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Abstract
Context, the embedding of previous collected trajectories, is a
powerful construct for Meta-Reinforcement Learning (Meta-
RL) algorithms. By conditioning on an effective context,
Meta-RL policies can easily generalize to new tasks within
a few adaptation steps. We argue that improving the quality
of context involves answering two questions: 1. How to train
a compact and sufficient encoder that can embed the task-
specific information contained in prior trajectories? 2. How
to collect informative trajectories of which the corresponding
context reflects the specification of tasks? To this end, we pro-
pose a novel Meta-RL framework called CCM (Contrastive
learning augmented Context-based Meta-RL). We first focus
on the contrastive nature behind different tasks and leverage
it to train a compact and sufficient context encoder. Further,
we train a separate exploration policy and theoretically derive
a new information-gain-based objective which aims to collect
informative trajectories in a few steps. Empirically, we evalu-
ate our approaches on common benchmarks as well as several
complex sparse-reward environments. The experimental re-
sults show that CCM outperforms state-of-the-art algorithms
by addressing previously mentioned problems respectively.

Introduction
Reinforcement Learning (RL) combined with deep neural
networks has achieved impressive results on various com-
plex tasks (Mnih et al. 2015; Lillicrap et al. 2016; Schulman
et al. 2015). Conventional RL agents need large amount of
environmental interactions to train a single policy for one
task. However, in real-world problems many tasks share
similar internal structures and we expect agents to adapt
to such tasks quickly based on prior experiences. Meta-
Reinforcement Learning (Meta-RL) proposes to address
such problems by learning how to learn (Wang et al. 2016).
Given a number of tasks with similar structures, Meta-RL
methods aim to capture such common knowledge from pre-
vious experience on training tasks and adapt to a new task
with only a small amount of interactions.

Based on this idea, many Meta-RL methods try to learn a
general model initialization and update the parameters dur-
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ing adaptation (Finn, Abbeel, and Levine 2017; Rothfuss
et al. 2019). Such methods require on-policy meta-training
and are empirically proved to be sample inefficient. To al-
leviate this problem, a number of methods (Rakelly et al.
2019; Fakoor et al. 2020) are proposed to meta-learn a pol-
icy that is able to adapt with off-policy data by leveraging
context information. Typically, an agent adapts to a new en-
vironment by inferring latent context from a small number
of interactions with the environment. The latent context is
expected to be able to capture the distribution of tasks and
efficiently infer new tasks. Context-based Meta-RL methods
then train a policy conditioned on the latent context to im-
prove generalization.

As the key component of context-based Meta-RL, the
quality of latent context can affect algorithms’ performance
significantly. However, current algorithms are sub-optimal
in two aspects. Firstly, the training strategy for context en-
coder is flawed. A desirable context is expected to only ex-
tract task-specific information from trajectories and throw
away other information. However, the latent context learned
by existing methods (i.e. recovering value function (Rakelly
et al. 2019) or dynamics prediction (Lee et al. 2020; Zhou,
Pinto, and Gupta 2019)) are quite noisy as it may model ir-
relevant dependencies and ignore some task-specific infor-
mation. Instead, we propose to directly analyze and discrim-
inate the underlying structure behind different tasks’ tra-
jectories by leveraging contrastive learning. Secondly, prior
context-based Meta-RL methods ignore the importance of
collecting informative trajectories for generating distinctive
context. If the exploration process does not collect transi-
tions that are able to reflect the task’s individual property
and distinguish it from dissimilar tasks, the latent context
would be ineffective. For instance, in many cases, tasks in
one distribution only vary in the final goals, which means
the transition dynamics remains the same in most places of
the state space. Without a good exploration policy it is hard
to obtain information that is able to distinguish tasks from
each other, which leads to a bad context. A comparison of
different learned latent embeddings are shown in Figure 6.

In this paper, we propose a novel off-policy Meta-RL
algorithm CCM (Contrastive learning augmented Context-
based Meta-RL), aiming to improve the quality of context
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by tackling the two aforementioned problems. Our first con-
tribution is an unsupervised training framework for context
encoder by leveraging contrastive learning. The main insight
is that by setting transitions from the same task as positive
samples and the ones from different tasks as negative sam-
ples, contrastive learning is able to directly distinguish con-
text in the original latent space without modeling irrelevant
dependencies. The second contribution is an information-
gain-based exploration strategy. With the purpose of collect-
ing trajectories as informative as possible, we theoretically
obtain a lower bound estimation of the exploration objective
in contrastive learning framework. Then it is employed as
an intrinsic reward, based on which a separate exploration
agent is trained. The effectiveness of CCM is validated on
a variety of continuous control tasks. The experimental re-
sults show that CCM outperforms state-of-the-art Meta-RL
methods through generating high-quality latent context.

Preliminaries
Meta-Reinforcement Learning
In meta-reinforcement learning (Meta-RL) scenario, we as-
sume a distribution of tasks p(µ). Each task µ ∼ p(µ) shares
similar structures and corresponds to a different Markov De-
cision Process (MDP), Mµ = {S,A, Tµ, Rµ}, with state
space S, action space A, transition distribution Tµ, and re-
ward function Rµ. We assume one or both of transition
dynamics and reward function vary across tasks. Follow-
ing prior problem settings in (Duan et al. 2016; Fakoor
et al. 2020; Rakelly et al. 2019), we define a meta-test
trial as N episodes in the same MDP, with an initial ex-
ploration of K episodes, followed by N − K execution
episodes leveraging the data collected in exploration phase.
We further define a transition batch sampled from task µ
as b = {τi}ki=1. A trajectory consists of T transitions
τ1:T is a special case of transition batch when all tran-
sitions are consecutive. For context-based Meta-RL, the
agent’s policy typically depends on all prior transitions
τ1:Γ = {(s1, a1, r1, s

′
1) · · · (sΓ, aΓ, rΓ, s

′
Γ)} collected by ex-

ploration policy πexp. The agent firstly consumes the col-
lected trajectories and outputs a latent context z through
context encoder q(z|τ1:Γ), then executes policy πexe con-
ditioned on the current state and latent context z. The goal
of the agent is therefore to maximize the expected return,
Eµ∼p(µ)

[
Eτ1:Γ∼πexp

[
Vπexe(q(z|τ1:Γ), µ)

]]
.

Contrastive Representation Learning
The key component of representation learning is the way
to efficiently learn rich representations of given input
data. Contrastive learning has recently been widely used
to achieve such purpose. The core idea is to learn rep-
resentation function that maps semantically similar data
closer in the embedding space. Given a query q and keys
{k0, k1, · · · }, the goal of contrastive representation learn-
ing is to ensure q matches with positive key ki more than
any other keys in the data set. Empirically, positive keys and
query are often obtained by taking two augmented versions
of the same image, and negative keys are obtained from
other images.

     Task set 
{𝜇1, ⋯ , 𝜇𝑛, ⋯ , 𝜇𝑀} 

Momentum Encoder 

 Contrastive Loss 

Encoder 

Reinforcement 
Learning 

Task 𝜇𝑛 

𝑧𝑘  𝑧𝑞 

Figure 1: Contrastive Context Encoder

Previous work proposes InfoNCE loss(van den Oord, Li,
and Vinyals 2018) to score positive keys ki ∼ p(k|q) higher
compared with a set of K distractors kj ∼ p(k):

LNCE = −E
[
log

exp(f(q, ki))∑K
j=1 exp(f(q, kj))

]
, (1)

where function f calculates the similarity score between
query and key data, and is usually modeled as bilinear
products, i.e. qTWk (Hénaff et al. 2019). As proposed and
proved in (van den Oord, Li, and Vinyals 2018), minimizing
the InfoNCE loss is equivalent to maximizing a lower bound
of the mutual information between q and k:

I(q; k) > log(K)− LNCE (2)

The lower bound becomes tighter as K increases.

Algorithms
In this section, we describe our algorithm CCM by first in-
troducing a novel context encoder training strategy, then we
propose an information-gain-based exploration strategy to
collect informative trajectories for effective task inference.

Contrastive Context Encoder
As the key component in context-based Meta-RL frame-
work, how to train a powerful context encoder is non-trivial.
One straightforward method is to train the encoder in an end-
to-end fashion from RL loss (i.e. recover the state-action
value function (Rakelly et al. 2019)). However, the update
signals from value function is stochastic and weak that may
not capture the similarity relations among tasks. Moreover,
recovering value function is only able to implicitly capture
high-level task-specific features and may ignore low-level
detailed transition difference that contains relevant informa-
tion as well. Another kind of methods resorts to dynamics
prediction (Lee et al. 2020; Zhou, Pinto, and Gupta 2019).
The main insight is to capture the task-specific features via
distinguishing varying dynamics among tasks. However, en-
tirely depending on low-level reconstructing states or actions
is prone to over-fit on the commonly-shared dynamics tran-
sitions and model irrelevant dependencies which may hinder
the learning process.
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These two existing methods of training the context en-
coder are either not sufficient because of ignoring useful in-
formation or not compact because of modeling irrelevant de-
pendencies. To this end, here we aim to train a compact and
sufficient encoder through extracting mid-level features. We
propose to directly extract the underlying task-specific infor-
mation behind trajectories by performing contrastive learn-
ing on the nature distinctions of trajectories. Through explic-
itly comparing different tasks’ trajectories as a whole instead
of each transition within the trajectories, the encoder is pre-
vented from modeling commonly-shared information while
still be able to capture all the relevant task-specific structures
by leveraging the contrastive nature behind different tasks.

Contrastive learning methods learn representations by
pulling together semantically similar data points (positive
data pairs) while pushing apart dissimilar ones (negative
data pairs). We treat the trajectories sampled from same
tasks as the positive data pairs and trajectories from differ-
ent tasks as negative data pairs. Then the contrastive loss is
minimized to gather the latent context of trajectories from
same tasks closer in embedding space while pushing apart
the context from other tasks.

Concretely, assuming a training task set containingM dif-
ferent tasks from task distribution p(µ). We first generate
trajectories with current policy for each task and store them
in replay buffer. At each training step, we first sample a task
µn from the training task set, and then randomly sample two
batches of transitions bqn, bkn from task µn independently. bqn
serves as a query in contrastive learning framework while bkn
is the corresponding positive key. We also randomly sample
M − 1 batches of transitions from the other tasks as neg-
ative keys. Note that previous work (e.g. CURL (Srinivas,
Laskin, and Abbeel 2020)) relies on data augmentation on
images like random crop to generate positive observations.
In contrast, independent transitions sampled from the same
task replay buffer naturally construct the positive samples.

As shown in Figure 1, after obtaining query and key data,
we map them into latent context zq and zk respectively, on
which we calculate similarity score and contrastive loss to
train the encoder:

Lcontrastive = −E
[
log

exp(f(zq, zkn))∑M
j=1 exp(f(z

q, zkj ))

]
(3)

Following the settings in (He et al. 2020; Srinivas, Laskin,
and Abbeel 2020), we use momentum averaged version
of the query encoder eq for encoding the keys. The Rein-
forcement Learning part takes in the latent context as an
additional observation, then executes policy and updates
separately. Note that the Contrastive Context Encoder is a
generic framework and can be integrated with any context-
based Meta-RL algorithm.

Information-gain-based Exploration
Even with a compact and sufficient encoder, the context is
still ineffective if the exploration process does not collect
enough transitions that is able to reflect the new task’s spe-
cific property and distinguish it from dissimilar tasks. Some
previous approaches (Rakelly et al. 2019; Rothfuss et al.

2019) utilize Thompson-sampling (Thompson 1933) to ex-
plore, in which an agent needs to explore in the initial few
episodes and execute optimally in the subsequent episode.
However, these two processes is actually conducted by one
single policy and is trained in an end-to-end fashion by max-
imizing expected return. This means the exploration policy
is limited to the learned execution policy. When adapting to a
new task, the agent tends to only explore experiences which
are useful for solving previously trained tasks, making the
adaptation process less effective.

Instead, we decouple the exploration and execution pol-
icy and define an exploration agent aiming to collect trajec-
tories as informative as possible. We achieve this goal by
encouraging the exploration policy to maximize the infor-
mation gain from collecting new transition τi at time step i
of task µn:

I(z|τ1:i−1; τi) = H(z|τ1:i−1)−H(z|τ1:i), (4)

where τ1:i−1 denotes the collected i − 1 transitions before
time step i. The above equation can also be interpreted as
how much task belief z has changed given the newly col-
lected transition. We further transform the equation as fol-
lows:

I(z|τ1:i−1; τi) = H(z|τ1:i−1) +H(z)−H(z)−H(z|τ1:i)

= I(z; τ1:i)− I(z; τ1:i−1)
(5)

Equation (5) implies that the information gain from collect-
ing new transition τi can be written as the temporal differ-
ence of the mutual information between task belief and col-
lected trajectories. This indicate that we expect the explo-
ration agent to collect informative experience that form a
solid hypothesis for task µn.

Although theoretically sound, the mutual information of
latent context and collected trajectories is hard to directly
estimate. We expect a tractable form of Equation (5) without
losing information. To this end, we first theoretically define
the sufficient encoder for context in Meta-RL framework.
Given two batches of transitions b1 and b2 from one task,
the encoders e1 and e2 extract representations c1 = e1(b1)
and c2 = e2(b2), respectively.

Definition 4.1 (Context-Sufficient Encoder) The context
encoder e of b1 is sufficient if and only if I(b1, b2) =
I(e(b1), b2).

Intuitively, the mutual information remains the same as
the encoder e does not change the amount of informa-
tion contained in b1, which means the encoder is context-
sufficient.

Assuming the context encoder trained in previous section
is context-sufficient, we can utilize this property to further
transform the information gain objective in Equation (5) in
a view at the latent context level. Given batches of transi-
tions from the same task bpos, τ1:i ∼ µn and a context-
sufficient encoder e(·), the latent context can be computed
from the corresponding trajectories c1:i = e(τ1:i), c1:i−1 =
e(τ1:i−1). As for the latent context z, we can approximate
it as the embedding of positive transition batch as well:
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z ≈ e(bpos) = cpos. Then (5) becomes:
I(z|τ1:i−1; τi) = I(z; τ1:i)− I(z; τ1:i−1)

= I[z; e(τ1:i)]− I[z; e(τ1:i−1)]

= I(cpos; c1:i)− I(cpos; c1:i−1)

(6)

Given this form of equation, we can further derive a tractable
lower bound of I(z|τ1:i−1; τi). The calculation process for
the lower bound of Equation (6) can be decomposed into
computing the lower bound of I(cpos; c1:i) and the upper
bound of I(cpos; c1:i−1).

As mentioned in Preliminaries, a commonly used lower
bound of I(cpos, c1:i) can be written as:

I(cpos; c1:i) > −Llower + log(W ) (7)
where,

Llower = −E
C
log
[ exp(f(c1:i, cpos))∑M

j=1 exp(f(c1:i, cj))

]
(8)

W denotes the number of tasks. C = Cpos ∪ Cneg , where
Cpos contains latent context from the same tasks while Cneg
contains latent context from different ones. As stated in pre-
vious section, we optimize the former term in (7) to train the
context encoder and similarity function f .

We also need to find a tractable form for the upper bound
of I[cpos; c1:i−1]. Leveraging current contrastive learning
framework, we make the following proposition:

Proposition 4.2
I(cpos; c1:i−1) 6 −Lupper + log(W ) (9)

where,

Lupper = − E
Cpos

log
[ exp(f(c1:i−1, cpos))∑

cj∈Cneg
exp(f(c1:i−1, cj))

]
(10)

Proof. As defined in (van den Oord, Li, and Vinyals 2018),
the optimal value for exp(f(c1:i−1, cpos)) is given by
p(cpos|c1:i−1)

p(cpos) , inserting this back into Equation (10) results
in:

Lupper = − E
Cpos

log
[ p(cpos|c1:i−1)

p(cpos)∑
cj∈Cneg

p(cj |c1:i−1)
p(cj)

]
= E
Cpos

log
[ p(cpos)

p(cpos|c1:i−1)

∑
cj∈Cneg

p(cj |c1:i−1)

p(cj)

]
≈ E
Cpos

log
[ p(cpos)

p(cpos|c1:i−1)
(W − 1) E

cneg

p(cj |c1:i−1)

p(cj)

]
= E
Cpos

log
[ p(cpos)

p(cpos|c1:i−1)
(W − 1)

]
6 E
Cpos

log
[ p(cpos)

p(cpos|c1:i−1)
W
]

= −I(cpos; c1:i−1) + log(W )
(11)

Compared with InfoNCE loss, the only difference be-
tween these two bounds is whether the similarity relations
exp(f(c1:i; cpos)) between query and positive key is in-
cluded in denominator. Then we can further derive the lower
bound of Equation (6) as:

Exploration 
Replay Buffer 

Execution 
Replay Buffer 

Execution 
Agent 

Exploration 
Agent 

Context 
Encoder Contrastive Loss 

RL Loss 

RL Loss 

𝑏𝑒𝑥𝑝 

𝑏𝑒𝑥𝑒 

𝑏𝑒𝑛𝑐 

𝑧𝑒𝑥𝑝 

𝑧𝑒𝑥𝑝 

Figure 2: CCM training procedure. Dashed lines denote
backward gradients.

Proposition 4.3

I(z|τ1:i−1; τi) > Lupper − Llower

= E
Cpos

log
[ exp(f(c1:i, cpos))∑

cj∈C exp(f(c1:i, cj))

]
− E
Cpos

log
[ exp(f(c1:i−1, cpos))∑

cj∈Cneg
exp(f(c1:i−1, cj))

] (12)

Proof. This can be derived by simply calculating the differ-
ence between Equation (7) and (9).

Thus, we obtain an estimate of the lower bound of mu-
tual information I(z|c1:i−1; ci) and we further use it as an
intrinsic reward raux for the independent exploration agent:

re = renv + αraux,where raux = Lupper − Llower (13)

, where renv is the extrinsic reward from environment. The
intrinsic reward can be interpreted as the difference between
two contrastive loss. It measures how much the inference for
current task has been improved after collecting new transi-
tion ci. To make this objective more clear and comprehensi-
ble, we can transform the lower bound (12) as:

Lupper − Llower

= E
Cpos

[
f(c1:i, cpos)− f(c1:i−1, cpos)

]
− E
Cpos

log
[ ∑

cj∈C exp(f(c1:i, cj))∑
cj∈Cneg

exp(f(c1:i−1, cj))

] (14)

Intuitively, the first term is an estimation of how much the
similarity score for positive pairs (the correct task inference)
has improved after collecting new transition. Maximizing
this term means that we want the exploration policy to col-
lect transitions which make it easy to distinguish between
tasks and make correct and solid task hypothesis. The sec-
ond term can be interpreted as a regularization term. Max-
imizing this term means that while the agent tries to visit
places which may result in enhancement of positive score,
we want to limit the policy not visiting places where the
negative score (the similarity with other tasks in embedding
space) enhances as well.

We summarize our training procedure in Figure 2. bexp,
bexe, benc stand for the batch of transitions sampled for
training the exploration agent, execution agent and context
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Figure 3: Comparison for different context encoder training strategies. Our methods CCM + DP and CCM + RV achieve
consistently better performance compared to existing methods. The error bar shows 1 standard deviation.

encoder respectively. The exploration agent and execution
agent interact with environment separately to get their own
replay buffer. The execution replay buffer also contains tran-
sitions from exploration agent that do not add on the intrinsic
reward term. At the beginning of each meta-training episode,
the two agents sample transition data bexp and bexe to train
their policy separately. We independently sample from ex-
ploration buffer to obtain transition batches for calculating
latent context. Note that the reward terms in benc do not add
on the intrinsic reward and only use the original environ-
mental reward for computing latent context. In practice, we
utilize Soft Actor-Critic (Haarnoja et al. 2018) for both ex-
ploration and execution agent. We first pretrain the context
encoder with contrastive loss for a few episodes to avoid the
intrinsic reward being too noisy at the beginning of train-
ing. During meta-testing, we first let the exploration agent
collect trajectories for a few episodes then compute the la-
tent context based on these experience. The execution agent
then acts conditioned on the latent context. The pseudo-code
for CCM during training and adaptation can be found in our
appendix.

Experiments
In this section, we evaluate the performance of our proposed
CCM to answer the following questions:
• Does CCM’s contrastive context encoder improve the

performance of state-of-the-art context-based Meta-RL
methods?

• After combining with information-gain-based exploration
policy, does CCM improve the overall adaptation perfor-
mance compared with prior Meta-RL algorithms?

• How does regularization term (second term in (14)) influ-
ence the exploration policy?

• Is CCM able to extract effective and reasonable context
information?

Comparison of Context Encoder Training Strategy
We first evaluate the performance of context-based Meta-
RL methods after combining with contrastive context en-
coder on several continuous control tasks simulated via Mu-
JoCo physics simulator (Todorov, Erez, and Tassa 2012),
which are standard Meta-RL benchmarks used in prior
works (Fakoor et al. 2020; Rakelly et al. 2019). We also
evaluate its performance on out-of-distribution (OOD) tasks,
which are more challenging cases for testing encoder’s ca-
pacity of extracting useful information. We compare to the
existing two kinds of training strategy for context encoder:
1) RV (Recovering Value-function) (Rakelly et al. 2019), in
which the encoder is trained with gradients from recover-
ing the state-action value function. 2) DP (Dynamics Pre-
diction) (Lee et al. 2020; Zhou, Pinto, and Gupta 2019), in
which the encoder is trained by performing forward or back-
ward prediction. Here, we follow the settings in CaDM (Lee
et al. 2020) which uses the combined prediction loss of for-
ward prediction and backward prediction to update the con-
text encoder1. Our method CCM+RV denotes the encoder
receives gradients from both the contrastive loss and value
function, while CCM+DP denotes the encoder receives gra-
dients from both the contrastive loss and dynamics predic-
tion loss. To maintain consistency, we does not consider ex-
tra exploration policy in this part of evaluation and all three
methods use the same network structure (i.e. actor-critic,
context encoder) and evaluation settings as state-of-the-art
context-based Meta-RL method PEARL.

1For environments that have fixed dynamics, we further modify
the model to predict the reward as well.
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Figure 4: CCM’s overall performance compared with state-of-the-art Meta-RL methods on complex sparse-reward environ-
ments. From left to right: walker-sparse, cheetah-sparse, hard-point-robot. Asymptotic performance is plotted in dash lines.
The error bar shows 1 standard deviation.

The results are shown in Figure 3. Both CCM+DP and
CCM+RV achieve comparably or better performance than
existing algorithms, implying that the proposed contrastive
context encoder can help to extract contextual information
more effectively. For in-distribution tasks that vary in dy-
namics (i.e. ant-mass and cheetah-mass), CCM+DP obtains
better returns and converges faster than CCM+RV. This is
consistent to what is empirically found in CaDM (Lee et al.
2020): prediction models is more effective when the tran-
sition function changes across tasks. Moreover, recall that
contrastive context encoder focus on the difference between
tasks at trajectory level. Such property may compensate for
DP’s drawbacks which can embed commonly-shared dy-
namics knowledge that hinder the meta-learning process. We
assume that this property leads to the better performance of
CCM+DP on in-distribution tasks.

For OOD tasks, CCM+RV outperforms other methods in-
cluding CCM+DP, implying that contrastive loss combined
with loss from recovering value function obtains better gen-
eralization for different tasks. Recovering value function fo-
cuses on extracting high-level task-specific features. This
property avoids the overfitting problem of dynamics pre-
diction (limited to common dynamics in training tasks), of
which is amplified in this case. However, solely using RV
to train the encoder can perform poorly due to its noisy up-
dating signal as well as the ignorance of detailed transition
difference that contain task-specific information. Combin-
ing with CCM addresses such problems through the usage
of low-variance InfoNCE loss as well as forcing the encoder
explicitly find the trajectory-level information that varies
tasks from each other.

Comparison of Overall Adaptation Performance
on Complex Environments
We then consider both components of CCM algorithm and
evaluate on several complex sparse-reward environments to
compare the performance of CCM with prior Meta-RL al-
gorithms and show whether the information-gain-based ex-
ploration strategy improve its adaptation performance. For
cheetah-sparse and walker-sparse environments, agent re-
ceives a reward when it is close to the target velocity. In
hard-point-robot, agent needs to reach two randomly se-
lected goals one after another, and receives a reward when

it’s close enough to the goals. We compare CCM with state-
of-the-art Meta-RL approach PEARL, and we further mod-
ify it with a contrastive context encoder for a fair compari-
son. We further consider MAML (Finn, Abbeel, and Levine
2017) and ProMP (Rothfuss et al. 2019), which adapt with
on-policy methods. We also compare to varibad (Zintgraf
et al. 2020), which can be viewed as a stable version of
RL2 (Duan et al. 2016).

As shown in Figure 4, CCM achieves better perfor-
mance than prior Meta-RL algorithms in both final returns
and learning speed in such complex sparse-reward environ-
ments. Within relatively small number of environment in-
teractions, on policy methods MAML, varibad and ProMP
struggle to learn effective policies on these complex envi-
ronment while off-policy context-based methods CCM and
PEARL-CL generally achieves higher performance.

As the only difference between CCM and PEARL-CL
here is whether to use the proposed extra exploration pol-
icy, we can conclude that CCM’s information-gain-based ex-
ploration strategy enables fast adaptation by collecting more
informative experience and further improving the quality of
context when carrying out execution policies. Note that dur-
ing training phases, trajectories collected by the exploration
agent are used for updating the context encoder and the exe-
cution policy as well. As shown in experimental results, this
may lead to faster training speed of context encoder and exe-
cution policy because of the more informative replay buffer.

Figure 5: Influence of the regularization term

Influence of the Regularization Term
We perform ablation experiments in order to investigate the
influence of the regularization term in the objective func-
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tion which reflects the change in similarity score with all
the tasks in embedding space (the second term in (14)). We
compare against CCM using intrinsic reward without the
regularization term on in-distribution version of hard-point-
robot. The results are shown in Figure 5. The regulariza-
tion term improves CCM’s performance and we assume that
without this term the exploration agent may try to collect
transitions that the similarity score with all the tasks in em-
bedding space increases as well, which will result in a noisy
updating signal. Due to space limit, we put other ablation
experiments in the appendix.

Visualization for Context
Finally, we visualize CCM’s learned context during adapta-
tion phases via t-SNE (Maaten and Hinton 2008) and com-
pare with PEARL. We run the learned policies on ten ran-
domly sampled test tasks multiple times to collect trajec-
tories. Further, we encode the collected trajectories into la-
tent context in embedding space with the learned context
encoder and visualize via t-SNE in Figure 6. We find that
the latent context generated by CCM from the same tasks
is close together in embedding space while maintains clear
boundaries between different tasks. In contrast, the latent
context generated by PEARL shows globally messy clus-
tering results with only a few reasonable patterns in local
region. This indicates that CCM extracts high-quality (i.e.
compact and sufficient) task-specific information from the
environment compared with PEARL. As a result, the policy
conditioned on the high-quality latent context is more likely
to get a higher return on those meta-testing tasks, which is
consistent to our prior empirical results.

Figure 6: Visualization of context in embedding space. Dif-
ferent color represents context from different tasks.

Related Work
Contrastive Learning
Contrastive learning has recently achieved great suc-
cess in learning representations for image or sequential
data (van den Oord, Li, and Vinyals 2018; Hénaff et al. 2019;
He et al. 2020; Chen et al. 2020). In RL, it has been used to
extract reward signals in latent space (Sermanet et al. 2018;
Dwibedi et al. 2018), or used as an auxiliary task to study
representations for high-dimensional data (Srinivas, Laskin,
and Abbeel 2020; Anand et al. 2019). Prior work (Srinivas,
Laskin, and Abbeel 2020; Hénaff et al. 2019) has shown var-
ious methods of generating positive and negative pairs for

image-based input data. The standard approach is to create
multiple views of each datapoint like random crops and data
augmentations (Wu et al. 2018; Chen et al. 2020; He et al.
2020). However, in this work we focus on low dimensional
input data and leverage natural discrimination inside the tra-
jectories of different tasks to generate positive and nega-
tive data. The selection of contrastive loss function is also
various and the most competitive one is InfoNCE (van den
Oord, Li, and Vinyals 2018). The motivation behind con-
trastive loss is the InfoMax principle (Linsker 1988), which
can be interpreted as maximizing the mutual information
between two views of data. The relationships between In-
foNCE loss and mutual information is conprehensively ex-
plained in (Poole et al. 2019).

Meta-Reinforcement Learning

Meta-RL extends the framework of meta-learning (Thrun
and Pratt 1998; Naik and Mammone 1992) to the reinforce-
ment learning setting. We here consider off-policy context-
based Meta-RL (Rakelly et al. 2019; Fu et al. 2019; Fakoor
et al. 2020). Rakelly et al. (2019) propose PEARL that
adapts to a new environment by inferring latent context vari-
ables from a small number of trajectories. Lee et al. (2020)
learn a global model that generalizes across tasks by train-
ing a latent context to capture the local dynamics. In con-
trast, our approach directly focuses on the context itself,
which motivates an algorithm to improve the quality of la-
tent context. On the other hand, Some recent work like
VariBAD (Zintgraf et al. 2020) focuses on-policy context-
based Meta-RL methods.

Some prior research has proposed to explore to ob-
tain the most informative trajectories in Meta-RL (Rakelly
et al. 2019; Rothfuss et al. 2019; Gupta et al. 2018).
The common idea behind these approaches is Thompson-
sampling (Thompson 1933). However, this kind of poste-
rior sampling is conditioned on learned execution policy
which may lead to the exploration behavior only limited
to the learned tasks. In contrast, we theoretically obtain a
lower bound estimation of the exploration objective, based
on which a separate exploration agent is trained.

Conclusion
In this paper, we propose that constructing a powerful con-
text for Meta-RL involves two problems: 1) How to collect
informative trajectories of which the corresponding context
reflects the specification of tasks? 2) How to train a com-
pact and sufficient encoder that can embed the task-specific
information contained in prior trajectories? We then pro-
pose CCM which tackles them respectively. Firstly, CCM
focuses on the underlying structure behind collected transi-
tions and trains the encoder by leveraging contrastive learn-
ing. CCM further learns a separate exploration agent with an
information-theoretical objective that aims to maximize the
improvement of inference after collecting new transitions.
The empirical results on several complex simulated control
tasks show that CCM outperforms state-of-the-art Meta-RL
methods by addressing the aforementioned problems.
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Hénaff, O. J.; Srinivas, A.; Fauw, J. D.; Razavi, A.; Do-
ersch, C.; Eslami, S. M. A.; and van den Oord, A. 2019.
Data-Efficient Image Recognition with Contrastive Predic-
tive Coding. CoRR abs/1905.09272.

Lee, K.; Seo, Y.; Lee, S.; Lee, H.; and Shin, J. 2020. Context-
aware Dynamics Model for Generalization in Model-Based
Reinforcement Learning. CoRR abs/2005.06800.

Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2016. Continuous con-
trol with deep reinforcement learning. In 4th International
Conference on Learning Representations, ICLR 2016.

Linsker, R. 1988. Self-Organization in a Perceptual Net-
work. Computer 21(3): 105–117.

Liu, E. Z.; Raghunathan, A.; Liang, P.; and Finn, C.
2020. Explore then Execute: Adapting without Re-
wards via Factorized Meta-Reinforcement Learning. CoRR
abs/2008.02790.

Maaten, L. V. D.; and Hinton, G. E. 2008. Visualizing Data
using t-SNE. Journal of Machine Learning Research 9:
2579–2605.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M. A.; Fidje-
land, A.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540): 529–533.
doi:10.1038/nature14236.

Naik, D. K.; and Mammone, R. 1992. Meta-neural networks
that learn by learning. [Proceedings 1992] IJCNN Inter-
national Joint Conference on Neural Networks 1: 437–442
vol.1.

Pathak, D.; Agrawal, P.; Efros, A. A.; and Darrell, T. 2017.
Curiosity-driven Exploration by Self-supervised Prediction.
In Precup, D.; and Teh, Y. W., eds., Proceedings of the
34th International Conference on Machine Learning, ICML
2017, volume 70 of Proceedings of Machine Learning Re-
search, 2778–2787. PMLR.

Poole, B.; Ozair, S.; van den Oord, A.; Alemi, A.; and
Tucker, G. 2019. On Variational Bounds of Mutual Infor-
mation. In Chaudhuri, K.; and Salakhutdinov, R., eds., Pro-
ceedings of the 36th International Conference on Machine
Learning, ICML 2019, volume 97 of Proceedings of Ma-
chine Learning Research, 5171–5180. PMLR.

Rakelly, K.; Zhou, A.; Finn, C.; Levine, S.; and Quillen, D.
2019. Efficient Off-Policy Meta-Reinforcement Learning
via Probabilistic Context Variables. In Proceedings of the
36th International Conference on Machine Learning, ICML
2019, 5331–5340.

Rothfuss, J.; Lee, D.; Clavera, I.; Asfour, T.; and Abbeel,
P. 2019. ProMP: Proximal Meta-Policy Search. In 7th In-
ternational Conference on Learning Representations, ICLR
2019.

Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M. I.; and
Moritz, P. 2015. Trust Region Policy Optimization. In Pro-

7464



ceedings of the 32nd International Conference on Machine
Learning, ICML 2015, 1889–1897.
Sermanet, P.; Lynch, C.; Chebotar, Y.; Hsu, J.; Jang, E.;
Schaal, S.; and Levine, S. 2018. Time-Contrastive Net-
works: Self-Supervised Learning from Video. In 2018
IEEE International Conference on Robotics and Automa-
tion, ICRA 2018, 1134–1141. IEEE.
Srinivas, A.; Laskin, M.; and Abbeel, P. 2020. CURL: Con-
trastive Unsupervised Representations for Reinforcement
Learning. CoRR abs/2004.04136.
Thompson, W. 1933. on the likelihood that one unknown
probability exceeds another in view of the evidence of two
samples. Biometrika 25: 285–294.
Thrun, S.; and Pratt, L. Y. 1998. Learning to Learn. In
Springer US.
Todorov, E.; Erez, T.; and Tassa, Y. 2012. MuJoCo: A
physics engine for model-based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems,
IROS 2012, 5026–5033.
van den Oord, A.; Li, Y.; and Vinyals, O. 2018. Represen-
tation Learning with Contrastive Predictive Coding. CoRR
abs/1807.03748.
Wang, J. X.; Kurth-Nelson, Z.; Tirumala, D.; Soyer, H.;
Leibo, J. Z.; Munos, R.; Blundell, C.; Kumaran, D.; and
Botvinick, M. 2016. Learning to reinforcement learn. CoRR
abs/1611.05763.
Wu, Z.; Xiong, Y.; Yu, S.; and Lin, D. 2018. Unsupervised
Feature Learning via Non-parametric Instance Discrimina-
tion. 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition 3733–3742.
Zhang, J.; Wang, J.; Hu, H.; Chen, Y.; Fan, C.; and Zhang, C.
2020. Learn to Effectively Explore in Context-Based Meta-
RL. CoRR abs/2006.08170.
Zhou, W.; Pinto, L.; and Gupta, A. 2019. Environment Prob-
ing Interaction Policies. In 7th International Conference on
Learning Representations, ICLR 2019. OpenReview.net.
Zintgraf, L. M.; Shiarlis, K.; Igl, M.; Schulze, S.; Gal,
Y.; Hofmann, K.; and Whiteson, S. 2020. VariBAD: A
Very Good Method for Bayes-Adaptive Deep RL via Meta-
Learning. In 8th International Conference on Learning Rep-
resentations, ICLR 2020. OpenReview.net.

7465


