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Abstract

In active learning, the ignorance of aligning unlabeled sam-
ples’ distribution with that of labeled samples hinders the
model trained upon labeled samples from selecting infor-
mative unlabeled samples. In this paper, we propose an
agreement-discrepancy-selection (ADS) approach, and target
at unifying distribution alignment with sample selection by
introducing adversarial classifiers to the convolutional neu-
ral network (CNN). Minimizing classifiers’ prediction dis-
crepancy (maximizing prediction agreement) drives learn-
ing CNN features to reduce the distribution bias of labeled
and unlabeled samples, while maximizing classifiers’ dis-
crepancy highlights informative samples. Iterative optimiza-
tion of agreement and discrepancy loss calibrated with an en-
tropy function drives aligning sample distributions in a pro-
gressive fashion for effective active learning. Experiments on
image classification and object detection tasks demonstrate
that ADS is task-agnostic, while significantly outperforms the
previous methods when the labeled sets are small.

Introduction
The key idea behind active learning is that a machine learn-
ing algorithm can achieve better performance with fewer
training labels if it is allowed to choose the data it wants to
learn from. Despite of the rapid progress of learning meth-
ods with less supervision, e.g., weakly supervised learning
and semi-supervised learning, active learning remains the
cornerstone of many artificial intelligence applications for
its simplicity and higher performance bound.

The majority of previous researches suggests that active
learning is an empirical method which generalizes mod-
els trained on a labeled set to an unlabeled set by iterative
sample selection. Uncertainty-based methods define various
metrics to select informative samples to adapt the trained
model to the unlabeled set (Gal, Islam, and Ghahramani
2017). Distribution-based approaches aim at estimating the
layout of unlabeled samples for selecting samples of large
diversity or loss. Expected model change methods (Freytag,
Rodner, and Denzler 2014; Käding et al. 2016) find out sam-
ples which can cause the greatest change to the model pa-
rameters or prediction samples’ loss (Yoo and Kweon 2019).
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Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Overview of ADS, which leverages the prediction
agreement and discrepancy to select informative unlabeled
samples.

Despite of the great progress, most existing methods re-
main simply generalizing the models trained on the labeled
set to the unlabeled set while ignoring the distribution align-
ment issue. This is problematic when there is a significant
distribution bias between the labeled and unlabeled sets (Gu-
dovskiy et al. 2020). Active learning fused with deep learn-
ing has alleviated this problem by sharing an implicit fea-
ture space. However, there remains lacking an explicit way
to unify distribution alignment with sample selection, which
hinders the model trained upon labeled samples from select-
ing informative unlabeled samples.

In this paper, we propose the ADS approach1 and target
at unifying distribution alignment with sample selection in a
continuous and explainable manner. Considering the unreli-
ability of predictions themselves, we propose to leverage the
prediction agreement and discrepancy of two classifiers to
estimate the distribution continuity, Fig. 1. The motivation
behind ADS is that maximizing the prediction agreement
and discrepancy upon unlabeled samples makes it possible
to quantify the distribution overlap and bias, while avoiding
directly predicting the uncertainty or diversity of samples.

To fulfill this purpose, we introduce adversarial classi-
fiers atop the convolutional neural network (CNN). Dur-
ing training, minimizing the prediction discrepancy (max-
imizing their agreement) of fixed classifiers’ drives learn-
ing CNN features to align the distribution of easy unla-
beled samples. Maximizing classifiers’ prediction discrep-
ancy upon fixed features finds out the hard samples, which

1Code is enclosed in the supplementary material.
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Figure 2: ADS flowchart.The prediction agreement step “pulls” the distributions of labeled and unlabeled samples with low and
mid entropy together by updating features while the prediction discrepancy step “push” the distribution of unlabeled samples
with high and middle entropy out of the alignment area by updating classifiers. Iterative agreement-discrepancy progressively
aligns distributions of unlabeled samples with those of labeled samples. Larger circles/triangles denote more informative sam-
ples with larger entropy.

are highlighted by an entropy-based calibration function. It-
erative agreement-discrepancy progressively aligns distribu-
tions of unlabeled samples with those of labeled samples in
a way like domain adaptation for active learning, Fig. 2.

The contributions of this paper include:

• We propose an agreement-discrepancy-selection (ADS)
approach, solving the active learning problem by align-
ing the distributions of unlabeled samples with those of
labeled samples in a continuous and progressive fashion.

• We design an entropy-based metric to measure the distri-
bution alignment and discrepancy. Based on the metric,
we further propose entropy-based calibration functions to
differentiate informative samples with easy samples.

• We apply ADS to image classification and object detec-
tion, improving the state-of-the-arts with significant mar-
gins.

Related Work
Uncertainty-based Method. Active learning, for its practi-
cal application value, has been one of the most important re-
search topic in machine learning and artificial intelligence.
Conventional methods used uncertainty as a metric to se-
lect samples for active learning. Uncertainty can be defined
as the the posterior probability of a predicted class (Lewis
and Gale 1994; Lewis and Catlett 1994), or the margin be-
tween posterior probabilities of a predicted class and the sec-
ondly predicted class (Joshi, Porikli, and Papanikolopoulos
2009; Roth and Small 2006). It can also be defined upon
entropy (Settles and Craven 2008; Luo, Schwing, and Urta-
sun 2013; Joshi, Porikli, and Papanikolopoulos 2009), which
measures the posterior probability of unlabeled samples.

Combined with deep learning, an improved uncertainty

approach (Gal, Islam, and Ghahramani 2017) used Monte
Carlo Dropout and multiple forward passes to estimate un-
certainty. Despite of its effectiveness, the efficiency is signif-
icantly reduced for the usage of dense dropout layers which
hinders the network convergence.

Distribution-based Method. This line of methods targets
at estimating the distribution of unlabeled samples for se-
lecting diverse and informative samples. Clustering meth-
ods (Nguyen and Smeulders 2004) have been applied to
build the unlabeled sample distribution while discrete op-
timization methods (Guo 2010; Elhamifar et al. 2013; Yang
et al. 2015) were employed to perform sample subset se-
lection. By considering the distances to their surround-
ing samples, the context-aware methods (Hasan and Roy-
Chowdhury 2015; Aodha et al. 2014) select the samples that
can represent to the global distribution. The expected model
change methods (Roy and McCallum 2001; Settles, Craven,
and Ray 2007) utilized the present model to estimate ex-
pected gradient, or expected output changes (Freytag, Rod-
ner, and Denzler 2014; Käding et al. 2016), which guide the
sample selection.

Core-set (Sener and Savarese 2018) suggested that many
of the active learning heuristics in the literature were not
effective when applied to CNNs with batch setting. It thus
defined the problem of active learning as core-set selection,
i.e., choosing a set of points such that a model learned over
the labeled subset captures the diversity of the unlabeled
samples.

Learning Loss Method. In the deep learning era, the ac-
tive learning methods remain falling into the uncertainty-
based and distribution-based routines (Lin et al. 2018; Wang
et al. 2017; Beluch et al. 2018; Lin et al. 2020). Sophisticated
methods have extended active learning to open sets (Liu
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and Huang 2019), or combined it with self-paced learn-
ing (Tang and Huang 2019). Nevertheless, it remains ques-
tionable whether or not the intermediate feature representa-
tion is effective for sample selection. Recent learning loss
approach (Yoo and Kweon 2019) can be categorized to ei-
ther an uncertainty-based or a distribution-based approach.
By introducing the network structure to predict the “loss” of
unlabeled samples, it estimates sample uncertainty and dis-
tribution, and selects samples of large “loss” in a fashion like
hard negative mining.

Despite of the great progress, the continuous distribution
of labeled and unlabeled samples remain not well modeled,
which causes the gap between trained model and the unla-
beled samples to be predicted. Recent active learning com-
bined with self-supervised learning provided an interesting
solution, but is difficult to be extended to other tasks like
object detection (Gudovskiy et al. 2020). Motivated by the
model ensemble method (Beluch et al. 2018), our study
solves this problem by iterative prediction agreement and
discrepancy (Saito et al. 2018). Our work is also inspired
by the uncertainty-aware graph Gaussian process (Liu et al.
2020) which models continuous distribution with graph. The
difference between our approach the adversarial learning ap-
proaches (Sinha, Ebrahimi, and Darrell 2019; Zhang et al.
2020) lies in that they learn how to discriminate between
sample dissimilarities in the latent space while we focus on
modeling the predictions upon unlabeled samples.

The Proposed Approach
The core of ADS is leveraging the prediction agreement and
discrepancy of adversarial classifiers to estimate the distri-
bution of unlabeled samples. In each training iteration, three
steps are successively performed: (1) Training the backbone
network (feature extractor) and the classifiers using the la-
beled set; (2) Fixing the classifiers, fine-tuning the feature
extractor to maximize the prediction agreement (i.e., to min-
imize the prediction discrepancy) on the unlabeled set to
align the distributions of unlabeled samples with those of
labeled samples; (3) Fixing the feature extractor, fine-tuning
the classifiers to maximize the prediction discrepancy on the
unlabeled set and highlight informative samples. After each
training iteration, an entropy-based metric is used to select
informative samples, which will be used to update the label
set for the next iteration of active learning, Fig. 2.

Label Set Training

Let L denotes the labeled set, U the unlabeled set, and C the
number of classes. A sample xl ∈ RH∗W∗3 from the L has
the label yl. To quantify the distribution bias and distribution
alignment between L and U , we introduce two adversarial
classifiers after the last convolutional layer, Fig. 3(a), where
g denotes the feature extractor parameterized by θg , and f1
and f2 are two adversarial classifiers parameterized by θf1
and θf2 , respectively.

Given the labeled set L, the purpose of network training
is to optimize both θg and θf1 and θf2 by minimizing the
Binary Cross Entropy (BCE) loss using the Stochastic Gra-

Figure 3: Network architectures. (a) Label set training. (b)
Prediction agreement. (c) Prediction discrepancy.

dient Descent (SGD) algorithm, as

argmin
θg,θf1 ,θf2

Ll(ŷ1l , ŷ2l )

= −
C∑
c=1

(yl,clogŷ
1
l,c + (1− yl,c)log(1− ŷ1l,c)

+yl,clogŷ
2
l,c + (1− yl,c)log(1− ŷ2l,c)).

(1)

Given an unlabeled sample for test, the network with two
adversarial classifiers takes xu as input and generates two
predictions, ŷ1u and ŷ2u, where ŷ1u = f1(g(xu)) and ŷ2u =
f2(g(xu)), ŷu ∈ [0, 1].

When there is a significant distribution bias between L
and U , unlabeled samples in the biased regions are difficult
to be classified by the models trained on the labeled set. In
previous studies, samples were selected by empirically de-
signed metrics to handle the bias. However, when the bias
is significant, the model experience difficulty to precisely
predict the classification probability of unlabeled samples,
which could waste the quota for labeling. In what follows,
the prediction agreement and prediction discrepancy mod-
ules are proposed to solve this problem.

Prediction Agreement: Distribution Alignment
To select informative samples from the unlabeled set using
the model trained on the labeled set, the key is to find a rea-
sonable way to reduce the distribution bias and increase dis-
tribution alignment between labeled and unlabeled samples.
To this end, we proposed a method to update the network
parameters and the feature representation so that the pre-
diction agreement of f1 and f2 upon unlabeled samples is
maximized. By forcing the two classifiers to agree with each
other on predictions, the feature representation is updated so
that some unlabeled samples can “move” towards L in the
feature space, Fig. 2. The unlabeled samples “staying” in
the biased regions are considered informative and selected
for labelling.

Particularly, each sample xu ∈ RH∗W∗3 from the un-
labeled set is taken as the input of the network to predict
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classification outputs, Fig. 3(b). This is an efficient infer-
ence procedure given network parameters trained on the la-
beled set. The adversarial classifiers f1 and f2 are both used
in the forward propagation to predict classification results.
When performing back-propagation, the parameters θf1 and
θf2 of the classifiers are fixed so that solely the parameters θg
of the feature extractor are fine-tuned. This actually defines
a procedure to update the feature space for sample align-
ment, when the parameters θg of the feature extractor are
optimized by minimizing the prediction agreement loss, as

argmin
θg

La′(ŷ1u, ŷ2u) =
1

C

C∑
c=1

∣∣ŷ1u,c − ŷ2u,c∣∣ , (2)

where ŷ1u,c and ŷ2u,c are the predictions of the sample xu,c
output by f1 and f2, respectively.

To qualify the prediction alignment, we propose an
entropy-based metric, E(u), which is defined as the mean
entropy based on the classifiers’ predictions, as

E(u) = −1

2
(
C∑
c=1

ŷ1u,clogŷ
1
u,c +

C∑
c=1

ŷ2u,clogŷ
2
u,c), (3)

where ŷ1u,c and ŷ2u,c respectively denote the prediction prob-
ability of the c-th class by f1 and f2 on the unlabeled set.
The entropy assigns each unlabeled sample a weight indicat-
ing how well it aligns with the labeled set, providing a way
to measure the distribution alignment. Based on the entropy,
a calibration weight is designed to differentiate the samples
with large entropy from those with small entropy. Consider-
ing that entropy is non-negative while the Sigmoid function
used by f1 and f2 has the largest slope near the origin, we
use the Sigmoid function to calculate the calibration weight
wa, as

wa =
1

n

(
1− δ(E(u)− τ)

)
, (4)

where n denotes the batch size and δ(x) = 1
1+e−x the Sig-

moid function. τ is a hyper-parameter, which is experimen-
tally set to 0.1.

According to Eq. 4, we assign larger alignment weights
to the samples with smaller entropy, and smaller alignment
weights to the samples with larger entropy. The advantages
of entropy calibration are two-folds: (1) It prevents hard
samples from alignment process and avoid the negative ef-
fect of them on feature learning; (2) By selecting easy sam-
ples but leaving hard samples out, the distance between easy
samples and hard samples is further enlarged, which facil-
itates highlighting the hard samples. These advantages are
shown in the last three rows of Tab. 1. Accordingly, the pre-
diction agreement is implemented by minimizing the cali-
brated loss La to optimize the network parameters, as

argmin
θg

La = waLa′(ŷ1u, ŷ2u). (5)

Prediction Discrepancy: Highlighting Informative
Samples
By maximizing the prediction agreement, L and U are
aligned in the feature space as much as possible. In the fol-

Algorithm 1: ADS Training Procedure
1 Require: Network parameters θg , classifiers’

parameters θf1 and θf2 , labeled set L and unlabeled
set U .

2 for iteration do
3 for epoch do
4 if epoch == 0 then
5 Training on L using Eq. 1;
6 Compute the calibration weight wa;
7 Maximize prediction agreement upon U

using Eq. 5;
8 Compute the calibration weight wd;
9 Maximize prediction discrepancy on U and L

using Eq. 8 and Eq. 1;
10 Training on L using Eq. 1;
11 Select samples using the entropy metric, Eq. 3;
12 update L and U .

lowing step, we propose to maximize the discrepancy of pre-
dictions to highlight informative unlabeled samples, Fig. 2.

Particularly, we fix the feature extractor’s parameters θg
and fine-tune the classifiers’ parameters θf1 and θf2 to mini-
mize a discrepancy loss, Fig. 3(c). The fine-tuning procedure
drives the two classifiers, f1 and f2, to output discrepant pre-
dictions on each unlabeled sample xu,c, as

argmin
θf1 ,θf2

Ld′(ŷ1u, ŷ2u) = 1− 1

C

C∑
c=1

∣∣ŷ1u,c − ŷ2u,c∣∣ , (6)

where ŷ1u,c and ŷ2u,c are the predictions of classifier f1 and
f2 of the unlabeled sample xu,c. When optimizing Eq. 6, it
requires to simultaneously minimize the classification loss
defined in Eq. 1 to prevent the performance degradation on
the labeled samples. The loss of labeled examples and unla-
beled examples are mixed together and train the model once.

Under the constraint of discrepancy loss, not all samples
have discrepant predictions, i.e., some easy samples remain
outputting similar predictions. We design a discrepancy cal-
ibration weight to handle them. Considering that smaller en-
tropy means smaller prediction discrepancy, the discrepancy
calibration weight wd is defined as

wd =
1

n
(δ(E(u)− τ)), (7)

where E(u) follows Eq. 3 on the prediction of the current
epoch. The prediction discrepancy is implemented by opti-
mizing the calibrated discrepancy loss Ld, as

argmin
θf1 ,θf2

Ld = wdLd′(ŷ1u, ŷ2u). (8)

Entropy-based Sample Selection
After each iteration with multiple epochs of training, a small
proportion of samples staying in the bias distribution region
would be informative samples to be selected. To quantify
how informative each sample is, we propose the entropy-
based sample selection metric,E(u), following Eq. 3, which
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is based on the fact that larger entropy implies larger uncer-
tainty of probabilistic predictions. The selected samples will
be added to the labeled samples for next iteration of active
learning, Fig. 2.

The learning procedure (described in Alg. 1) of ADS is an
adversarial min-max discrepancy procedure, which aims to
progressively push the unlabeled distribution towards the la-
beled distribution by leveraging their overlap and bias. This
is like a kind of continuous domain adaptation where the
“source” domain is the labeled samples and the “target” do-
main is the unlabeled samples. During the learning proce-
dure, by using the calibration weights to highlight informa-
tive samples and filter out easy samples, the major propor-
tion of unlabeled samples are aligned with the labeled sam-
ples.

Experiments
We evaluate the proposed approach upon image classifica-
tion and object detection tasks. In experiments, a labeled
datasetL0

k is initialized by randomly sampling k0 data points
from the whole dataset UN , where N denotes the number of
samples. In the i-th iteration of active learning, we add ki
labeled samples to the labeled set and then re-train the net-
work. To report the mean and standard deviation of perfor-
mance, the experiment repeats for three times.

Experimental Settings
Dataset. The commonly used CIFAR-10 and CIFAR-100
datasets are used in the image classification task, follow-
ing the experimental settings (Yoo and Kweon 2019; Sinha,
Ebrahimi, and Darrell 2019; Zhang et al. 2020). CIFAR-10
consists of 60000 images of 32×32×3 pixels. The training
and test sets contain 50000 and 10000 images, respectively.
CIFAR-100 is a fine-grained dataset, which consists of 100
categories containing 600 images each.

Training Settings. We respectively use ResNet-18 (He
et al. 2016) and VGG-16 (Simonyan and Zisserman 2015)
as backbone networks by removing the fully-connected (FC)
layers and adding two classifiers atop the backbone network
to implement ADS. Considering the budget of the labeled
set, we set k0=1000 and ki=1000 when using ResNet-18
on CIFAR-10 while set k0=5000 and ki=2500 when using
ResNet-18 on CIFAR-100 or using VGG-16. Data augmen-
tation strategies including 32 × 32 random image crop and
random image horizontal flip. The images are normalized
using the channel mean and standard deviation vectors esti-
mated over the training set.

For each learning iteration, we train the model for 200
epochs with the mini-batch size 128 and the initial learning
rate 0.1. After 160 epochs, the learning rate decrease to 0.01.
The momentum and the weight decay are respectively set to
0.9 and 0.0005.

Sub-set Sampling. The training set is regarded as the ini-
tial unlabeled set UN , where N=50000 denote the sample
number. According to (Sener and Savarese 2018), selecting
top-ki samples from UN directly is inefficient because of
the information overlap among images. To tackle this issue,
we follow the settings in (Beluch et al. 2018) to randomly

Figure 4: T-SNE visualization of sample distributions. “Tri-
angles” and “dots” respectively denote labeled and unla-
beled samples. The “triangles” are progressively aligned
with “dots”, showing that ADS aligns the distributions of
unlabeled samples with those of labeled samples while train-
ing discriminative models. The baseline method uses a sin-
gle classifier to randomly select samples. (Best viewed in
color with zoom).

select a subset SM ⊂ UN first and then choose top-ki rep-
resentative samples from SM . The sample number (M ) is
empirically set to 10000.

Ablation Study
Prediction Agreement and Discrepancy. To evaluate the
effect of the distribution agreement and discrepancy, we con-
duct ablation study on CIFAR-10. As shown in Tab. 1, by us-
ing the prediction agreement and discrepancy module with-
out entropy weights and selecting samples randomly, ADS
significantly boosts the performance at early iterations. Par-
ticularly, it improves the accuracy of the second iteration
by 6.27%, from 61.48% to 67.75%. By using the entropy
weight to calibrate the agreement loss (Eq. 5), ADS im-
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ADS Accuracy (%) on Proportion (%) of Labeled Samples
Non Ent. (w.) Cal. Ent. (sel.) 2 4 6 8 10 12 14 16 18 20

51.01 61.48 69.14 75.14 79.77 82.83 84.77 85.78 86.89 87.27
X 58.07 67.75 74.91 78.88 80.96 83.23 84.66 85.29 86.50 87.24
X X 54.28 66.23 74.61 80.18 82.89 85.99 88.00 88.86 89.86 90.41

X X 55.43 67.21 75.49 80.08 83.46 85.40 87.13 88.55 89.72 90.02
X X 57.22 70.08 78.18 82.30 83.97 86.78 87.82 89.05 90.03 90.63

Table 1: Module evaluation on CIFAR-10 using ResNet-18. “Non”, “Ent.(w.)” and “Cal.” respectively denote ADS without en-
tropy weight, with entropy weight and calibration weight. “Ent.(sel.)” denotes ADS using the entropy metric to select samples.

Metric
Accuracy (%) on Proportion (%) of Labeled Samples

2 4 6 8 10 12 14 16 18 20
Baseline 51.01 61.48 69.14 75.14 79.77 82.83 84.77 85.78 86.89 87.27

ADS (non) 54.28 66.23 74.61 80.18 82.89 85.99 88.00 88.86 89.86 90.41
ADS (max) 54.73 66.51 74.7 79.89 83.13 85.03 86.56 88.29 89.31 89.87
ADS (min) 54.31 65.61 73.87 79.65 82.89 85.49 86.85 88.36 89.41 90.04

ADS (mean) 55.43 67.21 75.49 80.08 83.46 85.40 87.13 88.55 89.72 90.02

Table 2: Comparison of prediction alignment metrics on CIFAR-10. “ADS(non/max/min/mean)” respectively denote ADS
without entropy weight, with the max entropy weight, the min entropy weight, the mean entropy weight of the two classifiers.

Figure 5: Comparison of ADS with Core-set (Sener and Savarese 2018), VAAL (Sinha, Ebrahimi, and Darrell 2019),
LL4AL (Yoo and Kweon 2019) and SRAAL (Zhang et al. 2020): (a) on CIFAR-10 using the ResNet-18 backbone, (b) on
CIFAR-10 using the VGG-16 backbone, (c) on CIFAR-100 using the ResNet-18 backbone.

proves performance quickly when using 2%∼10% samples.
When using the calibration entropy weights (Eqs. 4 and 7),
ADS achieves the highest performance in almost all training
iterations. This confirms the effectiveness of the proposed
calibration metric in differentiating hard and easy samples.

The primary reason for the performance improvement of
ADS at early iterations lies in the usage of unlabeled sam-
ples. The prediction discrepancy on unlabeled samples, as a
supervision signal, can improve feature representation, par-
ticularly when the labeled set is very small. With the increase

of the labeled samples, the effect of such supervision signal
would decay.

Progressive Distribution Alignment. In Fig. 4, we visu-
alize and compare the samples’ distributions in four learning
iterations. It can be seen that ADS can classify the samples
quickly and clearly. Meanwhile, it can align the distributions
of unlabeled samples with those of labeled samples more
efficiently, and purposefully select the informative samples
around class boundary.

Prediction Alignment Metric. The CIFAR-10 dataset
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Figure 6: Comparison of ADS with Core-set (Sener and
Savarese 2018) and LL4AL (Yoo and Kweon 2019) on PAS-
CAL VOC using the VGG-16 backbone.

is also used to evaluate the effect of prediction align-
ment/discrepancy metric. In Tab. 2, “ADS(mean)”, which
uses the mean entropy of the two classifiers as the metric,
significantly outperforms other metrics, e.g., “ADS(non)”,
“ADS(min)”, and “ADS(max)”. The reason lies in that using
the mean entropy can take into account the prediction out-
puts of both classifiers and avoid one classifier overwhelm-
ing the other.

Performance and Comparison

CIFAR-10. As shown in Fig. 5(a), ADS significantly out-
performs state-of-the-arts, particularly at the early iterations.
It respectively outperforms the state-of-the-art LL4AL by
6.00%, 4.43% and 2.09% when using 2%, 4% and 6% sam-
ples. Such improvements validate that ADS can align the
distributions of unlabeled with those of labeled samples and
select representative samples using a small training sets,
which is very important for active learning. In the last it-
eration, with 20% samples, ADS achieves 90.63% accuracy,
which has been very close to that on the full training set.
Using VGG-16 as a backbone network, ADS has higher ac-
curacy and less standard deviation than LL4AL, Fig. 5(b),
demonstrating its robustness to random initialization.

CIFAR-100. Compared with CIFAR-10, CIFAR-100 is
a more challenging dataset for the larger category num-
ber. Therefore, larger proportions of training samples are
required to obtain acceptable performance. Fig. 5(c) shows
that ADS significantly outperforms all other methods with a
smaller standard deviation. Particularly, it respectively out-
performs the SRAAL method by 2.51%, 4.40%, and 2.25%
using 10%, 15% and 20% samples. The SRAAL has a com-
parable performance with ADS in the last two iteration.
SRAAL solely uses the label state information of samples
while ignoring aligning the continuous distribution of unla-
beled samples with those of labeled samples, which makes
it selecting less representative samples in early iterations.

Figure 7: Visualization of object predictions of the two ad-
versarial classifiers. The first row shows the original images,
the second and the third rows show the predictions of clas-
sifier 1 and classifier 2 respectively. Redder colors indicate
higher scores. (Best viewed in color with zoom)

Object Detection

Following the settings in LL4AL (Yoo and Kweon 2019), we
apply ADS to object detection using the SSD detector (Liu
et al. 2016). We add two fully convolutional layers as the ad-
versarial classifiers, which are 3 × 3 kernels with the stride
of 1 and the padding of 1. For each image, all the feature
vectors generated by the detector are fed to the ADS mod-
ule for entropy calculation. For multiple feature vectors, the
vector of the top-1000 largest entropy is used as the metric
to determine whether the image is informative or not.

The experiments are conducted on PASCAL VOC 2007
and 2012 (Everingham et al. 2010), where 1000 samples are
selected from the training set as the initial labeled set. In
each iteration, 1000 samples are selected and added to the
labeled set. The agreement-discrepancy module is trained
for 30 epochs, while the labeled set training module for 150
epochs. The agreement-discrepancy module only works for
the positive images which contain at least one object. As
shown in Fig. 6, ADS outperforms the state-of-the-arts, val-
idating its effectiveness for object detection.

In Fig. 7, we visualize the predictions (classification
scores) of the two adversarial classifiers with score thresh-
old 0.3 after the NMS step with IoU threshold 0.5. It can
be seen that ADS produces informative predictions with dis-
crepant scores. The images containing larger discrepancy are
selected for data annotation.

Conclusion
We proposed the Agreement-Discrepancy-Selection (ADS)
approach for active learning and unify the distribution align-
ment with sample selection by introducing adversarial clas-
sifiers. By operating the classifiers’ prediction agreement
and discrepancy, ADS quantified the distribution overlap
and bias without directly predicting the uncertainty or di-
versity of samples. With well-designed calibration weights,
ADS further differentiated the alignment and discrepancy of
unlabeled samples, which facilitates informative sample se-
lection. Experiments on image classification and object de-
tection benchmarks demonstrate the task-agnostic advantage
of ADS. The ADS approach provides a fresh insight to the
classical active learning problem.
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