin) ()

Q fout (p)

> min

Figure 4: Desirable architecture for computing f,.(p), p €
[p*], from the inputs. However, the existence of an edge
(nonzero weight) depends critically on the input value piy,
which is not allowed.

p € [p*]. The goal is to implement the recursion

fout(p) = min{fin(p), fin(p — Pin) + Sin} for p € [p*]

in an NN; cp. (1). It consists of an addition and taking a min-
imum, which are both simple operations for an NN. Hence,
ideally, we would like to have an architecture as depicted in
Figure 4 for computing £, (p) for every p € [p*]. The prob-
lem with this is, however, that the decision which compo-
nent of f},, is accessed in order to compute the sum with s;,
depends on the input value p;,. Since we aim for an archi-
tecture that is fixed and works for general input values piy,
we have to extend our construction as depicted in Figure 5.
As we do not know the value of p;, in advance, we connect
every input neuron fi, (p — p’), p’ € [p — 1], to the unit that
computes the sum fi, (p — pPin) + Sin- Since we only want to
take the value fi, (p — pin) into account, we need to add an
additional unit that disables those connections if p’ # pyy.
Due to the integrality of the profit values, it is possible to
show that this additional unit can be realized with two hid-
den layers and a constant number of neurons for every value
of p € [p*] and p’ € [p — 1]. Computing the minimum adds
a third hidden layer. Hence, the DP-NN has depth four while
width and size are in O((p*)?). Unfolding the RNN and

O fous (P)

Figure 5: High-level idea how the DP-NN computes ;. (p)
for p € [p*] from the inputs.



viewing it as a single feedforward NN executing the whole
dynamic program results in depth O(n) and size O(n(p*)?).
In the full version of this paper (Hertrich and Skutella 2020)
we provide a detailed construction of the DP-NN and prove
the following theorem.

Theorem 1. For a Knapsack instance with capacity S = 1,
s; €10,1], and p; € N, fori € [n], with an upper bound p*
on the optimal solution value, the corresponding dynamic
programming values f(p,1), i € [n], p € p*, can be exactly
computed by iteratively applying the DP-NN n times.

Observe that due to the NP-hardness of the Knapsack
Problem, the dependence of the network size on p* cannot
be avoided if exact results are desired.

4 Smaller RNNs with Provable
Approximation Guarantees

In order to overcome the drawback due to the dependence
of the network width on p*, we provide a construction,
called FPTAS-NN, that uses less neurons, at the cost of los-
ing optimality. Instead, we prove an approximation ratio
(i.e., a worst-case bound) for the solution value computed
by the FPTAS-NN. As in the standard Knapsack FPTAS
(Hochbaum 1997; Vazirani 2001; Williamson and Shmoys
2011), the idea of this construction is to round the profit
values if p* becomes too large for an exact computation.
Our approximation result can be interpreted as a tradeoff be-
tween the width of the NN and the quality of the Knapsack
solution obtained.

Let P € N be a fixed number. The FPTAS-NN computes
values g(p, i) for every p € [P] and ¢ € [n]. These values
are similar to the values f(p, ) of the previous section, there
is, however, one major difference. Let p} Z;: 1 p; be the
total profit of the first 7 items. As soon as p; exceeds P, we
can no longer store a required size value for every possible
profit value but have to round profits instead. The granular-
ity we want to use for rounding is d; := max{1, p; /P}. We
construct the FPTAS-NN to compute values g(p, %), p € [P],
i € [n], such that we can guarantee the existence of a sub-
set of [¢] that has size at most g(p, 7) and profit at least p d;.
Moreover, this is done in such a way that the optimal so-
lution cannot have a considerably higher profit value. That
is, we prove a worst-case approximation guarantee for the
solution found by the FPTAS-NN.

In addition to the values of g, the FPTAS-NN must also
propagate the current total profit value p; through the net-
work in order to determine the rounding granularity in each
step. Hence, in the ¢-th step, it receives P + 3 inputs, namely
g(p,i — 1) for p € [P], pf_;, pi, and s;. It computes P + 1
outputs, namely g(p, i) for p € [P] and p}. Figure 6 illus-
trates the recurrent structure of this NN.

As in Section 3, we use bold symbols in order to dis-
tinguish input, activation, and output values that depend on
the concrete Knapsack instance from fixed parameters of the
network. We again drop the index ¢ in order to make the re-
current structure obvious. We denote the ng = P + 3 input
parameters by g, (p), for p € [P], as well as pf,, pin, and
Sin. The P + 1 output values are denoted by gou¢(p), for
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Figure 6: Recurrent structure of the FPTAS-NN for the
Knapsack Problem.

p € [P], and pf,;. Similar to the DP-NN in Section 3, the
basic idea is to implement a recursion of the type

out(p) = min{gin (p"), gin(p®) + i} forp € [P],

where the first argument of the minimum represents the op-
tion of not using item ¢, while the second one corresponds to
using it. Notice, however, that p") and p(®) cannot simply
be calculated as p and p — pyy, respectively, since we may
have to round with different granularities in two successive
steps. Therefore, the rough structure of the FPTAS-NN is as
follows: first, p}; and pi, are used in order to calculate the
old and new rounding granularities doiq = max{1, pf, /P}
and dyew = max{1, (p{, + pPin)/P}. Since this computa-
tion consists of maxima and weighted sums only, it can eas-
ily be achieved by an NN with one hidden layer. Second,
the granularities are used in order to select g, (p(*)) and
gin(p?) from the inputs. Below we give some more de-
tails on how this is being done. The value of p(®) also de-
pends on p;y,. Third, the final recursion is established as in
the DP-NN. In addition to g,y (p), for p € [P], we also out-
put p;.; = Pi, + Pin in order to keep track of the rounding
granularities in subsequent steps. An overview of the entire
network structure is given in Figure 7.

Suppose we use the network for processing the i-th
item. For each p € [P] we want to determine a (prefer-
ably small) value gout(p) such that there is a subset

gin (P)

Sout (D)

gin(1)

o

*
Pin

Com-

pute
doia

O

*
Pout

Figure 7: High-level idea how the FPTAS-NN computes
Zout(P), p € [P], and p’,,; from the inputs.



of [i] of total profit at least pdyew and total size at most
Zout(p). For each p’ € [P], we know that there is a
subset of [i — 1] of total profit at least p’dyq and to-
tal size at most gi,(p'). We have two options: ignoring
item i or using it. If we ignore it, then each p(*) with
pMdgiq > pdpew allows us to choose gout (p) = gin (pM).
If we do use the i-th item, however, then each p(2)
with the property p?doiq + Pin > pdpew allows us to
choose gout(p) = gin(p(2)) + si,. Hence, we want to
choose p) and p® as small as possible such that
these properties are fulfilled. Therefore, the units labeled
‘Select gi, (p™"))’ and “Select g;,, (p(*))” in Figure 7 are con-
structed by setting all other connections to zero except for
those belonging to the smallest values of p!) and p(
satisfying the above properties. Similar to how we com-
puted fi, (p — pin) in the previous section, this requires two
hidden layers and O(P?) neurons in total.

In total, the FPTAS-NN has depth 5. The first hidden layer
computes the rounding granularities, two hidden layers are
required to select g, (p*)) and g, (p(?) and a final hidden
layer computes the minimum in the actual recursion. The
width and size of the FPTAS-NN are in the order of O(P?).
Unfolding the RNN and viewing it as a single feedforward
NN executing the whole FPTAS results in depth O(n) and
size O(nP?).

In the full version of this paper (Hertrich and Skutella
2020) we provide a formal description of the FPTAS-NN as
well as proofs of the following two theorems. The first one
ensures that the FPTAS-NN produces only feasible Knap-
sack solutions, while the second one shows that the FPTAS-
NN indeed provides a fully polynomial-time approximation
scheme to solve the Knapsack Problem.

Theorem 2. Suppose the FPTAS-NN is applied to a Knap-
sack instance with capacity S = 1, s; € ]0,1], and p; € N,
for i € [n]. For every i € [n] and every p € [P], if
g(p,i) < 1, then there exists a subset of [i| with profit at
least pd; and size at most g(p, i).

Theorem 3. For a Knapsack instance with capacity S = 1,
si € 10,1], p; € N, fori € [n], and for ¢ € ]0,1], set
P = [n?/e]. Let p°F'T be the profit of the optimal solution
and p™N = max{pd,, | g(p,n) < 1} be the best possible
profit found by the FPTAS-NN. Then p"N > (1 — ¢)pOFT.

Theorem 3 implies a tradeoff between the width of the NN
and the precision of the Knapsack solution in the following
sense. For achieving an approximation ratio of 1 — €, an NN
of width O(P?) = O(n*/e?) is required. In other words,
the FPTAS-NN with fixed width w achieves a worst-case
approximation ratio of 1 — O(n?//w).

Observe that, assuming P £ NP, it is clear that the size of
the NN must grow if € tends to zero. Hence, complexity the-
ory implies that a width-quality trade-off cannot be avoided.
Still, it remains as an open question whether the growth rates
implied by our construction are best possible.

5 Neural Networks for Other CO Problems

In this section we demonstrate that our approach is by no
means bound to the Knapsack Problem. In fact, for many

7690

other CO problems it is possible to convert a dynamic pro-
gramming solution method into a provably correct NN. For
certain NP-hard CO problems, a dynamic programming so-
Iution even implies the existence of a fully polynomial-
time approximation scheme (Woeginger 2000). This, in turn,
might shed light on the tradeoff between size of correspond-
ing NNs and their solution quality, as for the Knapsack Prob-
lem in Section 4. In the following we provide several exam-
ples in order to support these claims.

Longest Common Subsequence. First, consider the prob-
lem of finding the length of the longest common subse-
quence of two finite integer sequences x1, X2, ..., Z,;, and
Y1,Y2,---,Yn- A standard dynamic programming proce-
dure, see, e.g., Cormen et al. (2001, Section 15.4), com-
putes values f (4, j) equal to the length of the longest com-

mon subsequence of the partial sequences x1, z2, ..., x; and
Y1, Y2, -.,Y; by applying the recursion

fi,g) = { max{f(i —1,7), f(i,5 — 1)} if z; # y;.

Since the sequence consists of integers, the check whether
x; equals y; can be performed similarly to checking whether
p' = pin in Section 3. The remainder of the recursion only
consists of maxima and sums. Hence, computing f(i,j)
from f(i — 1,5 — 1), f(i — 1,j). f(i.j — 1), z;, and y;
can be realized via an NN of constant size. These basic units
can be plugged together in a two-dimensional way for com-
puting all values f(i,5), ¢ € [m], j € [n]. The resulting
NN can be seen as a two-dimensional RNN of constant size
that is applied in an m by n grid structure, an architecture
introduced by Graves, Ferndndez, and Schmidhuber (2007).
Unfolding the RNN results in a feedforward NN of depth
O(m + n) and size O(mn) for computing the length of the
longest common subsequence.

Single-Source Shortest Path Problem. As a second ex-
ample, we consider the Bellman-Ford algorithm for the
Single-Source Shortest Path Problem, see, e.g., Kleinberg
and Tardos (2006, Section 6.8). If (¢yy)u,vev is the length
matrix of a graph with vertex set V' and s € V is the source
vertex, this algorithm recursively computes values f(i,v)
determining the shortest possible length of a path from s
to v using at most ¢ arcs by

fli,v) = Lrél‘l/l{f(l —1,u) 4 cup}-

Since this recursion consists only of sums and minima, it can
be easily implemented in an NN. The sequential time com-
plexity of the Bellman-Ford algorithm on complete digraphs
with n = |V is O(n?), which can naturally be parallelized
into O(n) rounds. Since the best known NNs for computing
the minimum of n numbers require O(logn) depth (Arora
et al. 2018), there exists an NN executing the Bellman-Ford
algorithm with depth O(nlogn) and size O(n?logn). Ob-
serve that in each round ¢ € [n], the computation mapping
the values f(i —1,v),v € V,to f(i,v), v € V, is the same.
Therefore, this NN can also be seen as an RNN of depth
O(logn) and size O(n? logn) that is applied n times.



All-Pairs Shortest Path Problem. Third, recall that the
All-Pairs Shortest Path Problem can be solved by comput-
ing the (n — 1)-th min-plus matrix power of the length ma-
trix (Cyv)u,vev s see, .., Leighton (1991, Section 2.5.4). By
repeated squaring, this can be achieved with only O(logn)
min-plus matrix multiplications. For a single multiplication
it is required to compute O(n?) times in parallel the min-
imum of n numbers. One of these minimum computations
requires depth O(logn) and size O(nlogn). Putting them
in parallel to execute one min-plus matrix product results in
depth O(logn) and size O(n3logn). Note that the whole
execution consists of O(logn) repetitions of the same pro-
cedure, namely squaring a matrix in the min-plus sense.
Hence, this can again be viewed as an RNN with depth
O(logn) and size O(n3logn) that is applied O(logn)
times. Unfolding results in a single feedforward NN with
depth O(log® n) and size O(n®log® n) for solving the All-
Pairs Shortest Path Problem.

Constrained Shortest Path Problem. Next, consider a
common generalization of the Shortest Path Problem and the
Knapsack Problem, namely the NP-hard Constrained Short-
est Path Problem. Here, in addition to a (nonnegative) length
matrix (Cyy)u,wev, the input graph is also equipped with
a (nonnegative) resource matrix (7yy )y, vev . The task is to
find a minimum length path P from a source vertex s to any
other vertex, but this time subject to a resource constraint
> (uv)ep Tuv < R for a given resource limit R. An exten-

sive overview of solution approaches to this problem can be
found, e.g., in the dissertation by Ziegelmann (2001). Simi-
lar to the Knapsack Problem, there exist two natural pseudo-
polynomial dynamic programs, one of them parametrized by
length values and the other one by resource values. Both can
be implemented on an NN by combining the ideas from Sec-
tion 3 with the NN for the Bellmann-Ford algorithm above.
We showcase this for the variant parametrized by the length
values. This dynamic program recursively calculates val-
ues f(c,v) representing the minimum amount of resource
needed for a path from s to v with length at most ¢ by

f(cv U) = mln{f(c -1, U): minuEV\{v}{f(C — Cyu, U) + Tuu}}'

For fixed ¢, u, and v, the term f(¢ — ¢yup,u) + Ty can
be calculated by a similar construction as we computed
fin (p — Pin) + sin in Section 3. Assuming an upper bound c¢*
on the optimal objective value, this can be achieved with
constant depth and O(c*) width. Hence, it remains to com-
pute a minimum of at most n numbers in order to com-
pute f(c,v). Thus, each single value f(c,v) can be com-
puted with depth O(logn) and size O(nc*logn). We have
to compute O(nc*) of these values, but for fixed ¢, all these
values can be computed in parallel. Therefore, the whole
dynamic program can be executed on an NN with depth
O(c*logn) and a total size of O(n?(c*)?logn). This is
pseudo-polynomial, which is the best we can hope for due
to the NP-hardness of the problem. Moreover, similar to
the Knapsack Problem, this dynamic program can be turned
into an FPTAS by downscaling and rounding the length val-
ues. This observation can be used to obtain a width-quality
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tradeoff for the Constrained Shortest Path Problem similar
to what we have shown in Section 4.

Traveling Salesperson Problem. Finally, consider the
Bellman-Held-Karp algorithm for solving the (asymmetric)
Traveling Salesperson Problem (TSP), see Bellman (1962);
Held and Karp (1962). Given a (complete, directed) graph
with vertex set V' and distances c,, from vertex u € V to
vertex v € V, the TSP asks for the shortest round-trip visit-
ing each vertex exactly once. Choosing an arbitrary starting
vertex s € V, the Bellman-Held-Karp algorithm recursively
computes values f(T,v) foreach T C V \ {s},v € T,
corresponding to the length of the shortest s-v-path visiting
exactly the nodes in T'U {s} by the formula

f(T,v) = min {f(T\{v},u)+cu}-

weT\{v}

The length of the shortest TSP tour is then given by
min, ey (53 1/(V \ {s},u) + cus}. While the sequential
time complexity of this algorithm on digraphs with n = |V|
is O(n?2™), in an NN we can compute the values of f for
all T' with equal cardinality in parallel. As before, comput-
ing the minimum introduces an additional factor of logn
in the depth and size of the network. Hence, in total, the
TSP can be solved with an NN of depth O(n log n) and size
O(n?2"logn). In particular, a polynomially deep NN suf-
fices to solve the NP-hard (asymmetric) TSP.

6 Conclusions and Future Work

An obvious open problem is to improve the obtained bounds
on the required width of our neural network constructions.
In particular, an interesting question is whether meaningful
lower bounds beyond those immediately implied by the NP-
hardness of the Knapsack Problem can be obtained, as sug-
gested by our experimental results.

Notice that our networks only output the solution value
but not the corresponding solution, i.e., subset of items. It
is easy to see that, as for the dynamic program solving the
Knapsack Problem, the subset of items can be obtained in
a straightforward way via backtracking. On the other hand,
notice that it is impossible for a ReLU NN (without thresh-
old gates) to output (the characteristic vector of) the op-
timum subset of items: while the function computed by a
ReLU NN is piecewise linear and continuous (Goodfellow
et al. 2013; Arora et al. 2018), already infinitesimal changes
of the input (i.e., the profit values of items) might change the
optimum subset of items.

Another interesting direction for future research is to gen-
eralize our results of Section 5 by describing a general
procedure to convert dynamic programs into ReL.U NNs.
Ideally, one could exactly classify the type of dynamic
programs that guarantee the existence of a corresponding
ReLU NN. Similar in spirit, Woeginger (2000) classifies
dynamic programs that guarantee the existence of a fully
polynomial-time approximation scheme.
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