The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

DeepSynth: Automata Synthesis for Automatic Task Segmentation
in Deep Reinforcement Learning

Mohammadhosein Hasanbeig, Natasha Yogananda Jeppu,
Alessandro Abate, Tom Melham, Daniel Kroening*

Computer Science Department, University of Oxford, Parks Road, Oxford, United Kingdom, OX1 3QD
{hosein.hasanbeig, natasha.yogananda.jeppu, alessandro.abate, tom.melham} @cs.ox.ac.uk and daniel.kroening@magd.ox.ac.uk

Abstract

This paper proposes DeepSynth, a method for effective train-
ing of deep Reinforcement Learning (RL) agents when the
reward is sparse and non-Markovian, but at the same time
progress towards the reward requires achieving an unknown
sequence of high-level objectives. Our method employs a
novel algorithm for synthesis of compact automata to uncover
this sequential structure automatically. We synthesise a human-
interpretable automaton from trace data collected by exploring
the environment. The state space of the environment is then
enriched with the synthesised automaton so that the generation
of a control policy by deep RL is guided by the discovered
structure encoded in the automaton. The proposed approach is
able to cope with both high-dimensional, low-level features
and unknown sparse non-Markovian rewards. We have eval-
uated DeepSynth’s performance in a set of experiments that
includes the Atari game Montezuma’s Revenge. Compared
to existing approaches, we obtain a reduction of rwo orders
of magnitude in the number of iterations required for policy
synthesis, and also a significant improvement in scalability.

Introduction

Reinforcement Learning (RL) is the key enabling technique
for a variety of applications of artificial intelligence, includ-
ing advanced robotics (Polydoros and Nalpantidis 2017),
resource and traffic management (Mao et al. 2016; Sadigh
et al. 2014), drone control (Abbeel et al. 2007), chemical en-
gineering (Zhou et al. 2017), and gaming (Mnih et al. 2015).
While RL is a very general architecture, many advances in
the last decade have been achieved using specific instances
of RL that employ deep neural networks to synthesise opti-
mal policies. A deep RL algorithm, AlphaGo (Silver et al.
2016), played moves in the game of Go that were initially
considered glitches by human experts, but secured victory
against the world champion. Similarly, AlphaStar (Vinyals
et al. 2019) was able to defeat the world’s best players at the
real-time strategy game StarCraft II, and to reach top 0.2% in
scoreboards with an “unimaginably unusual” playing style.
While deep RL can autonomously solve many problems in
complex environments, tasks that feature extremely sparse,
non-Markovian rewards or other long-term sequential struc-
tures are often difficult or impossible to solve by unaided RL.

“The work in this paper was done prior to joining Amazon.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

7647

A well-known example is the Atari game Montezuma’s Re-
venge, in which DQN (Mnih et al. 2015) failed to score. In-
terestingly, Montezuma’s Revenge and other hard problems
often require learning to accomplish, possibly in a specific
sequence, a set of high-level objectives to obtain the reward.
These objectives can often be identified with passing through
designated and semantically distinguished states of the sys-
tem. This insight can be leveraged to obtain a manageable,
high-level model of the system’s behaviour and its dynamics.

Contribution: In this paper we propose DeepSynth, a
new algorithm that automatically infers unknown sequential
dependencies of a reward on high-level objectives and ex-
ploits this to guide a deep RL agent when the reward signal
is history-dependent and significantly delayed. We assume
that these sequential dependencies have a regular nature, in
formal language theory sense (Gulwani 2012). The identifi-
cation of dependency on a sequence of high-level objectives
is the key to breaking down a complex task into a series of
Markovian ones. In our work, we use automata expressed
in terms of high-level objectives to orchestrate sequencing
of low-level actions in deep RL and to guide the learning
towards sparse rewards. Furthermore, the automata represen-
tation allows a human observer to easily interpret the deep
RL solution in a high-level manner, and to gain more insight
into the optimality of that solution.

At the heart of DeepSynth is a model-free deep RL algo-
rithm that is synchronised in a closed-loop fashion with an
automaton inference algorithm, enabling our method to learn
a policy that discovers and follows high-level sparse-reward
structures. The synchronisation is achieved by a product con-
struction that creates a hybrid architecture for the deep RL.
When dealing with raw image input, we assume that an off-
the-shelf unsupervised image segmentation method, e.g. (Liu
et al. 2019), can provide enough object candidates in order
to identify semantically distinguished states. We evaluate the
performance of DeepSynth on a selection of benchmarks with
unknown sequential high-level structures. These experiments
show that DeepSynth is able to automatically discover and
formalise unknown, sparse, and non-Markovian high-level re-
ward structures, and then to efficiently synthesise successful
policies in various domains where other related approaches
fail. DeepSynth represents a better integration of deep RL and
formal automata synthesis than previous approaches, making
learning for non-Markovian rewards more scalable.

Related Work: Our research employs formal methods to
deal with sparse reward problems in RL. In the RL litera-
ture, the dependency of rewards on objectives is often tackled
with options (Sutton and Barto 1998), or, in general, the de-
pendencies are structured hierarchically. Current approaches
to Hierarchical RL (HRL) very much depend on state rep-
resentations and whether they are structured enough for a
suitable reward signal to be effectively engineered manu-
ally. HRL therefore often requires detailed supervision in
the form of explicitly specified high-level actions or interme-
diate supervisory signals (Precup 2001; Kearns and Singh
2002; Daniel et al. 2012; Kulkarni et al. 2016; Vezhnevets
et al. 2016; Bacon et al. 2017). A key difference between our
approach and HRL is that our method produces a modular,
human-interpretable and succinct graph to represent the se-
quence of tasks, as opposed to complex and comparatively
sample-inefficient structures, e.g. RNNs.

The closest line of work to ours, which aims to avoid HRL
requirements, are model-based (Fu and Topcu 2014; Sadigh
et al. 2014; Fulton and Platzer 2018; Cai et al. 2021) or
model-free RL approaches that constrain the agent with a
temporal logic property (Hasanbeig et al. 2018; Toro Icarte
et al. 2018; Camacho et al. 2019; Hasanbeig et al. 2019a;
Yuan et al. 2019; De Giacomo et al. 2019, 2020; Hasan-
beig et al. 2019d,c, 2020b,c; Kazemi and Soudjani 2020;
Lavaei et al. 2020). These approaches are limited to finite-
state systems, or more importantly require the temporal logic
formula to be known a priori. The latter assumption is re-
laxed in (Toro Icarte et al. 2019; Rens et al. 2020; Rens and
Raskin 2020; Furelos-Blanco et al. 2020; Gaon and Brafman
2020; Xu et al. 2020), by inferring automata from exploration
traces.

Automata inference in (Toro Icarte et al. 2019) uses a local-
search based algorithm, Tabu search (Glover and Laguna
1998). The automata inference algorithm that we employ uses
SAT, where the underlying search algorithm is a backtracking
search method called DPLL (Davis and Putnam 1960). In
comparison with Tabu search, the DPLL algorithm is com-
plete and explores the entire search space efficiently (Cook
and Mitchell 1996), producing more accurate representations
of the trace. The Answer Set Programming (ASP) based algo-
rithm used to learn automata in (Furelos-Blanco et al. 2020),
also uses DPLL but assumes a known upper bound for the
maximum finite distance between automaton states. We fur-
ther relax this restriction and assume that the task and its
automaton are entirely unknown.

A classic automata learning technique is the L* algo-
rithm (Angluin 1987). This is used to infer automata in (Rens
et al. 2020; Rens and Raskin 2020; Gaon and Brafman 2020;
Chockler et al. 2020). It employs a series of equivalence and
membership queries from an oracle, the results of which are
used to construct the automaton. The absence of an oracle in
our setting prevents the use of L* in our method.

Another common approach for synthesising automata from
traces is state-merge (Biermann and Feldman 1972). State-
merge and some of its variants (Lang et al. 1998; Walkin-
shaw et al. 2007) do not always produce the most succinct
automaton but generate an approximation that conforms to
the trace (Ulyantsev, Buzhinsky, and Shalyto 2018). The

7648

comparative succinctness of our inferred automaton allows
DeepSynth to be applied to large high-dimensional problems,
including Montezuma’s Revenge. A detailed comparison of
these approaches can be found in the extended version of this
work (Hasanbeig et al. 2019b).

A number of approaches combine SAT with state-merge
to generate minimal automata from traces (Ulyantsev and
Tsarev 2011; Heule and Verwer 2013). A similar SAT based
algorithm is employed in (Xu et al. 2020) to generate re-
ward machines. Although this approach generates succinct
automata that accurately capture a rewarding sequence of
events, it is not ideal for hard exploration problems such as
Montezuma’s Revenge where reaching a rewarding state, e.g.
collecting the key, requires the agent to follow a sequence
of non-rewarding steps that are difficult to discover via ex-
ploration. The automata learning algorithm we use is able to
capture these non-rewarding sequences and leverage them to
guide exploration towards the rewarding states.

Further related work is policy sketching (Andreas et al.
2017), which learns feasible tasks first and then stitches them
together to accomplish a complex task. The key difference to
our work is that the method assumes policy sketches, i.e. tem-
poral instructions, to be available to the agent. There is also
recent work on learning underlying non-Markovian objec-
tives when an optimal policy or human demonstration is
available (Koul et al. 2019; Memarian et al. 2020).

Background on Reinforcement Learning

We consider a conventional RL setup, consisting of an agent
interacting with an environment, which is modelled as an
unknown general Markov Decision Process (MDP):

Definition 1 (General MDP) The tuple 9 = (8, A, s, P,
%, L) is a general MDP over a set of continuous states 8,
where A is a finite set of actions and sy € § is the initial
state. P : B(8) x 8 x A — [0,1] is a Borel-measurable
conditional transition kernel that assigns to any pair of state
s € 8 and action a € A a probability measure P(-|s,a) on
the Borel space (8,B(8)), where B(8) is the Borel sigma-
algebra on the state space (Bertsekas and Shreve 2004). The
set 2. is called the vocabulary and it is a finite set of atomic
propositions. There exists a labelling function L : § — 2%

that assigns to each state s € 8 a set of atomic propositions
L(s) € 2%,

Definition 2 (Path) In a general MDP R, an infinite path
p Starting at Sq is an infinite sequence of state transitions
S0 29 51 2 .. such that every transition s; 2iy Sit1 IS
possible in M, i.e. s;y1 belongs to the smallest Borel set B
such that P(B|s;,a;) = 1. Similarly, a finite path is a finite
sequence of state transitions p, = So 20 51 s fnot
Sn. The set of infinite paths is (8 x A)“ and the set of finite
paths is (8§ x A)* x 8.

At each state s € 8, an agent action is determined by a
policy 7, which is a mapping from states to a probability
distribution over the actions. That is, 7 : § — P(A). Further,
a random variable R(s,a) ~ T (-|s,a) € P(R) is defined
over the MDP 90, to represent the Markovian reward obtained
when action « is taken in a given state s, where P(RR) is the

set of probability distributions on subsets of R, and 7" is
the reward distribution. Similarly, a non-Markovian reward

~

R: (8 x A)* x 8 — R is a mapping from the set of finite
paths to real numbers and one possible realisation of R and

R at time step n is denoted by r,, and 7, respectively.

Due to space limitations we present the formal background
on RL in (Hasanbeig et al. 2019b) and we only introduce
the notation we use. The expected discounted return for a
policy 7 and state s is denoted by U7 (s), which is maximised
by the optimal policy 7*. Similarly, at each state the optimal
policy maximises the Q-function Q(s, a) over the set of ac-
tions. The Q-function can be parameterised using a parameter
set 9 and updated by minimising a loss £(0%).

Background on Automata Synthesis

The automata synthesis algorithm extracts information from
trace sequences over finite paths in order to construct a suc-
cinct automaton that represents the behaviour exemplified by
these traces. This architecture is an instance of the general
synthesis from examples approach (Gulwani 2012; Jeppu et al.
2020). Our synthesis method scales to long traces by employ-
ing a segmentation approach, achieving automata learning in
close-to-polynomial runtime (Jeppu 2020).

The synthesis algorithm takes as input a trace sequence
and generates an [V-state automaton that conforms to the
trace input. Starting with N = 1, the algorithm systemati-
cally searches for the required automaton, incrementing N
by 1 each time the search fails. This ensures that the smallest
automaton conforming to the input trace is generated. The
algorithm additionally uses a hyper-parameter w to tackle
growing algorithm complexity for long trace input. The algo-
rithm divides the trace into segments using a sliding window
of size w and only unique segments are used for further pro-
cessing. In this way, the algorithm exploits the presence of
patterns in traces. Multiple occurrences of these patterns are
processed only once, thus reducing the size of the input to
the algorithm.

Automata generated using only positive trace samples tend
to overgeneralise (Gold 1978). This is mitigated by perform-
ing a compliance check of the automaton against the trace
input to eliminate any transition sequences of length [that
are accepted by the generated automaton but do not appear in
the trace. The hyper-parameter [therefore controls the degree
of generalisation in the generated automaton. A higher value
for [yields more exact representations of the trace. The cor-
rectness of the generated automaton is verified by checking
if the automaton accepts the input trace. If the check fails,
missing trace data is incrementally added to refine the gener-
ated model, until the check passes. Further details on tuning
the hyper-parameters w and [are given in the next section.

DeepSynth

A schematic of the DeepSynth algorithm is provided in Fig. 1
and the algorithm is described step-by-step in this section.
We begin by introducing the first level of Montezuma’s Re-
venge as a running example (Bellemare et al. 2013). Unlike
other Atari games where the primary goal is limited to avoid-
ing obstacles or collecting items with no particular order,

7649

al MDP | s’
{ : !
Reward Function >
- v=L(s’)
a p—
racing Step 1
LTI T N O EEEEELELE LR
T,T
|_—Sy Synth
I P o s —— Step 2
v
—&
Synchronize
q
gl W Step 3.
| #t(s) = argmax Q(s,a)
o= Policy Synthesis

Figure 1: The DeepSynth Algorithm

Montezuma’s Revenge requires the agent to perform a long,
complex sequence of actions before receiving any reward.
The agent must find a key and open either door in Fig. 2.a.
To this end, the agent has to climb down the middle ladder,
jump on the rope, climb down the ladder on the right and
jump over a skull to reach the key. The reward given by the
Atari emulator for collecting the key is 100 and the reward for
opening one of the doors is another 300. Owing to the spar-
sity of the rewards the existing deep RL algorithms either fail
to learn a policy that can even reach the key, e.g. DQN (Mnih
et al. 2015), or the learning process is computationally heavy
and sample inefficient, e.g. FeUdal (Vezhnevets et al. 2017),
and Go-Explore (Ecoffet et al. 2021).

Existing techniques to solve this problem mostly hinge
on intrinsic motivation and object-driven guidance. Unsu-
pervised object detection (or unsupervised semantic segmen-
tation) from raw image input has seen substantial progress
in recent years, and became comparable to its supervised
counterpart (Liu et al. 2019; Ji, Henriques, and Vedaldi 2019;
Hwang et al. 2019; Zheng and Yang 2021). In this work, we
assume that an off-the-shelf image segmentation algorithm
can provide plausible object candidates, e.g. (Liu et al. 2019).
The key to solving a complex task such as Montezuma’s Re-

(@) (b)
Figure 2: (a) the first level of Atari 2600 Montezuma’s Re-
venge; (b) pixel overlap of two segmented objects.

venge is finding the semantic correlation between the objects
in the scene. When a human player tries to solve this game
the semantic correlations, such as “keys open doors”, are
partially known and the player’s behaviour is driven by ex-
ploiting these known correlations when exploring unknown
objects. This drive to explore unknown objects has been a
subject of study in psychology, where animals and humans
seem to have general motivations (often referred to as in-
trinsic motivations) that push them to explore and manipu-
late their environment, encouraging curiosity and cognitive
growth (Berlyne 1960; Csikszentmihalyi 1990; Ryan and
Deci 2000).

As explained later, DeepSynth encodes these correlations
as an automaton, which is an intuitive and modular structure,
and guides the exploration so that previously unknown cor-
relations are discovered. This exploration scheme imitates
biological cognitive growth in a formal and explainable way,
and is driven by an intrinsic motivation to explore as many
objects as possible in order to find the optimal sequence of
extrinsically-rewarding high-level objectives. To showcase
the full potential of DeepSynth, in all the experiments and
examples of this paper we assume that semantic correlations
are unknown to the agent. The agent starts with no prior
knowledge of the sparse reward task or the correlation of the
high-level objects.

Let us write X for the set of detected objects. Note that
the semantics of the names for individual objects is of no
relevance to the algorithm and X can thus contain any distinct
identifiers, e.g. ¥ = {obj;, obj,,...}. But for the sake of
exposition we name the objects according to their appearance
in Fig. 2.a, i.e. ¥ = {red_character, middle_ladder,
rope,right_ladder, left_ladder, key, door}. Note that
there can be any number of detected objects, as long as the
input image is segmented into enough objects whose correla-
tion can guide the agent to achieve the task.

Tracing (Step 1 in Fig. 1): The task is unknown initially
and the extrinsic reward is non-Markovian and extremely
sparse. The agent receives a reward R: ExA)x8—=1R
only when a correct sequence of state-action pairs and their
associated object correlations are visited. In order to guide

7650

Q(5)

Semantic
v | DFA DFA state

Segmentation|

Figure 3: DeepSynth for Montezuma’s Revenge: each DQN
module is forced by the DFA to focus on the correlation of
semantically distinct objects. The input to the first layer of
the DQN modules is the input image which is convolved by
32 filters of 8 x 8 with stride 4 and a ReLU. The second hidden
layer convolves 64 filters of 4 x 4 with stride 2, followed
by a ReL.U. This is followed by another convolutional layer
that convolves 64 filters of 3 x 3 with stride 1 followed by a
rectifier. The final hidden layer is fully connected and consists
of 512 ReLUs and the output layer is a fully-connected linear
layer with a single output for each action (Mnih et al. 2015).

the agent to find the optimal sequence, DeepSynth uses the
following reward transformation:

r’ (1
where 7" is the extrinsic reward, p > 0 is a positive regulatory
coefficient, and 7* is the intrinsic reward. The role of the
intrinsic reward is to guide the exploration and also to drive
the exploration towards the discovery of unknown object
correlations. The underlying mechanism of intrinsic rewards
depends on the inferred automaton and is explained in detail
later. The only extrinsic rewards in Montezuma’s Revenge
are the reward for reaching the key 7., and for reaching one
of the doors 7'4,.,. Note that the lack of intrinsic motivation
as shown in the experimental results section, prevents other
methods, e.g. (Toro Icarte et al. 2019; Rens et al. 2020; Gaon
and Brafman 2020; Xu et al. 2020), to succeed in extremely-
spare reward, high-dimensional and large problems such as
Montezuma’s Revenge.

In Montezuma’s Revenge, states consist of raw pixel
images. Each state is a stack of four consecutive frames
84 x 84 x 4 that are preprocessed to reduce input dimen-
sionality (Mnih et al. 2015). The labelling function employs
the object vocabulary set ¥ to detect object pixel overlap
in a particular state frame. For example, if the pixels of
red_character collide with the pixels of rope in any of
the stacked frames, the labelling function for that particular
state s is L(s)={red_character, rope} (Fig. 2.b). In this
specific example, the only moving object is the character. So
for sake of succinctness, we omit the character from the label
set, e.g., the above label is L(s)={rope}.

Given this labelling function, Tracing (Step 1) records the
sequence of detected objects L(s;)L(s;+1) ... as the agent
explores the MDP. The labelling function, as per Definition 1,

=T +pr,

is a mapping from the state space to the power set of objects
in the vocabulary L : § — 2% and thus, the label of a state
could be the empty set or a set of objects.

All transitions with their corresponding labels are stored as
5-tuples (s, a, s, T, L(s')), where s is the current state, a is
the executed action, s’ is the resulting state, rT is the total
reward received after performing action a at state s, and L(s")
is the label corresponding to the set of atomic propositions in
3 that hold in state s’. The set of past experiences is called the
experience replay buffer €. The exploration process generates
a set of traces, defined as follows:

Definition 3 (Trace) In a general MDP 9, and over a finite

a, a An—1 .
path p, = 59 — 81 —=% ... —— s, a trace o is defined
as a sequence of labels 0 = vy, va, . . . , Uy, where v; = L(s;)
is a trace event.

The set of traces associated with £ is denoted by T. The
tracing scheme is the Tracing box in Fig. 1.

Synth (Step 2 in Fig. 1): The automata synthesis algorithm
described in the previous section is used to generate an au-
tomaton that conforms to the trace sequences generated by
Tracing (Step 1). Given a trace sequence 0 = v1, Vs, ..., Upn,
the labels v; serve as transition predicates in the generated
automaton. The synthesis algorithm further constrains the
construction of the automaton so that no two transitions from
a given state in the generated automaton have the same predi-
cates. The automaton obtained by the synthesis algorithm is
thus deterministic. The learned automaton follows the stan-
dard definition of a Deterministic Finite Automaton (DFA)
with the alphabet ¥g, where a symbol of the alphabet v € g
is given by the labelling function L : § — 2 defined earlier.
Thus, given a trace sequence 0 = v1, V2, .. ., U, Over a finite

path p, = so -5 s1 % ... dnoty Sp in the MDP, the
symbol v; € g is given by v; = L(s;).

The Atari emulator provides the number of lives left in the
game, which is used to reset X, C g, where X, is the set
of labels that appeared in the trace so far. Upon losing a life,

Y4 is reset to the empty set.

Definition 4 (Deterministic Finite Automaton) A DFA 2
= (9,90, 2, F,) is a 5-tuple, where Q is a finite set of
states, qo € Q is the initial state, .o is the alphabet, F C Q
is the set of accepting states, and 6 : Q X Yo — Q is the
transition function.

Let ¥ be the set of all finite words over Xg. A finite
word w = wy,v2,...,Vy € X is accepted by a DFA A
if there exists a finite run § € Q* starting from 6y = qq,
where ;11 = §(6;,v;41) for ¢ > 0 and 6,,, € F. Given
the collected traces T we construct a DFA using the method
described in the previous section. The algorithm first divides
the trace into segments using a sliding window of size equal
to the hyper-parameter w introduced earlier. This determines
the size of the input to the search procedure, and consequently
the algorithm runtime. Note that choosing w = 1 will not
capture any sequential behaviour. In DeepSynth, we would
like to have a value for w that results in the smallest input
size. In our experiments, we tried different values for w in
increasing order, ranging within 1 < w < |o|, and have
obtained the same automaton in all setups.

7651

As discussed in the previous section, the hyper-parameter [
controls the degree of generalisation in the learnt automaton.
Learning exact automata from trace data is known to be NP-
complete (Gold 1978). Thus, a higher value for [increases the
algorithm runtime. We optimise over the hyper-parameters
and choose w = 3 and | = 2 as the best fit for our setting.
This ensures that the automata synthesis problem is not too
complex for the synthesis algorithm to solve but at the same
time it does not over-generalise to fit the trace.

The generated automaton provides deep insight into the

correlation of the objects detected in Step 1 and shapes the
intrinsic reward. The output of this stage is a DFA, from the
set of succinct DFAs obtained earlier. Fig. 4 illustrates the
evolution of the synthesised automata for Montezuma’s Re-
venge. Most of the deep RL approaches are able to reach the
states that correspond to the DFA up to state ¢4 in Fig. 4 via
random exploration. However, reaching the key and further
the doors is challenging and is achieved by DeepSynth us-
ing a hierarchical curiosity-driven learning method described
next. The automata synthesis is the Synth box in Fig. 1 and
further implementation details can be found in (Hasanbeig
et al. 2019b).
Deep Temporal Neural Fitted RL (Step 3 in Fig. 1): We
propose a deep-RL-based architecture inspired by
DQN (Mnih et al. 2015), and Neural Fitted Q-iteration
(NFQ) (Riedmiller 2005) when the input is in vector form,
not a raw image. DeepSynth is able to synthesise a policy
whose traces are accepted by the DFA and it encourages the
agent to explore under the DFA guidance. More importantly,
the agent is guided and encouraged to expand the DFA
towards task satisfaction.

Given the constructed DFA, at each time step during the
learning episode, if a new label is observed during explo-
ration, the intrinsic reward in (1) becomes positive. Namely,

if L(s') ¢ %,
otherwise,

Ui

d 2)

R'(s,a) = {
where 7 is an arbitrarily finite and positive reward, and X,
as discussed in the Synth step, is the set of labels that the
agent has observed in the current learning episode. Further,
once a new label that does not belong to ¥y is observed
during exploration (Step 1) it is then passed to the automaton
synthesis step (Step 2). The automaton synthesis algorithm
then synthesises a new DFA that complies with the new label.

Theorem 1 (Formalisation of the Intrinsic Reward) The
optimal policies are invariant under the reward transforma-
tion in (1) and (2).

The proof of Theorem 1 is presented in (Hasanbeig et al.
2019b). In the following, in order to explain the core ideas
underpinning the algorithm, we temporarily assume that the
MDP graph and the associated transition probabilities are
fully known. Later we relax these assumptions, and we stress
that the algorithm can be run model-free over any black-
box MDP environment. Specifically, we relate the black-box
MDP and the automaton by synchronising them on-the-fly
to create a new structure that breaks down a non-Markovian
task into a set of Markovian, history-independent sub-goals.

0V rope

% right_ladder

rope

start —(@1 3

() vmiddle_ladder

q4

0V right_ladder

right_ladder

key

left_ladder left_ladder

BV left_ladder

Figure 4: Illustration of the evolution of the automaton synthesised for Montezuma’s Revenge. The right ladder is often discovered
by random exploration (state q4). Note that the agent found a short-cut to reach the key by skipping the middle ladder and directly
jumping over the rope, which is not obvious even to a human player (state ¢; to g3). Such observations are difficult to extract
from other hierarchy representations, e.g. LSTMs. The key is found with an extrinsic reward of 7, = 4100 (state g¢) and the
door is unlocked with an extrinsic reward of 7., = +300 (state g7).

Definition 5 (Product MDP) Given an MDP 9t = (8, A,
s0, P, X)) anda DFAA = (Q, qo, X1, F, 9), the product MDP
is defined as (M @ A) = My = (8%, A, 5§, P2, %%, F?),
where 82 = 8xQ, 5§ = (s0,q0), ¥® = Q, and F® = §xF.
The transition kernel P® is such that given the current state
(si,qi) and action a, the new state (s;, q;) is given by s;j ~
P(-|si,a) and q; = §(q;, L(s;)).

By synchronising MDP states with the DFA states by
means of the product MDP, we can evaluate the satisfac-
tion of the associated high-level task. Most importantly, as
shown in (Brafman et al. 2018), for any MDP 91 with finite-
horizon non-Markovian reward, e.g. Montezuma’s Revenge,
there exists a Markov reward MDP 9 = (8, A, sg, P, %)
that is equivalent to 91 such that the states of 91 can be
mapped into those of 9. The corresponding states yield
the same transition probabilities, and corresponding traces
have the same rewards. Based on this result, (De Giacomo
et al. 2019) showed that the product MDP D1y is M defined
above. Therefore, by synchronising the DFA with the orig-
inal MDP the non-Markovianity of the extrinsic reward is
resolved, where the DFA represents the history of state labels
that has led to that reward.

Note that the DFA transitions can be executed just by ob-
serving the labels of the visited states, which makes the agent
aware of the automaton state without explicitly constructing
the product MDP. This means that the proposed approach
can run model-free, and as such it does not require a priori
knowledge about the MDP.

Each state of the DFA in the synchronised product MDP
divides the general sequential task so that each transition
between the states represents an achievable Markovian sub-
task. Thus, given a synthesised DFA 21 = (Q, qo, Xa(, F}, 9),
we propose a hybrid architecture of n = |Q| separate deep
RL modules (Fig. 3 and Deep in Fig. 1). For each state in
the DFA, there is a dedicated deep RL module, where each
deep RL module is an instance of a deep RL algorithm with
distinct neural networks and replay buffers. The modules

7652

are interconnected, in the sense that modules act as a global
hybrid deep RL architecture to approximate the ()-function
in the product MDP. As explained in the following, this al-
lows the agent to jump from one sub-task to another by just
switching between these modules as prescribed by the DFA.

In the running example, the agent exploration scheme is
e-greedy with diminishing e where the rate of decrease also
depends on the DFA state so that each module has enough
chance to explore. For each automaton state ¢; € Q in the
the product MDP, the associated deep RL module is called
B, (s,a). Once the agent is at state s = (s, ¢;), the neu-

Algorithm 1: An Episode of Temporal DQN

input :automaton 2 from the Synth step
output :approximate (-function

t=0

initialise the state to (so, o)

repeat

ar = arg max, B, with e-greedy

execute action a; and observe the total reward nT

observe the next image x4 1

semantic segmentation outputs L(x¢41)

preprocess images x+ and x¢41

store transition (¢, at, i1, ¢ , L(2i41)) in &,

sample minibatch from &,

target value from target networks:

Pq. = {(input,, target)), 1 =1,...,1€q.)}

nput, = (si,ar)

N - Y e

-
-

-
1)

13 target, = ri + v max Q(si+1, a'|§Pu+1)
a

By, < RMSprop(Py,)

clone the current network By, to Bqt

update automaton state from g: to g:+1 (call Synth if a
new trace is observed to update the automaton i)

17 t=t+1

18 until end of trial

14

15
16

Algorithm 2: An Episode of Temporal NFQ

input :automaton 2 from the Synth step
output :approximate (Q-function

1 repeat
2 for ¢; = |Q| to 1 do
3 Pq; = {(input,, target,), L =1,...,1€q;[)}
4 input, = (s1, a
5 target, = v} 4+~ max Q(s;,a’)
a
6 where (s;,ar, 8,77, L(s))) € &g,
7 B,, < Adam(P,,)
8 end
9 until end of trial

600 |
DeepSynth
= — h-DQN
g ___ DQN, FeUdal, LSTM, OC,
& 400 RM, DeepSynth-NI
3
2
k=3
m
[
& 200
4
<
0 — ——— e —
T T T T T T
0.5 1 1.5 2 2.5 3
Steps 107

Figure 5: Average episode reward progress in Montezuma’s
Revenge with h-DQN (Kulkarni et al. 2016), DQN (Mnih
et al. 2015), FeUdal-LSTM (Vezhnevets et al. 2017), Option-
Critic (OC) (Bacon et al. 2017), inferring reward models
(RM) (Toro Icarte et al. 2019; Rens et al. 2020; Gaon and
Brafman 2020; Xu et al. 2020) and DeepSynth with no intrin-
sic reward (DeepSynth-NI). h-DQN (Kulkarni et al. 2016)
finds the door but only after 2M steps. FeUdal and LSTM
find the door after 100M and 200M steps respectively. DQN,
OC, RM and DeepSynth-NI remain flat.

ral net B, is active and explores the MDP. Note that the
modules are interconnected, as discussed above. For exam-
ple, assume that by taking action a in state s© (s,qi)
the label v = L(s’) has been observed and as a result the

agent is moved to state s’ = (s/, q;), where ¢; # ¢;. By
minimising the loss function £ the weights of B, are up-
dated such that B, (s, a) has minimum possible error to
R™(s,a) + ymaxy By, (s',a’) while By, # By,. As such,
the output of B, directly affects B,, when the automaton
state is changed. This allows the extrinsic reward to back-
propagate efficiently, e.g. from modules B, and B, associ-
ated with g7 and g¢ in Fig. 4, to the initial module B,,. An
overview of the algorithm is presented as Algorithm 1.
Define €, as the projection of the general replay buffer €
onto g;. The size of the replay buffer for each module is lim-
ited and in the case of our running example |€,,| = 15000.
This includes the most recent frames that are observed when

7653

the product MDP state was s® = (s, ¢;). In the running ex-
ample we used RMSProp for each module with uniformly
sampled mini-batches of size 32. To efficiently add expe-
rience samples to the replay buffers £,, we follow a two-
step training procedure. In the first step, the agent explores
randomly, and DQN modules (and their replay buffers) are
initialised based on the output of the automata inference
algorithm. This effectively leads to pre-training of the early-
created DQN modules so that each can learn to solve an easy
sub-task. The training is eventually shifted to the second step,
where we jointly train the DQN modules and apply the au-
tomata synthesis to tackle the general hard tasks. When the
state is in vector form and no convolutional layer is involved,
we resort to NFQ deep RL modules instead of DQN modules,
and the pre-training step might not be required. Similar to
DQN, NFQ uses experience replay in order to efficiently ap-
proximate the @-function in general MDPs with continuous
state spaces as in Algorithm 2.

Experimental Results

Benchmarks and Setup: We evaluate and compare the per-
formance of DeepSynth with DQN on a comprehensive set
of benchmarks, given in Table 1. The Minecraft environment
(minecraft-tX) taken from (Andreas et al. 2017) requires
solving challenging low-level control tasks, and features se-
quential high-level goals. The two mars-rover benchmarks
are taken from (Hasanbeig et al. 2019d), and the models have
uncountably infinite state spaces. The example robot-surve
is adopted from (Sadigh et al. 2014), and the task is to visit
two regions in sequence. Models slp-easy and slp-hard
are inspired by the noisy MDPs of Chapter 6 in (Sutton and
Barto 1998). The goal in s1p-easy is to reach a particular re-
gion of the MDP and the goal in s1p-hard is to visit four dis-
tinct regions sequentially in proper order. The frozen-lake
benchmarks are similar: the first three are simple reachability
problems and the last three require sequential visits of four
regions, except that now there exist unsafe regions as well.
The frozen-lake MDPs are stochastic and are adopted from
the OpenAl Gym (Brockman et al. 2016).

Column three in Table 1 gives the number of states in
the automaton that can be generated from the high-level
objective sequences of the ground-truth task. Column four
gives the number of states of the automaton synthesised by
DeepSynth, and column product MDP gives the number of
states in the resulting product MDP (Definition 5). Finally,
max sat. probability at sg is the maximum probability of
achieving the extrinsic reward from the initial state. In all
experiments the high-level objective sequences are initially
unknown to the agent. Furthermore, the extrinsic reward
is only given when completing the task and reaching the
objectives in the correct order. The details of all experiments,
including hyperparameters, are given in (Hasanbeig et al.
2019b, 2020a).

Results: The training progress for Montezuma’s Revenge
and Task 3 in Minecraft is plotted in Fig. 5 and Fig. 6. In
Fig. 6.a the orange line gives the loss for the very first deep
net associated to the initial state of the DFA, the red and
blue ones are of the intermediate states in the DFA and the
green line is associated to the final state. This shows an

experiment 18| # DFA states product max sat. # episodes to convergence
task synth. MDP probability at sp | DeepSynth DQN
minecraft-t1 100 3 6 600 1 25 40
minecraft-t2 100 3 6 600 1 30 45
minecraft-t3 100 5 5 500 1 40 t/o
minecraft-t4 100 3 3 300 1 30 50
minecraft-t5 100 3 6 600 1 20 35
minecraft-t6 100 4 5 500 1 40 t/o
minecraft-t7 100 5 7 800 1 70 t/o
mars-rover-1 00 3 3 00 n/a 40 50
mars-rover-2 00 4 4 00 n/a 40 t/o
robot-surve 25 3 3 75 1 10 10
slp-easy-sml 120 2 2 240 1 10 10
slp-easy-med 400 2 2 800 1 20 20
slp-easy-lrg 1600 2 2 3200 1 30 30
slp-hard-sml 120 5 5 600 1 80 t/o
slp-hard-med 400 5 5 2000 1 100 t/o
slp-hard-lrg 1600 5 5 8000 1 120 t/o
frozen-lake-1 120 3 3 360 0.9983 100 120
frozen-lake-2 400 3 3 1200 0.9982 150 150
frozen-lake-3 | 1600 3 3 4800 0.9720 150 150
frozen-lake-4 120 6 6 720 0.9728 300 t/o
frozen-lake-5 400 6 6 2400 0.9722 400 t/o
frozen-lake-6 | 1600 6 6 9600 0.9467 450 t/o
Table 1: Comparison between DeepSynth and DQN
14 31 DeepSynth
— Q2 © — DOQN
0.8 | : gz % 0.6 1 — Optimal
~
3
5 067 £ 04
] S
~ 2
0.4 | [a)
B
g 021
0.2 E
0 | T T T T T T 0 7 \AWW\
0 20 40 60 80 100 0 20 40 60 80 100
Steps Steps
(@) (b)

Figure 6: Minecraft Task 3 Experiment: (a) Training progress with four hybrid deep NFQ modules, (b) Training progress with

DeepSynth and DQN on the same training set €.

efficient back-propagation of extrinsic reward from the final
high-level state to the initial state, namely once the last deep
net converges the expected reward is back-propagated to the
second and so on. Each NFQ module has 2 hidden layers
and 128 ReLUs. Note that there may be a number of ways to
accomplish a particular task in the synthesised DFAs. This,
however, causes no harm since when the extrinsic reward is
back-propagated, the non-optimal options fall out.

Conclusions

We have proposed a fully-unsupervised approach for training
deep RL agents when the reward is extremely sparse and non-
Markovian. We automatically infer a high-level structure
from observed exploration traces using automata synthesis.

7654

The inferred automaton is a formal, un-grounded, human-
interpretable representation of a complex task and its steps.
We showed that we are able to efficiently learn policies that
achieve complex high-level objectives using fewer training
samples as compared to alternative algorithms. Owing to the
modular structure of the automaton, the overall task can be
segmented into easy Markovian sub-tasks. Therefore, any
segment of the proposed network that is associated with a
sub-task can be used as a separate trained module in transfer
learning. Another major contribution of the proposed method
is that in problems where domain knowledge is available,
this knowledge can be easily encoded as an automaton to
guide learning. This enables the agent to solve complex tasks
and saves the agent from an exhaustive exploration in the
beginning.

Acknowledgements

The authors would like to thank Hadrien Pouget for inter-
esting discussions and the anonymous reviewers for their
insightful suggestions. This work was supported by a grant
from the UK NCSC, and Balliol College, Jason Hu scholar-
ship.

References

Abbeel, P.; Coates, A.; Quigley, M.; and Ng, A. Y. 2007. An
Application of Reinforcement Learning to Aerobatic Heli-
copter Flight. In NeurIPS, 1-8. MIT Press.

Andreas, J.; et al. 2017. Modular Multitask Reinforcement
Learning with Policy Sketches. In ICML, volume 70, 166—
175.

Angluin, D. 1987. Learning Regular Sets from Queries and
Counterexamples. Inf. Comput. 75(2): 87-106.

Bacon, P.-L.; et al. 2017. The Option-Critic Architecture. In
AAAI 1726-1734.

Bellemare, M. G.; Naddaf, Y.; Veness, J.; and Bowling, M.
2013. The Arcade Learning Environment: An Evaluation
Platform for General Agents. JAIR 47: 253-279.

Berlyne, D. E. 1960. Conflict, Arousal, and Curiosity.
McGraw-Hill Book Company.

Bertsekas, D. P.; and Shreve, S. 2004. Stochastic Optimal
Control: The Discrete-Time Case. Athena Scientific.

Biermann, A. W.; and Feldman, J. A. 1972. On the Synthesis
of Finite-State Machines from Samples of Their Behavior.
IEEFE Trans. Comput. 21(6): 592-597.

Brafman, R. I.; et al. 2018. LTL{/LDLf Non-Markovian
Rewards. In AAAI 1771-1778.

Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAl
Gym. arXiv 1606.01540.

Cai, M.; Peng, H.; Li, Z.; Gao, H.; and Kan, Z. 2021. Reced-
ing Horizon Control-Based Motion Planning With Partially
Infeasible LTL Constraints. IEEE Control Systems Letters
5(4): 1279-1284.

Camacho, A.; Toro Icarte, R.; Klassen, T. Q.; Valenzano, R.;
and Mcllraith, S. A. 2019. LTL and Beyond: Formal Lan-
guages for Reward Function Specification in Reinforcement
Learning. In IJCAI, 6065-6073.

Chockler, H.; Kesseli, P.; Kroening, D.; and Strichman, O.
2020. Learning the Language of Software Errors. Artificial
Intelligence Research 67: 881-903.

Cook, S.; and Mitchell, D. 1996. Finding Hard Instances
of the Satisfiability Problem: A Survey. In Satisfiability
Problem: Theory and Applications.

Csikszentmihalyi, M. 1990. Flow: The Psychology of Opti-
mal Experience, volume 1990. Harper & Row.

Daniel, C.; et al. 2012. Hierarchical Relative Entropy Policy
Search. In Artificial Intelligence and Statistics, 273-281.

Davis, M.; and Putnam, H. 1960. A Computing Procedure
for Quantification Theory. J. ACM 7(3): 201-215.

7655

De Giacomo, G.; Favorito, M.; Iocchi, L.; and Patrizi, F.
2020. Imitation Learning over Heterogeneous Agents with
Restraining Bolts. ICAPS 30(1): 517-521.

De Giacomo, G.; et al. 2019. Foundations for Restraining
Bolts: Reinforcement Learning with LTLf/LDLf Restraining
Specifications. In ICAPS, volume 29, 128-136.

Ecoffet, A.; Huizinga, J.; Lehman, J.; Stanley, K. O.; and
Clune, J. 2021. First Return, Then Explore. Nature
590(7847): 580-586.

Fu, J.; and Topcu, U. 2014. Probably Approximately Correct
MDP Learning and Control With Temporal Logic Constraints.
In Robotics: Science and Systems X.

Fulton, N.; and Platzer, A. 2018. Safe Reinforcement Learn-
ing via Formal Methods: Toward Safe Control Through Proof
and Learning. In AAAI, 6485-6492.

Furelos-Blanco, D.; Law, M.; Russo, A.; Broda, K.; and
Jonsson, A. 2020. Induction of Subgoal Automata for Rein-
forcement Learning. In AAAI, 3890-3897.

Gaon, M.; and Brafman, R. 2020. Reinforcement Learning
with Non-Markovian Rewards. In AAAI, volume 34, 3980—
39087.

Glover, F.; and Laguna, M. 1998. Tabu Search. In Handbook
of Combinatorial Optimization, volume 1-3, 2093-2229.
Springer.

Gold, E. M. 1978. Complexity of Automaton Identification
from Given Data. Information and Control 37: 302-320.

Gulwani, S. 2012. Synthesis from Examples. In WAMBSE.

Hasanbeig, M.; Kantaros, Y.; Abate, A.; Kroening, D.; Pap-
pas, G. J.; and Lee, I. 2019a. Reinforcement Learning for
Temporal Logic Control Synthesis with Probabilistic Satis-
faction Guarantees. In CDC, 5338-5343. IEEE.

Hasanbeig, M.; Yogananda Jeppu, N.; Abate, A.; Melham,
T.; and Kroening, D. 2019b. DeepSynth: Program Synthesis
for Automatic Task Segmentation in Deep Reinforcement
Learning [Extended Version]. arXiv 1911.10244.

Hasanbeig, M.; Yogananda Jeppu, N.; Abate, A.; Melham,
T.; and Kroening, D. 2020a. DeepSynth Code Repository.
https://github.com/grockious/deepsynth.

Hasanbeig, M.; et al. 2018. Logically-Constrained Reinforce-
ment Learning. arXiv 1801.08099.

Hasanbeig, M.; et al. 2019c. Certified Reinforcement Learn-
ing with Logic Guidance. arXiv 1902.00778.

Hasanbeig, M.; et al. 2019d. Logically-Constrained Neural
Fitted Q-Iteration. In AAMAS, 2012-2014. International
Foundation for Autonomous Agents and Multiagent Systems.

Hasanbeig, M.; et al. 2020b. Cautious Reinforcement Learn-
ing with Logical Constraints. In AAMAS, 483-491. Interna-
tional Foundation for Autonomous Agents and Multiagent
Systems.

Hasanbeig, M.; et al. 2020c. Deep Reinforcement Learning
with Temporal Logics. In FORMATS, 1-22. Springer.

Heule, M. J. H.; and Verwer, S. 2013. Software Model Syn-
thesis Using Satisfiability Solvers. Empirical Software Engi-
neering 18(4): 825-856.

Hwang, J.-J.; Yu, S. X.; Shi, J.; Collins, M. D.; Yang, T.-J.;
Zhang, X.; and Chen, L.-C. 2019. SegSort: Segmentation by
Discriminative Sorting of Segments. In ICCV, 7334-7344.

Jeppu, N. Y. 2020. Trace2Model Github repository. URL
https://github.com/natasha-jeppu/Trace2Model.

Jeppu, N. Y.; Melham, T.; Kroening, D.; and O’Leary, J. 2020.
Learning Concise Models from Long Execution Traces. In
Design Automation Conference, 1-6. ACM/IEEE.

Ji, X.; Henriques, J. F.; and Vedaldi, A. 2019. Invariant In-
formation Clustering for Unsupervised Image Classification
and Segmentation. In /ICCV, 9865-9874.

Kazemi, M.; and Soudjani, S. 2020. Formal Policy Synthesis
for Continuous-Space Systems via Reinforcement Learning.
arXiv 2005.01319.

Kearns, M.; and Singh, S. 2002. Near-Optimal Reinforce-
ment Learning in Polynomial Time. Machine learning 49(2-
3): 209-232.

Koul, A.; et al. 2019. Learning Finite State Representations
of Recurrent Policy Networks. In International Conference
on Learning Representations.

Kulkarni, T. D.; et al. 2016. Hierarchical Deep Reinforcement
Learning: Integrating Temporal Abstraction and Intrinsic
Motivation. In NeurIPS, 3675-3683.

Lang, K. J.; et al. 1998. Results of the Abbadingo One
DFA Learning Competition and a New Evidence-Driven
State Merging Algorithm. In Grammatical Inference, 1-12.
Springer.

Lavaei, A.; Somenzi, F.; Soudjani, S.; Trivedi, A.; and Za-
mani, M. 2020. Formal Controller Synthesis for Continuous-
Space MDPs via Model-Free Reinforcement Learning. In
ICCPS, 98-107. IEEE.

Liu, W.; Wei, L.; Sharpnack, J.; and Owens, J. D. 2019. Un-
supervised Object Segmentation with Explicit Localization
Module. arXiv 1911.09228.

Mao, H.; Alizadeh, M.; Menache, I.; and Kandula, S. 2016.
Resource Management with Deep Reinforcement Learning.
In ACM Workshop on Networks, 50-56. ACM.

Memarian, F.; Xu, Z.; Wu, B.; Wen, M.; and Topcu, U. 2020.
Active Task-Inference-Guided Deep Inverse Reinforcement
Learning. In CDC, 1932-1938. IEEE.

Mnih, V,; et al. 2015. Human-Level Control Through Deep
Reinforcement Learning. Nature 518(7540): 529-533.

Polydoros, A. S.; and Nalpantidis, L. 2017. Survey of Model-
Based Reinforcement Learning: Applications on Robotics.
Journal of Intelligent & Robotic Systems 86(2): 153—173.

Precup, D. 2001. Temporal Abstraction in Reinforcement
Learning. Ph.D. thesis, University of Massachusetts Amherst.

Rens, G.; and Raskin, J.-F. 2020. Learning Non-Markovian
Reward Models in MDPs. arXiv 2001.09293.

7656

Rens, G.; Raskin, J.-F.; Reynouad, R.; and Marra, G. 2020.
Online Learning of Non-Markovian Reward Models. arXiv
2009.12600.

Riedmiller, M. 2005. Neural Fitted Q Iteration — First Expe-
riences with a Data Efficient Neural Reinforcement Learning
Method. In ECML, volume 3720, 317-328. Springer.

Ryan, R. M.; and Deci, E. L. 2000. Intrinsic and Extrinsic
Motivations: Classic Definitions and New Directions. Con-
temporary Educational Psychology 25(1): 54-67.

Sadigh, D.; Kim, E. S.; Coogan, S.; Sastry, S. S.; and Seshia,
S. A.2014. A Learning Based Approach to Control Synthesis
of Markov Decision Processes for Linear Temporal Logic
Specifications. In CDC, 1091-1096. IEEE.

Silver, D.; et al. 2016. Mastering the Game of Go with Deep
Neural Networks and Tree Search. Nature 529: 484-503.

Sutton, R. S.; and Barto, A. G. 1998. Reinforcement Learning:
An Introduction, volume 1. MIT Press Cambridge.

Toro Icarte, R.; Klassen, T. Q.; Valenzano, R.; and Mcllraith,
S. A. 2018. Teaching Multiple Tasks to an RL Agent Using
LTL. In AAMAS, 452-461.

Toro Icarte, R.; Waldie, E.; Klassen, T.; Valenzano, R.; Castro,
M.; and Mcllraith, S. 2019. Learning Reward Machines for
Partially Observable Reinforcement Learning. In NeurIPS,
15497-15508.

Ulyantsev, V.; Buzhinsky, I.; and Shalyto, A. 2018. Exact
Finite-State Machine Identification from Scenarios and Tem-
poral Properties. International Journal on Software Tools for
Technology Transfer 20(1): 35-55.

Ulyantsev, V.; and Tsarev, F. 2011. Extended Finite-State
Machine Induction Using SAT-Solver. In ICMLA, 346-349.

Vezhnevets, A.; et al. 2016. Strategic Attentive Writer for
Learning Macro-Actions. In NeurIPS, 3486-3494.

Vezhnevets, A. S.; et al. 2017. FeUdal Networks for Hierar-
chical Reinforcement Learning. In ICML, 3540-3549.

Vinyals, O.; et al. 2019. Grandmaster Level in StarCraft 11
Using Multi-Agent Reinforcement Learning. Nature 575:
1-5.

Walkinshaw, N.; Bogdanov, K.; Holcombe, M.; and Salahud-
din, S. 2007. Reverse Engineering State Machines by Inter-
active Grammar Inference. In WCRE, 209-218. IEEE.

Xu, Z.; Gavran, I.; Ahmad, Y.; Majumdar, R.; Neider, D.;
Topcu, U.; and Wu, B. 2020. Joint Inference of Reward
Machines and Policies for Reinforcement Learning. In AAAI,
volume 30, 590-598.

Yuan, L. Z.; et al. 2019. Modular Deep Reinforcement Learn-
ing with Temporal Logic Specifications. arXiv 1909.11591.

Zheng, Z.; and Yang, Y. 2021. Rectifying Pseudo Label
Learning via Uncertainty Estimation for Domain Adaptive
Semantic Segmentation. International Journal of Computer
Vision 129: 1106-1120.

Zhou, Z.; et al. 2017. Optimizing Chemical Reactions with
Deep Reinforcement Learning. ACS Central Science 3(12):
1337-1344.

