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Abstract

Although few-shot learning and one-class classification
(OCC), i.e., learning a binary classifier with data from only
one class, have been separately well studied, their intersection
remains rather unexplored. Our work addresses the few-shot
OCC problem and presents a method to modify the episodic
data sampling strategy of the model-agnostic meta-learning
(MAML) algorithm to learn a model initialization particu-
larly suited for learning few-shot OCC tasks. This is done by
explicitly optimizing for an initialization which only requires
few gradient steps with one-class minibatches to yield a per-
formance increase on class-balanced test data. We provide
a theoretical analysis that explains why our approach works
in the few-shot OCC scenario, while other meta-learning al-
gorithms fail, including the unmodified MAML. Our exper-
iments on eight datasets from the image and time-series do-
mains show that our method leads to better results than classi-
cal OCC and few-shot classification approaches, and demon-
strate the ability to learn unseen tasks from only few nor-
mal class samples. Moreover, we successfully train anomaly
detectors for a real-world application on sensor readings
recorded during industrial manufacturing of workpieces with
a CNC milling machine, by using few normal examples. Fi-
nally, we empirically demonstrate that the proposed data sam-
pling technique increases the performance of more recent
meta-learning algorithms in few-shot OCC and yields state-
of-the-art results in this problem setting.

Introduction
The anomaly detection (AD) task (Chandola, Banerjee, and
Kumar 2009; Aggarwal 2015) consists in differentiating
between normal and abnormal data samples. AD applica-
tions are common in various domains that involve differ-
ent data types, including medical diagnosis (Prastawa et al.
2004), cybersecurity (Garcia-Teodoro et al. 2009) and qual-
ity control in industrial manufacturing (Scime and Beuth
2018). Due to the rarity of anomalies, the data underlying
AD problems exhibits high class-imbalance. Therefore, AD
problems are usually formulated as one-class classification
(OCC) problems (Moya, Koch, and Hostetler 1993), where
either only a few or no anomalous data samples are available
for training the model (Khan and Madden 2014). While most
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of the developed approaches (Khan and Madden 2014) re-
quire a substantial amount of normal data to yield good gen-
eralization, in many real-world applications, e.g., in indus-
trial manufacturing, only small datasets are available. Data
scarcity can have many reasons: data collection itself might
be expensive, e.g., in healthcare, or happens only gradually,
such as in a cold-start situation, or the domain expertise re-
quired for annotation is scarce and expensive.

To enable learning from few examples, viable approaches
(Lake et al. 2011; Ravi and Larochelle 2017; Finn, Abbeel,
and Levine 2017) relying on meta-learning (Schmidhuber
1987) have been developed. However, they rely on having
examples from each of the task’s classes, which prevents
their application to OCC tasks. While recent meta-learning
approaches focused on the few-shot learning problem, i.e.,
learning to learn with few examples, we extend their use to
the OCC problem, i.e., learning to learn with examples from
only one class. To the best of our knowledge, the few-shot
OCC (FS-OCC) problem has only been addressed in (Koz-
erawski and Turk 2018; Kruspe 2019) in the image domain.

Our contribution is fourfold: Firstly, we show that classi-
cal OCC approaches fail in the few-shot data regime. Sec-
ondly, we provide a theoretical analysis showing that clas-
sical gradient-based meta-learning algorithms do not yield
parameter initializations suitable for OCC and that second-
order derivatives are needed to optimize for such initializa-
tions. Thirdly, we propose a simple episode generation strat-
egy to adapt any meta-learning algorithm that uses a bi-level
optimization scheme to FS-OCC. Hereby, we first focus on
modifying the model-agnostic meta-learning (MAML) al-
gorithm (Finn, Abbeel, and Levine 2017) to learn initializa-
tions useful for the FS-OCC scenario. The resulting One-
Class MAML (OC-MAML) maximizes the inner product
of loss gradients computed on one-class and class-balanced
minibatches, hence maximizing the cosine similarity be-
tween these gradients. Finally, we demonstrate that the pro-
posed data sampling technique generalizes beyond MAML
to other metalearning algorithms, e.g., MetaOptNet (Lee
et al. 2019) and Meta-SGD (Li et al. 2017), by successfully
adapting them to the understudied FS-OCC.

We empirically validate our approach on eight datasets
from the image and time-series domains, and demonstrate its
robustness and maturity for real-world applications by suc-
cessfully testing it on a real-world dataset of sensor read-
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ings recorded during manufacturing of metal workpieces
with a CNC milling machine. Furthermore, we outperform
the concurrent work One-Way ProtoNets (Kruspe 2019) and
achieve state-of-the-art performance in FS-OCC.

Approach
The primary contribution of our work is to propose a way to
adapt meta-learning algorithms designed for class-balanced
FS learning to the underexplored FS-OCC problem. In this
section, as a first demonstration that meta-learning is a vi-
able approach to this challenging learning scenario, we fo-
cus on investigating it on the MAML algorithm. MAML was
shown to be a universal learning algorithm approximator (?),
i.e., it could approximate a learning algorithm tailored for
FS-OCC. Later, we validate our methods on further meta-
learning algorithms (Table 4).

Problem Statement
Our goal is to learn a one-class classification task using
only a few examples. In the following, we first discuss the
unique challenges of the few-shot one-class classification
(FS-OCC) problem. Subsequently, we discuss the formula-
tion of the FS-OCC problem as a meta-learning problem.

To perform one-class classification, i.e., differentiate be-
tween in-class and out-of-class examples using only in-class
data, approximating a generalized decision boundary for the
normal class is necessary. Learning such a class decision
boundary in the few-shot regime can be especially challeng-
ing for the following reasons. On the one hand, if the model
overfits to the few available datapoints, the class decision
boundary would be too restrictive, which would prevent gen-
eralization to unseen examples. As a result, some normal
samples would be predicted as anomalies. On the other hand,
if the model overfits to the majority class, i.e., predicting
almost everything as normal, the class decision boundary
would overgeneralize, and out-of-class (anomalous) exam-
ples would not be detected.

In the FS classification context, N -way K-shot learning
tasks are used to test the learning procedure yielded by the
meta-learning algorithm. An N -way K-shot classification
task includes K examples from each of the N classes that
are used for learning this task, after which the trained clas-
sifier is tested on a disjoint set of data (Vinyals et al. 2016).
When the target task is an OCC task, only examples from
one class are available for training, which can be viewed as a
1-way K-shot classification task. To align with the anomaly
detection problem, the available examples must belong to
the normal (majority) class, which usually has a lower vari-
ance than the anomalous (minority) class. This problem for-
mulation is a prototype for a practical use case where an
application-specific anomaly detector is needed and only
few normal examples are available.

Model-Agnostic Meta-Learning
MAML is a meta-learning algorithm that we focus on adapt-
ing to the FS-OCC problem before validating our approach
on further meta-learning algorithms (Table 4). MAML
learns a model initialization that enables quick adaptation to

unseen tasks using only few data samples. For that, it trains
a model explicitly for few-shot learning on tasks Ti coming
from the same task distribution p(T ) as the unseen target
task Ttest. In order to assess the model’s adaptation ability
to unseen tasks, the available tasks are divided into mutually
disjoint task sets: one for meta-training Str, one for meta-
validation Sval and one for meta-testing Stest. Each task Ti
is divided into two disjoint sets of data, each of which is used
for a particular MAML operation:Dtr is used for adaptation
and Dval is used for validation, i.e., evaluating the adapta-
tion. The adaptation of a model fθ to a task Ti consists in
taking few gradient descent steps using few datapoints sam-
pled from Dtr yielding θ

′

i.
A good measure for the suitability of the initialization pa-

rameters θ for few-shot adaptation to a considered task Ti is
the loss LvalTi

(fθ′i
), which is computed on the validation set

Dval
i using the task-specific adapted model fθ′i . To optimize

for few-shot learning, the model parameters θ are updated by
minimizing the aforementioned loss across all meta-training
tasks. This meta-update, can be expressed as:

θ ← θ − β∇θ
∑

Ti∼p(T )

LvalTi
(fθ′i

). (1)

Here β is the learning rate used for the meta-update. To
avoid overfitting to the meta-training tasks, model selection
is done via validation using tasks from Sval. At meta-test
time, the FS adaptation to unseen tasks from Stest is eval-
uated. We note that, in the case of few-shot classification,
K datapoints from each class are sampled from Dtr for the
adaptation, during training and testing.

One-Class Model-Agnostic Meta-Learning
Algorithm. MAML learns a model initialization suitable
for class-balanced (CB) FS classification. To adapt it to FS-
OCC, we aim to find a model initialization from which tak-
ing few gradients steps with a few one-class (OC) exam-
ples yields the same effect as doing so with a CB mini-
batch. We achieve this by adequately modifying the objec-
tive of the inner loop updates of MAML. Concretely, this
is done by modifying the data sampling technique during
meta-training, so that the class-imbalance rate (CIR) of the
inner loop minibatches matches the one of the test task.

MAML optimizes explicitly for FS adaptation by creat-
ing and using auxiliary tasks that have the same character-
istic as the target tasks, in this case tasks that include only
few datapoints for training. It does so by reducing the size
of the batch used for the adaptation (via the hyperparameter
K (?)). Analogously, OC-MAML trains explicitly for quick
adaptation to OCC tasks by creating OCC auxiliary tasks
for meta-training. OCC problems are binary classification
scenarios where only few or no minority class samples are
available. In order to address both of theses cases, we intro-
duce a hyperparameter (c) which sets the CIR of the batch
sampled for the inner updates. Hereby, c gives the percent-
age of the samples belonging to the minority (anomalous)
class w.r.t. the total number of samples, e.g., setting c = 0%
means only majority class samples are contained in the data
batch. We focus on this extreme case, where no anomalous
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Algorithm 1 Meta-training of OC-MAML

Require: Str: Set of meta-training tasks
Require: α, β: Learning rates
Require: K,Q: Batch size for the inner and outer updates
Require: c: CIR for the inner-updates

1: Randomly initialize θ
2: while not done do
3: Sample batch of tasks Ti from Str; Ti = {Dtr, Dval}
4: for each sampled Ti do
5: SampleK examplesB fromDtr such that CIR= c

6: Initialize θ
′

i = θ
7: for number of adaptation steps do
8: Compute adapted parameters with gradient de-

scent using B: θ
′

i = θ
′

i − α∇θ′iL
tr
Ti
(fθ′i

)

9: end for
10: Sample Q examples B

′
from Dval w/ CIR= 50%

11: Compute outer loop loss LvalTi
(fθ′i

) using B
′

12: end for
13: Update θ: θ ← θ − β∇θ

∑
Ti
LvalTi

(fθ′i
)

14: end while
15: return meta-learned parameters θ

samples are available for learning. In order to evaluate the
performance of the adapted model on both classes, we use
a class-balanced validation batch B

′
for the meta-update.

This way, we maximize the performance of the model in rec-
ognizing both classes after having seen examples from only
one class during adaptation. The OC-MAML meta-training
is described in Algorithm 1, and the cross-entropy loss was
used for L. At test time, the adaptation to an unseen task is
done by applying steps 5-9 in Algorithm 1, starting from the
meta-learned initialization.

We note that the proposed episode sampling strategy, i.e.,
training on a one-class batch then using the loss computed
on a class-balanced validation batch to update the meta-
learning strategy (e.g., model initialization), is applicable to
any meta-learning algorithm that incorporates a bi-level op-
timization scheme (examples in Table 4).

Figure 1: Adaptation to task Ts from the model initializa-
tions yielded by OC-MAML and MAML

Using OCC tasks for adaptation during meta-training fa-
vors model initializations that enable a quick adaptation to

OCC tasks over those that require CB tasks. The schematic
visualization in Figure 1 shows the difference between
the model initializations meta-learned by MAML and OC-
MAML. Hereby, we consider the adaptation to an unseen
binary classification task Ts. θ∗s,CB denotes a local opti-
mum of Ts. The parameter initializations yielded by OC-
MAML and MAML are denoted by θOCMAML and θMAML re-
spectively. When starting from the OC-MAML parameter
initialization, taking a gradient step using an OC support
set Ds,OC (gradient direction denoted by ∇Ls,OC ), yields
a performance increase on Ts (by moving closer to the local
optimum). In contrast, when starting from the parameter ini-
tialization reached by MAML, a class-balanced support set
Ds,CB (gradient direction denoted by ∇Ls,CB) is required
for a performance increase on Ts.

Theoretical Analysis: Why Does OC-MAML Work ? In
this section we give a theoretical explanation of why OC-
MAML works and why it is a more suitable approach than
MAML for the FS-OCC setting. To address the latter prob-
lem, we aim to find a model parameter initialization, from
which adaptation using few data examples from only one
class yields a good performance on both classes, i.e., good
generalization to the class-balanced task. We additionally
demonstrate that adapting first-order meta-learning algo-
rithms, e.g., First-Order MAML (FOMAML) (Finn, Abbeel,
and Levine 2017) and Reptile (Nichol and Schulman 2018),
to the OCC scenario as done in OC-MAML, does not yield
initializations with the desired characteristics.

By using a Taylor series expansion the gradient used in the
MAML update can be approximated to Equation 2 (Nichol
and Schulman 2018), where the case with only 2 gradient-
based updates is considered, i.e., one adaptation update on
a minibatch (1), the support set including K examples from
Dtr, and one meta-update on a minibatch (2), the query set
including Q examples from Dval. We use the notation from
(Nichol and Schulman 2018), where gi and Hi denote the
gradient and Hessian computed on the ith minibatch at the
initial parameter point φ1, and α the learning rate. Here it is
assumed that the same learning rate is used for the adapta-
tion and meta-updates.

gMAML = g2 − αH2g1 − αH1g2 +O(α2)

= g2 − α
∂(g1.g2)

∂φ1
+O(α2)

(2)

Equation 2 shows that MAML maximizes the inner product
of the gradients computed on different minibatches (Nichol
and Schulman 2018). Under the assumption of local linear-
ity of the loss function (which is the case around small op-
timization steps), and when gradients from different mini-
batches have a positive inner product, taking a gradient step
using one minibatch yields a performance increase on the
other (Nichol and Schulman 2018). Maximizing the inner
product leads to a decrease in the angle between the gradi-
ent vectors and thus to an increase in their cosine similarity.
Hence, MAML optimizes for an initialization where gradi-
ents computed on small minibatches have similar directions,
which enables few-shot learning.

Equation 2 is independent of the data strategy adopted and
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hence holds also for OC-MAML. However, in OC-MAML
the minibatches 1 and 2 have different class-imbalance rates
(CIRs), since the first minibatch includes examples from
only one class and the second minibatch is class-balanced.
So, it optimizes for increasing the inner product between a
gradient computed on a one-class minibatch and a gradient
computed on class-balanced data. Thus, OC-MAML opti-
mizes for an initialization where gradients computed on one-
class data have similar directions, i.e., a high inner product
and therefore a high cosine similarity, to gradients computed
on class-balanced data (Figure 1). Consequently, taking one
(or few) gradient step(s) with one-class minibatch(es) from
such a parameter initialization results in a performance in-
crease on class-balanced data. This enables one-class clas-
sification. In contrast, MAML uses only class-balanced data
during meta-training, which leads to a parameter initializa-
tion that requires class-balanced minibatches to yield the
same effect. When adapting to OCC tasks, however, only ex-
amples from one class are available. We conclude, therefore,
that the proposed data sampling technique modifies MAML
to learn parameter initializations that are more suitable for
adapting to OCC tasks.

A natural question is whether applying the same data sam-
pling method to other gradient-based meta-learning algo-
rithms would yield the same desired effect. We investigate
this for First-Order MAML (FOMAML), a first-order ap-
proximation of MAML that ignores the second derivative
terms and Reptile (Nichol and Schulman 2018), which is
also a first-order meta-learning algorithm that learns an ini-
tialization that enables fast adaptation to test tasks using few
examples from each class. We refer to the versions of these
algorithms adapted to the FS-OCC setting as OC-FOMAML
and OC-Reptile. We note that for OC-Reptile, the firstN−1
batches contain examples from only one class and the last
(N th) batch is class-balanced. The approximated FOMAML
and Reptile gradients are given by Equations 3 and 4 (Nichol
and Schulman 2018), respectively.

gFOMAML = g2 − αH2g1 +O(α2) (3)

gReptile = g1 + g2 − αH2g1 +O(α2) (4)

We note that these equations hold also for OC-FOMAML
and OC-Reptile. By taking the expectation over minibatch
sampling Eτ,1,2 for a task τ and two class-balanced mini-
batches 1 and 2, it is established that Eτ,1,2[H1g2] =

Eτ,1,2[H2g1] (Nichol and Schulman 2018). Averaging the
two sides of the latter equation results in

Eτ,1,2[H2g1] =
1

2
Eτ,1,2[H1g2 +H2g1]

=
1

2
Eτ,1,2[

∂(g1.g2)

∂φ1
].

(5)

Equation 5 shows that, FOMAML and Reptile, like
MAML, in expectation optimize for increasing the inner
product of the gradients computed on different minibatches
with the same CIR. However, when the minibatches 1 and
2 have different CIRs, which is the case for OC-FOMAML

and OC-Reptile, Eτ,1,2[H1g2] 6= Eτ,1,2[H2g1] and there-
fore Eτ,1,2[H2g1] 6= 1

2Eτ,1,2[
∂(g1.g2)
∂φ1

]. Hence, despite us-
ing the same data sampling method as OC-MAML, OC-
FOMAML and OC-Reptile do not explicitly optimize for
increasing the inner product, and therefore the cosine simi-
larity, between gradients computed on one-class and class-
balanced minibatches. The second derivative term H1g2 is,
thus, necessary to optimize for an initialization from which
performance increase on a class-balanced task is yielded by
taking few gradient steps using one class data.

Related Works
Our proposed method addresses the FS-OCC problem, i.e.,
solving binary classification problems using only few data-
points from only one class. To the best of our knowledge,
this problem was only addressed in (Kozerawski and Turk
2018) and (Kruspe 2019), and exclusively in the image data
domain. In (Kozerawski and Turk 2018) a feed-forward neu-
ral network is trained on ILSVRC 2012 to learn a transfor-
mation from feature vectors, extracted by a CNN pre-trained
on ILSVRC 2014 (Russakovsky et al. 2015), to SVM deci-
sion boundaries. At test time, an SVM boundary is inferred
by using one image of one class from the test task which is
then used to classify the test examples. This approach is spe-
cific to the image domain since it relies on the availability of
very large, well annotated datasets and uses data augmenta-
tion techniques specific to the image domain, e.g., mirroring.
Meta-learning algorithms offer a more general approach to
FS-OCC since they are data-domain-agnostic, and do not re-
quire a pre-trained feature extraction model, which may not
be available for some data domains, e.g., sensor readings.

The concurrent work One-Way ProtoNets (Kruspe 2019)
adapts ProtoNets (Snell, Swersky, and Zemel 2017) to ad-
dress FS-OCC by using 0 as a prototype for the null class,
i.e., non-normal examples, since the embedding space is 0-
centered due to using batch normalization (BN) (Ioffe and
Szegedy 2015) as the last layer. Given the embedding of a
query example, its distance to the normal-class prototype is
compared to its norm. This method constraints the model
architecture by requiring the usage of BN layers. We pro-
pose a model-architecture agnostic data sampling technique
to adapt meta-learning algorithms to the FS-OCC problem.
The resulting meta-learning algorithms substantially outper-
form One-Way ProtoNets (Kruspe 2019) (Table 4).

Class-Balanced Few-Shot Classification
Meta-learning approaches for FS classification approaches
may be broadly categorized in 2 categories. Optimization-
based approaches aim to learn an optimization algorithm
(Ravi and Larochelle 2017) and/or a parameter initializa-
tion (Finn, Abbeel, and Levine 2017; Nichol and Schulman
2018), learning rates (Li et al. 2017), an embedding network
(Lee et al. 2019) that are tailored for FS learning. Metric-
based techniques learn a metric space where samples be-
longing to the same class are close together, which facilitates
few-shot classification (?Vinyals et al. 2016; Snell, Swersky,
and Zemel 2017; Sung et al. 2018; Oreshkin, López, and
Lacoste 2018; Lee et al. 2019). Hybrid methods (?Lee and
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Choi 2018) combine the advantages of both categories. Prior
meta-learning approaches to FS classification addressed the
N-way K-shot classification problem described in the prob-
lem statement section, i.e they require examples from each
class of the test tasks. We propose a method to adapt meta-
learning algorithm to the 1-way K-shot scenario, where only
few examples from one class are available.

One-Class Classification
Classical OCC approaches rely on SVMs (Schölkopf et al.
2001; Tax and Duin 2004) to distinguish between nor-
mal and abnormal samples. Hybrid approaches combining
SVM-based techniques with feature extractors were devel-
oped to compress the input data in lower dimensional rep-
resentations (Xu et al. 2015; Erfani et al. 2016; Andrews
et al. 2016). Fully deep methods that jointly perform the fea-
ture extraction step and the OCC step have also been devel-
oped (Ruff et al. 2018). Another category of approaches to
OCC uses the reconstruction error of antoencoders (Hinton
and Salakhutdinov 2006) trained with only normal exam-
ples as an anomaly score (Hawkins et al. 2002; An and Cho
2015; Chen et al. 2017). Yet, determining a decision thresh-
old for such an anomaly score requires labeled data from
both classes. Other techniques rely on GANs (Goodfellow
et al. 2014) to perform OCC (Schlegl et al. 2017; Ravan-
bakhsh et al. 2017; Sabokrou et al. 2018). The aforemen-
tioned hybrid and fully deep approaches require a consider-
able amount of data from the OCC task to train the typically
highly parametrized feature extractors specific to the normal
class, and hence fail in the scarce data regime (Table 1).

Experimental Evaluation
The conducted experiments 1 use some modules of the
pyMeta library (Spigler 2019) and aim to address the fol-
lowing key questions: (a) How do meta-learning-based ap-
proaches using the proposed episode sampling technique
perform compared to classical OCC approaches in the few-
shot (FS) data regime? (b) Do the findings of our theoretical
analysis about the differences between the MAML and OC-
MAML initializations hold in practice? (c) Does the pro-
posed episode sampling strategy to adapt MAML to the FS-
OCC setting yield the expected performance increase and
does this hold for further meta-learning algorithms?

Baselines and Datasets
We compare OC-MAML, with the classical OCC ap-
proaches One-Class SVM (OC-SVM) (Schölkopf et al.
2001) and Isolation Forest (IF) (Liu, Ting, and Zhou 2008)
(Question (a)), which we fit to raw features and embeddings
of the support set of the test task. Here, we explore two
types of embedding networks which are trained on the meta-
training tasks as follows: one is trained in a Multi-Task-
Learning (MTL) (Caruana 1997) setting using one-class-vs-
all tasks and the other trained using the ”Finetune” baseline
(FB) (Triantafillou et al. 2019). i.e., using multi-class classi-
fication on all classes available.

1Code available under https://github.com/AhmedFrikha/Few-
Shot-One-Class-Classification-via-Meta-Learning

Moreover, we compare first-order (FOMAML and Rep-
tile) and second-order (MAML) class-balanced meta-
learning algorithms to their adapted versions to the OCC
scenario, i.e., OC-FOMAML and OC-Reptile and OC-
MAML (Question (b)). Finally, we compare MetaOptNet
(Lee et al. 2019) and meta-SGD (Li et al. 2017) to their one-
class counterparts that use our sampling strategy (Question
(c)). We conducted a hyperparameter search for each base-
line separately and used the best performing setting for our
experiments. We evaluate our approach on 8 datasets from
the image and time-series data domains, including two syn-
thetic time-series (STS) datasets that we propose as a bench-
mark for FS-OCC on time-series, and a real-world sen-
sor readings dataset of CNC Milling Machine Data (CNC-
MMD). To adapt the image datasets to the OCC scenario,
we create binary classification tasks, where the normal class
is one class of the initial dataset and the anomalous class
contains examples from multiple other classes.

Results and Discussion
In this section, we first discuss the performance of classi-
cal OCC approaches and the meta-learning algorithms in the
FS-OCC problem setting, as well as the impact of the pro-
posed data sampling strategy. Subsequently, we demonstrate
the maturity of our approach on a real-world dataset. There-
after, we further confirm our theoretical analysis with empir-
ical results of cosine similarity between gradients. Finally,
we show the generalizability of our sampling technique to
further meta-learning algorithms beyond MAML, and com-
pare the resulting algorithms to One-Way ProtoNets.

Table 1 shows the results averaged over 5 seeds of the
classical OCC approaches (Top) and the meta-learning ap-
proaches, namely MAML, FOMAML, Reptile and their
one-class versions (Bottom), on 3 image datasets and on the
STS-Sawtooth dataset. For the meta-learning approaches,
models were trained with and without BN layers and the re-
sults of the best architecture were reported for each dataset.
The results of all the methods on the other 8 MT-MNIST
task-combinations and on the STS-Sine dataset, are consis-
tent with the results in Table 1.

While classical OCC methods yield chance performance
in almost all settings, OC-MAML achieves very high re-
sults, consistently outperforming them across all datasets
and on both support set sizes. Likewise, we observe that OC-
MAML consistently outperforms the class-balanced and
one-class versions of the meta-learning algorithms in all the
settings, showing the benefits of our modification to MAML.

Moreover, OC-FOMAML and OC-Reptile yield poor re-
sults, especially without BN, confirming our theoretical
findings that adapting first-order meta-learning algorithms to
the OCC setting does not yield the desired effect. We found
that using BN yields a substantial performance increase on
the 3 image datasets and explain that by the gradient orthog-
onalizing effect of BN (Suteu and Guo 2019). In fact, gra-
dient orthogonalization reduces interference between gradi-
ents computed on one-class and class-balanced batches. OC-
MAML achieves high performance even without BN, as it
reduces interference between these gradients by the means
of its optimization objective (see theoretical analysis).
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Adaptation set size K = 2 K = 10
Model \ Dataset MIN Omn MNIST Saw MIN Omn MNIST Saw
FB 50.0 50.6 56.5 50.0 50.0 51.2 50.3 50.0
MTL 50.0 50.0 49.7 50.0 50.2 50.0 45.3 50.0
OC-SVM 50.2 50.6 51.2 50.1 51.2 50.4 53.6 50.5
IF 50.0 50.0 50.0 50.0 50.7 50.0 50.9 49.9
FB + OCSVM 50.0 50.0 55.5 50.4 51.4 58.0 86.6 58.3
FB + IF 50.0 50.0 50.0 50.0 50.0 50.0 76.1 51.5
MTL + OCSVM 50.0 50.0 50.0 50.0 50.0 50.1 53.8 86.9
MTL + IF 50.0 50.0 50.0 50.0 50.0 55.7 84.2 64.0
Reptile 51.6 56.3 71.1 69.1 57.1 76.3 89.8 81.6
FOMAML 53.3 78.8 80.7 75.1 59.5 93.7 91.1 80.2
MAML 62.3 91.4 85.5 81.1 65.5 96.3 92.2 86
OC-Reptile 51.9 52.1 51.3 51.6 53.2 51 51.4 53.2
OC-FOMAML 55.7 74.7 79.1 58.6 66.1 87.5 91.8 73.2
OC-MAML (ours) 69.1 96.6 88 96.6 76.2 97.6 95.1 95.7

Table 1: Accuracies (in %) computed on the class-balanced test sets of the test tasks of MiniImageNet (MIN), Omniglot (Omn),
MT-MNIST with Ttest = T0 and STS-Sawtooth (Saw).

Several previous meta-learning approaches, e.g., MAML
(Finn, Abbeel, and Levine 2017), were evaluated in a trans-
ductive setting, i.e., the model classifies the whole test set
at once which enables sharing information between test ex-
amples via BN (Nichol and Schulman 2018). In anomaly
detection applications, the CIR of the encountered test set
batches, and therefore the statistics used in BN layers, can
massively change depending on the system behavior (nor-
mal or anomalous). Hence, we evaluate all methods in a
non-transductive setting: we compute the statistics of all BN
layers using the few one-class adaptation examples and use
them for predictions on test examples. This is equivalent to
classifying each test example separately. We also use this
method during meta-training. We note that the choice of
the BN scheme heavily impacts the performance of several
meta-learning algorithms (Bronskill et al. 2020).

Validation on the CNC-Milling Real-World Dataset.
We validate OC-MAML on the industrial sensor read-
ings dataset CNC-MDD and report the results in Table 2.
We compute F1-scores for evaluation since the test sets
are class-imbalanced. Depending on the type of the target
milling operation (e.g., roughing), tasks created from differ-
ent operations from the same type are used for meta-training.
OC-MAML consistently achieves high F1-scores between
80% and 95.9% across the 6 milling processes. The high
performance on the minority class, i.e., in detecting anoma-
lous data samples, is reached by using only K = 10 non-
anomalous examples (c = 0%). These results show that OC-
MAML yielded a parameter initialization suitable for learn-
ing OCC tasks in the time-series data domain and the ma-
turity of this method for industrial real-world applications.
Due to the low number of anomalies, it is not possible to
apply MAML with the standard sampling, which would re-
quire K anomalous examples in the inner loop during meta-
training. With OC-MAML, the few anomalies available are
only used for the outer loop updates. We note that despite the

high class-imbalance in the data of the meta-training pro-
cesses, class-balanced query batches were sampled for the
outer loop updates. This can be seen as an under-sampling
of the majority class.

F1 F2 F3 F4 R1 R2

80.0% 89.6% 95.9% 93.6% 85.3% 82.6%

Table 2: OC-MAML F1-scores, averaged over 150 tasks
sampled from the test operations, on finishing (Fi) and
roughing (Rj) operations of the real-world CNC-MMD
dataset, with only K = 10 normal examples (c = 0%).

Model \ Dataset MIN Omn MNIST Saw
Reptile 0.05 0.02 0.16 0.02
FOMAML 0.13 0.14 0.31 −0.02
MAML 0.28 0.16 0.45 0.01
OC-Reptile 0.09 0.05 −0.09 0.03
OC-FOMAML 0.26 0.12 0.36 0.07
OC-MAML 0.42 0.23 0.47 0.92

Table 3: Cosine similarity between the gradients of one-class
and class-balanced minibatches averaged over test tasks of
MiniImageNet, Omniglot, MT-MNIST and STS-Sawtooth.

Cosine Similarity Analysis. We would like to directly
verify that OC-MAML maximizes the inner product, and
therefore the cosine similarity, between the gradients of one-
class and class-balanced batches of data, while the other
meta-learning baselines do not (see theoretical analysis). For
this, we use the initialization meta-learned by each algorithm
to compute the loss gradient of K normal examples and the
loss gradient of a disjoint class-balanced batch. We use the
best performing initialization for each meta-learning algo-
rithm and compute the cosine similarities using on test tasks.
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Support set size K = 2 K = 10
Model \ Dataset MIN CIFAR-FS FC100 MIN CIFAR-FS FC100
MAML 62.3 62.1 55.1 65.5 69.1 61.6
OC-MAML (ours) 69.1 70 59.9 76.2 79.1 65.5
MetaOptNet 50 56 51.2 56.6 74.8 53.3
OC-MetaOptNet (ours) 51.8 56.3 52.2 67.4 75.5 59.9
MetaSGD 65 58.4 55 73.6 71.3 61.3
OC-MetaSGD (ours) 69.6 71.4 60.3 75.8 77.8 64.3
One-Way ProtoNets (Kruspe 2019) 67 70.9 56.9 74.4 76.7 62.1

Table 4: Test accuracies (in %) computed on the class-balanced test sets of the test tasks of MiniImageNet (MIN), CIFAR-FS
and FC100 after using a one-class support set for task-specific adaptation

We report the mean cosine similarity on 3 image datasets
and one time-series dataset in Table 3. The significant dif-
ferences in the mean cosine similarity found between OC-
MAML and the other meta-learning algorithms consolidate
our theoretical findings.

Applicability to Further Meta-Learning Algorithms
and Comparison to One-Way ProtoNets. To investigate
whether the benefits of our sampling strategy generalize to
further meta-learning algorithms beyond MAML, we apply
it to MetaOptNet (Lee et al. 2019) and Meta-SGD (Li et al.
2017). Like MAML, these algorithms use a bi-level opti-
mization scheme (inner and outer loop optimization) to per-
form few-shot learning. This enables the application of our
proposed data strategy which requires two sets of data with
different CIRs to be used. We refer to the OC versions of
these algorithms as OC-MetaOptNet and OC-MetaSGD.

MetaOptNet trains a representation network to extract
feature embeddings that generalize well in the FS regime
when fed to linear classifiers, e.g., SVMs. For that, a dif-
ferentiable quadratic programming (QP) solver (Amos and
Kolter 2017) is used to fit the SVM (Lee et al. 2019) (inner
loop optimization). The loss of the fitted SVM on a held-out
validation set of the same task is used to update the repre-
sentation network (outer loop optimization). Since solving
a binary SVM requires examples from both classes and our
sampling strategy provides one-class examples in the inner
loop, we use an OC-SVM (Schölkopf et al. 2000) classifier
instead. The embeddings extracted for few normal examples
by the representation network are used to fit the OC-SVM,
which is then used to classify the class-balanced validation
set and to update the embedding network, analogously to
the class-balanced scenario. To fit the OC-SVM, we solve
its dual problem (Schölkopf et al. 2000) using the same dif-
ferentiable quadratic programming (QP) solver (Amos and
Kolter 2017) used to solve the multi-class SVM in (Lee et al.
2019). The ResNet-12 architecture is used for the embed-
ding network. We use the meta-validation tasks to tune the
OC-SVM hyperparameters.

Meta-SGD meta-learns an inner loop learning rate for
each model parameter besides the initalization. Our episode
sampling method is applied as done for MAML. Unlike the
class-balanced MetaSGD, the meta-learning optimization
assigns negative values to some parameter-specific learning
rates to counteract overfitting to the majority class, which

leads to performing gradient ascent on the adaptation loss.
To prevent this, we clip the learning rates between 0 and 1.

Table 4 shows that applying the proposed sampling tech-
nique to MetaOptNet and Meta-SGD results in a signifi-
cant accuracy increase in FS-OCC on the MiniImageNet,
CIFAR-FS and FC100 datasets. Eventhough MetaOptNet
substantially outperforms MAML and Meta-SGD in the
class-balanced case (Lee et al. 2019), it fails to compete in
the FS-OCC setting, suggesting that meta-learning a suitable
initialization for the classifier is important in this scenario.

Finally, we compare to One-Way ProtoNets 2 and find that
OC-MAML and OC-MetaSGD significantly outperform it
on all three datasets. The poorer performance of One-Way
ProtoNets and OC-MetaOptNet could be explained by the
absence of a mechanism to adapt the feature extractor (the
convolutional layers) to the unseen test tasks. OC-MAML
and OC-MetaSGD finetune the parameters of the feature ex-
tractor by the means of gradient updates on the few normal
examples from the test task. We conducted experiments us-
ing 5 different seeds and present the average in Table 4.

Conclusion
This work addressed the novel and challenging problem of
few-shot one-class classification (FS-OCC). We proposed
an episode sampling technique to adapt meta-learning
algorithms designed for class-balanced FS classification to
FS-OCC. Our experiments on 8 datasets from the image
and time-series domains, including a real-world dataset of
industrial sensor readings, showed that our approach yields
substantial performance increase on three meta-learning
algorithms, significantly outperforming classical OCC
methods and FS classification algorithms using standard
sampling. Moreover, we provided a theoretical analysis
showing that class-balanced gradient-based meta-learning
algorithms (e.g., MAML) do not yield model initializations
suitable for OCC tasks and that second-order derivatives are
needed to optimize for such initializations. Future works
could investigate an unsupervised approach to FS-OCC, as
done in the class-balanced scenario (Hsu, Levine, and Finn
2018).

2We re-implemented One-Way ProtoNets to conduct the exper-
iments, since the code from the original paper was not made public.
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