
Adversarial Training and Provable Robustness: A Tale of Two Objectives

Jiameng Fan , Wenchao Li
Department of Electrical and Computer Engineering, Boston University, Boston

{jmfan, wenchao}@bu.edu

Abstract
We propose a principled framework that combines adversar-
ial training and provable robustness verification for training
certifiably robust neural networks. We formulate the training
problem as a joint optimization problem with both empiri-
cal and provable robustness objectives and develop a novel
gradient-descent technique that can eliminate bias in stochas-
tic multi-gradients. We perform both theoretical analysis on
the convergence of the proposed technique and experimen-
tal comparison with state-of-the-arts. Results on MNIST and
CIFAR-10 show that our method can consistently match or out-
perform prior approaches for provable l∞ robustness. Notably,
we achieve 6.60% verified test error on MNIST at ε = 0.3,
and 66.57% on CIFAR-10 with ε = 8/255.

Introduction
Vulnerability of deep neural networks to adversarial exam-
ples (Szegedy et al. 2014; Goodfellow, Shlens, and Szegedy
2015) has spurred the development of training methods for
learning more robust models (Wong and Kolter 2018; Gowal
et al. 2018; Zhang et al. 2020; Balunovic and Vechev 2020).
Madry et al. (2018) show that adversarial training can be
formulated as a minimax robust optimization problem as in
(1). Given a model fθ, loss function L, and training data
distribution X , the training algorithm aims to minimize the
loss whereas the adversary aims to maximize the loss within
a neighborhood S(x, ε) of each input data x as follows:

min
θ
E(x,y)∈X

[
max

x′∈S(x,ε)
L(fθ(x

′), y)

]
(1)

In general, the inner maximization is intractable. Most ex-
isting techniques focus on finding an approximate solution.
There are two main approaches to approximate the inner loss
(henceforth referred to as robust loss). One direction is to
generate adversarial examples to compute a lower bound
of robust loss. The other is to compute an upper bound of
robust loss by over-approximating the model outputs. We
distinguish these two families of techniques below.

Adversarial training. To improve adversarial robustness,
a natural idea is to augment the training set with adversarial
examples (Kurakin, Goodfellow, and Bengio 2017). Using ad-
versarial examples to compute the training loss yields a lower
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bound of robust loss, henceforth referred to as adversarial
loss. Madry et al. (2018) propose to use projected gradient
descent (PGD) to compute the adversarial loss and train the
neural network by minimizing this loss. Networks trained
using this method can achieve state-of-art test accuracy under
strong adversaries (Carlini and Wagner 2017; Wang et al.
2018). More recently, Wong, Rice, and Kolter (2020) showed
that fast gradient sign method (FGSM) (Goodfellow, Shlens,
and Szegedy 2015) with random initialization can be used to
learn robust models faster than PGD-based adversarial train-
ing. In term of efficiency, FGSM-based adversarial training
is comparable to regular training. While adversarial training
can produce networks robust against strong attacks, minimiz-
ing the adversarial loss alone cannot guarantee that (1) is
minimized. In addition, it cannot provide rigorous guarantees
on the robustness of the trained networks.

Provable robustness. Verification techniques (Katz et al.
2017; Dvijotham et al. 2018; Ruan, Huang, and Kwiatkowska
2018; Raghunathan, Steinhardt, and Liang 2018; Prabhakar
and Afzal 2019), on the other hand, can be used to compute a
certified upper bound of robust loss (henceforth referred to as
abstract loss). Given a neural network, a simple way to obtain
this upper bound is to propagate value bounds across the net-
work, also known as interval bound propagation (IBP) (Mir-
man, Gehr, and Vechev 2018; Gowal et al. 2018). Techniques
such as CROWN (Zhang et al. 2018), DeepZ (Singh et al.
2018), MIP (Tjeng, Xiao, and Tedrake 2019) and Refine-
Zono (Singh et al. 2019), can compute more precise bounds,
but also incur much higher computational costs. Building
upon these upper bound verification techniques, approaches
such as DIFFAI (Mirman, Gehr, and Vechev 2018) construct a
differentiable abstract loss corresponding to the upper bound
estimation and incorporate this loss function during training.
However, Gowal et al. (2018) and Zhang et al. (2020) observe
that a tighter approximation of the upper bound does not nec-
essarily lead to a network with low robust loss. They show
that IBP-based methods can produce networks with state-of-
the-art certified robustness. More recently, COLT (Balunovic
and Vechev 2020) proposed to combine adversarial train-
ing and zonotope propagation. Zonotopes are a collection of
affine forms of the input variables and intermediate vector
outputs in the neural network. The idea is to train the net-
work with the so-called latent adversarial examples which
are adversarial examples that lie inside these zonotopes.
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Method Loss Abstract loss Efficiency1 Empirical
Robustness

Provable
Robustness

No weight2

tuning/scheduling

Baseline regular loss n/a X n/a
FGSM (2015) adversarial loss n/a X X n/a

FGSM+random init (2020) adversarial loss n/a X X n/a
PGD (2018) adversarial loss n/a X n/a

COLT (2020) latent adversarial loss RefineZono3 X X n/a
DIFFAI (2018) abstract loss4 DeepZ X–5 X n/a

CROWN-IBP (2020) regular loss+abstract loss CROWN + IBP X X
IBP method (2018) regular loss+abstract loss IBP X X

AdvIBP adversarial loss+abstract loss IBP X X X X
1 The efficiency baseline is the training time for each epoch during regular training. X represents the training time is comparable to the baseline.
2 The weights here represent the weights for the different losses if there are multiple of them.
3 RefineZono is not used to construct an abstract loss. Instead, it is used to generate latent adversarial examples and for post-training verification.
4 In their experiments, DIFFAI shows that adding regular loss with a fixed weight can achieve better performance.
5 DIFFAI can also use IBP for training and verification for improved efficiency. However, the best robustness results are achieved using DeepZ.

Table 1: Comparison of different methods for training robust neural networks. We highlight the loss function used in each method.
If there is an abstract loss used in training or post-training verification, we also list the corresponding verification method. We
categorize the methods along five dimensions, with X indicating a desirable property or an explicit consideration.

This work: a principled framework for combining ad-
versarial loss and abstract loss. We first start with the ob-
servation that there is a substantial gap between the provable
robustness obtained from state-of-art verification tools and
the empirical robustness of the same network against strong
adversary in large-scale models. In this paper, we propose to
bridge this gap by marrying the strengths of adversarial train-
ing and provable bound estimation techniques. Minimizing
adversarial loss and minimizing abstract loss can be viewed
as bounding the true robust loss from two ends. We argue
that simultaneously reducing both losses is more likely to
produce a network with good empirical and provable robust-
ness. From an optimization perspective, this amounts to an
optimization problem with two objectives and can be solved
using gradient descent methods if both objectives are semi-
smooth. The challenge is how to balance the minimization of
these two objectives during training. In particular, computing
the gradient based on a weighted-sum of the objectives can
result in biased gradients. Inspired by the work on moment
estimates (Kingma and Ba 2016), we propose a novel joint
training scheme to compute the weights adaptively and min-
imize the joint objective with unbiased gradient estimates.
For efficient training, we instantiate our framework in a tool
called AdvIBP , which uses FGSM and random initialization
for computing the adversarial loss and IBP for computing the
abstract loss. We validate our approach on a set of commonly
used benchmarks demonstrate and demonstrate that AdvIBP
can learn provably robust neural networks that match or out-
perform state-of-art techniques. We summarize and compare
the key features of prior methods and AdvIBP in Table 1.
Main contributions. In short, our key contributions are:
• A novel framework for training provably robust deep neu-

ral networks. The framework marries the strengths of ad-
versarial training and provable upper bound estimation in
a principled way.

• A novel gradient descent method for two-objective opti-
mization that uses moment estimates to address the issue

of bias in stochastic multi-gradients. We also perform the-
oretical analysis of the proposed method.

• Experiments on the MNIST and CIFAR-10 datasets show
the proposed method can achieve state-of-the-art perfor-
mance for networks with provable robustness guarantees.

Background
In this paper, we consider an adversary who can perturb an
input x∈X from a data distribution X arbitrarily within a
small ε neighborhood of the input. In the case of l∞ perturba-
tion, which we experiment with later, we define the allowable
adversarial input set as S(x, ε)={x′|‖x′−x‖∞≤ε}.

We define a L-layer neural network parameterized by θ as
a function fθ recursively as:

fθ(x)=z(L), z(l)=W (l)h(l−1)+b(l), h(l)=σ(l)(z(l))

where l ∈ {1, · · ·, L−1}, z represent the pre-activation neu-
ron values, h represent post-activation neuron values and σ
is an element-wise activation function. We denote h(l)θl the
mapping applied at layer l with parameter θl and the network
can be represented as fθ = h

(L)
θL
◦ h(L−1)θL−1

· · · ◦ h(1)θ1 .
In classification, the provable robustness seeks for the

lower bounds of the margins between the ground-truth logit
and all other classes. Let vector m be the margins between
the ground-truth class and all other classes. Each element in
m is a linear combination of the output (Wong and Kolter
2018): cT fθ(x), where c is set to compute the margin. We
define the lower bound of m in S(x, ε) as m(x, ε; θ). When
all elements of m(x, ε; θ)>0, x is verifiably robust for any
perturbation with l∞-norm less than ε.

Interval bound propagation (IBP). Interval bound prop-
agation uses a simple bound propagation rule. For the in-
put layer we define element-wise upper and lower bound
for x, z(l) and h(l) as xL≤x≤xU , z(l)≤z(l)≤z(l) and
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h(l)≤h(l)≤h(l)
. For affine layers, we have:

z(l)=W (l)−·h(l−1)+W (l)+·h(l−1)
+b(l),

z(l)=W (l)−·h(l−1)
+W (l)+·h(l−1)+b(l)

where W (l)−= min(0,W (l)) and W (l)+= max(0,W (l)).

Note that h
(0)

=xU and h(0)=xL. For monotonic increasing
activation functions σ, we have h

(l)
= σ(z(l)) and h(l) =

σ(z(l)).
We define mIBP(x, ε; θ) as the lower bound of the mar-

gin obtained by IBP which is an underapproximation of
m(x, ε; θ). More generally, we use mabstract(x, ε; θ) as the
lower bound of the margin obtained by abstract methods.
When mabstract(x, ε; θ)≥0, x is verifiably robust by the ab-
stract method for any perturbation with l∞-norm less than
ε. Additionally, Wong and Kolter (2018) showed that for
cross-entropy (CE) loss:

max
x′∈S(x,ε)

L(fθ(x
′), y) ≤ L(−mabstract(x, ε; θ), y; θ) (2)

IBP or other abstract methods gives a tractable upper bound
of the inner-max in (1) and we refer it as abstract loss. In
practice, solely minimizing abstract loss can be unstable
and hard to tune (Mirman, Gehr, and Vechev 2018; Gowal
et al. 2018). To mitigate this instability, prior works (Mirman,
Gehr, and Vechev 2018; Gowal et al. 2018; Zhang et al. 2020)
propose to stabilize the minimization of the abstract loss by
adding normal regular loss in the objective. More specifically,
the new objective can be formed as follows:

L(θ) = κ1L(fθ(x), y) + κ2L(−mabstract; y; θ) (3)

The coefficients κ1 and κ2 are hand-tuned to balance the min-
imization between regular loss and abstract loss. The goal is
to improve the robustness of the trained model while avoid-
ing the instability caused by loose abstract loss with respect
to the true robust loss. Among different abstract methods,
computing IBP bounds only requires two simple forward
passes through the network and is thus computationally ef-
ficient. The downside of IBP, however, is that it can lead
to loose upper bounds. Mirman, Gehr, and Vechev (2018);
Gowal et al. (2018) propose to combine regular loss and IBP
abstract loss as (3). CROWN-IBP (Zhang et al. 2020) uses a
mixture of linear relaxation and IBP to compute the abstract
loss and jointly minimize it with the regular loss. While the
approaches based on (3) produce state-of-the-art results on
a set of benchmarks, this type of works rely on an ad hoc
scheduler to tune the weights between the regular loss and
the abstract loss during training. In addition, regular loss is a
loose lower bound of robust loss and minimizing the regular
loss does not directly guide the training to a robust model. In
this paper, we show that it is better to combine adversarial
loss and abstract loss while leveraging the efficiency of IBP.
Moreover, we can eliminate weight tuning and scheduling in
a principled manner.

Methodology
Overview. Let the perturbed input be xadv. The relations
among adversarial loss, robust loss and IBP abstract loss are

as follows.

L(fθ(xadv), y)≤ max
x′∈S(x,ε)

L(fθ(x
′), y)≤L(−mIBP(x, ε); y; θ)

(4)
We note that (4) holds for general adversarial training and
provable robustness methods. Specifically adversarial loss
provides a lower bound of robust loss and minimizing this
loss can result in good empirical robustness. Latent adver-
sarial examples (Balunovic and Vechev 2020), for instance,
can be used to construct a different adversarial loss. How-
ever, a smaller latent adversarial loss does not necessarily
indicate better certified robustness. COLT (Balunovic and
Vechev 2020) uses multiple regularizers to mitigate this issue.
On the other hand, minimizing the abstract loss can help to
train a network with certified robustness. In this case, the
choice of verification methods used in computing the abstract
loss can significantly influence the final training outcome.
For instance, training with the IBP abstract loss can result
in a network that is amenable to IBP verification. The true
robustness of the network or the robustness attainable under
the given neural network architecture, however, could still be
far away from this bound. In fact, a small gap between empir-
ical robustness and provable robustness does not necessarily
indicate the attainment of good robustness (the extreme case
would be a ReLU network with only positive weights). Thus,
the tightness of both losses relative to robust loss is critical
to improving the model’s true robustness.

We consider the joint minimization of adversarial loss
and abstract loss as a two-objective optimization problem. A
straightforward way to solve this joint optimization problem
is to optimize a weighted sum of the objectives. This leads to
the following objective similar to (3):

L(θ) = κ1L(fθ(xadv), y) + κ2L(−mIBP; y; θ) (5)

However, this simple linear-combination formulation is
only sensible when the two objectives are not competing,
which is rarely the case. The conflicting objectives require
modeling the trade-off between objectives, and are generally
handled by adaptive weight updates (Sener and Koltun 2018).
This approach, however, faces the issue that even though the
stochastic gradients for each objective are unbiased estimates
of the corresponding full gradients, the weighted sum of the
stochastic gradients is a biased estimate if the weights are
associated with the sampled gradients. This bias can cause
instability and local optima issues (Liu and Vicente 2019).
In this paper, we leverage moment estimates to compute
the weights adaptively and ensures their independence from
the corresponding sampled gradients to eliminate the bias.
Minimizing the two objectives jointly tightens the approxi-
mation of robust loss from both ends. For efficient training,
we develop AdvIBP using FGSM+random init to compute
adversarial loss and IBP to compute abstract loss.

Joint Training as Two-Objective Optimization
We propose a two-objective optimization method inspired
by (Fan et al. 2019; Zhang, Yu, and Turk 2019) to choose
the gradient descent direction that reduces adversarial loss
and abstract loss simultaneously. Let the adversarial loss
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be Ladv(θ) and IBP abstract loss be LIBP(θ). Their gradients
with respect to θ are denoted by

gadv = ∇θLadv(θ), gIBP = ∇θLIBP(θ)

To balance between the two objectives, we update the network
parameters in the direction of the angular bisector of the two
gradients. Then, we average the projected vectors of the two
gradients on this direction. If 〈gadv, gIBP〉>0, this results in
an update that is expected to reduce both losses to improve
the adversarial accuracy and tighten IBP. If 〈gadv, gIBP〉≤0,
taking the angular bisector direction results in an update that
improves the objective functions little or not at all for either
objective. In this case, we project one of the gradients onto
the hyperplane that is perpendicular to the other gradient.
The idea is that when two gradients disagree with each other,
we prioritize the minimization of one of the objectives. The
final gradient guides the search in the direction that reduces
the prioritized objective while avoiding increasing the other
objective. We use Figure 1 to illustrate this computation.

To decide which direction to prioritize, the tightness of
adversarial loss and abstract loss relative to the ground-truth
robust loss can be the determining factor. Wang et al. (2019)
propose the First-Order Stationary Condition (FOSC) to quan-
titatively evaluate the adversarial strength of adversarial ex-
amples. In general, the adversarial loss is closer to robust loss
with stronger adversarial examples. Let c(xadv) be FOSC
value of xadv and ct be the threshold that indicates the de-
sired adversarial strength at the t-th epoch. Smaller FOSC
values would indicate stronger adversarial examples. With
strong attacks (c(xadv)≤ct), adversarial training leads to ro-
bust models. Thus, we prioritize the gradient of adversarial
loss in this case. The idea is to drive the search to the region
of robust models with high accuracy and stabilize the min-
imization of abstract loss. With weak attacks (c(xadv)>ct),
minimizing adversarial loss does not necessarily imply better
robustness. However, minimizing abstract loss makes solving
(1) tractably. We prioritize the gradient of abstract loss in this
case. Figure 1 provides a visualization of the final gradient
computation in different cases.

gIBP

gfinal

gadv
gIBP

gfinal

gadv gIBP

gfinal

gadv

gadv
TgIBP  > 0 gadv

TgIBP  ≤ 0 and c(xadv)≤ ct gadv
TgIBP  ≤ 0 and c(xadv)>ct

Figure 1: Three cases of computing gfinal from gadv and gadv.

Stochastic gradients. Since the data distribution X
is unknown in practice, it is impossible to get the
full gradients, gadv and gIBP. We denote the realiza-
tions of the stochastic objectives at subsequent training
epochs 0, . . . , T−1 as Ladv,0(θ0), . . .,Ladv,T−1(θT−1) and
LIBP,0(θ0), . . .,LIBP,T−1(θT−1). The stochastic gradients
gadv,t and gIBP,t are the evaluations of data points from mini-
batches and provide unbiased estimation of the full gradients.
However, the stochastic gradient of the weighted-sum objec-
tive at the t-th epoch becomes a biased estimate of the final

Algorithm 1 Weight Updates

1: Input Exponential decay rates of the moving averages
β1, β2 ∈ [0, 1)

2: Init m1,0 ← 0, m2,0 ← 0, v1,0 ← 0 and v2,0 ← 0
3: procedure COMPUTE WEIGHTS(xadv, t, ct)
4: m̂1,t ← β1 · m̂1,t−1 + (1− β1) · gadv,t−1
5: m̂2,t ← β1 · m̂2,t−1 + (1− β1) · gIBP,t−1
6: v̂1,t ← β2 · v̂1,t−1 + (1− β2) · ‖gadv,t−1‖2
7: v̂2,t ← β2 · v̂2,t−1 + (1− β2) · ‖gIBP,t−1‖2
8: m1,t=m̂1,t/(1−βt1) . Bias-corrected 1st moment
9: m2,t=m̂2,t/(1−βt1)

10: v1,t=v̂1,t/(1−βt2) . Bias-corrected norm moment
11: v2,t=v̂2,t/(1−βt2)
12: if 〈m1,t,m2,t〉 > 0 then
13: γ= 1

2 〈m1,t+m2,t,
m1,t

v1,t
+

m2,t

v2,t
〉/‖m1,t

v1,t
+

m2,t

v2,t
‖22

14: κadv = γ
v1,t

, κIBP = γ
v2,t

, κreg = 0

15: else
16: if c(xadv) ≤ ct then . check FOSC value
17: κadv = 1, κIBP = − 〈m1,t·m2,t〉

v2
2,t

, κreg = 0

18: else
19: κadv = − 〈m1,t·m2,t〉

v2
1,t

, κIBP = 1, κreg = 1/2

20: end if
21: end if
22: return κadv, κIBP, κreg
23: end procedure

gradient, gfinal. The bias is the result of dependence between
the weights and the corresponding stochastic gradients.

Unbiased weights computation. To eliminate this bias,
we propose to compute the weights from the estimates of
the first and norm moments of the gradients instead of the
stochastic gradients. The goal is to ensure the independence
of stochastic gradients and the corresponding weights. Let
m1,t, m2,t, v1,t and v2,t represent the moment estimates
for gadv,t, gIBP,t, ‖gadv,t‖2 and ‖gIBP,t‖2 respectively. We
modify the moment estimate in (Kingma and Ba 2016) to
meet the independence requirement. In Algorithm 1, the
t-th moment estimates are the exponential moving aver-
ages of the past stochastic gradients from epoch 0 to epoch
t−1, where the hyper-parameters β1, β2∈[0, 1) control the
exponential decay rates. The moving averages themselves,
m1,t,m2,t,v1,t,v2,t, are estimate of the first moment and
the norm moment of the true gradients. The independent
mini-batch sampling guarantees the independence of stochas-
tic gradients. Thus, the moment estimates are independent
from the current sampled stochastic gradient. Then, we calcu-
late the weights using the moment estimates in Algorithm 1
and update the model parameters with unbiased gradient
estimates.

The overall joint training algorithm is shown in Algo-
rithm 2. The regularization term κreg in line 11 is only used
when prioritizing the minimization of abstract loss. The regu-
larizer helps to bound the convergence rate of training.

Leveraging FOSC in joint training. In Algorithm 2, we
use similar dynamic criterion FOSC as in (Wang et al. 2019).
In the early stages of training, ct is close to the maximum
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Algorithm 2 Joint Training

1: Input Warm-up epochs Tnat and Tadv, εtrain ramp-up
epochs R, maximum FOSC value cmax

2: fθ0 ← WARM-UP(fθ0 , Tnat, Tadv)
3: for t = 0 to T − 1 do
4: ct=clip(cmax−(t−R)·cmax/T

′, 0, cmax)
5: Sample B={(x1, y1), . . ., (xB, yB)}∼(X ,Y)
6: for i = 0 to |B| − 1 do
7: εt←RAMPUP SCHEDULER(t, εtrain, R)
8: xadv,i←FGSM+RANDOM INIT(xi, yi, εt)
9: end for

10: κadv, κIBP, κreg=COMPUTE WEIGHTS(xadv, t, ct)

11: loss=κadvLadv(θt)+κIBPLIBP(θt)+κreg‖LIBP(θt)‖22
12: θt+1=θt−ηtgfinal(θ

t) . gfinal(θ
t): stochastic gradient

13: end for
14:
15: procedure WARMUP(fθ0 , Tnat, Tadv) . Warm-up phase
16: for t = 0 to Tnat − 1 do
17: Train on the regular loss L(fθt(x), y)
18: end for
19: for t = Tnat to Tnat + Tadv − 1 do
20: Train on the adversarial loss L(fθt(xadv), y)
21: end for
22: return fθ
23: end procedure

FOSC value cmax, which can be satisfied with weak adversar-
ial examples. Thus, the early stages of training will mostly
prioritize the minimization of adversarial loss. This helps to
avoid the instability caused by a loose abstract loss. However,
prioritizing the adversarial loss does not necessarily improve
the verified robustness of the models. Thus, we design the
FOSC value ct so that it decreases linearly towards zero as
training progresses. As a result, in the later training stages, the
joint training scheme will mostly prioritize the minimization
of the abstract loss to improve provable robustness.

Theoretical Analysis
We provide a theoretical analysis of our proposed joint train-
ing scheme to train IBP certified robust networks. It aims to
provide insights on how the ground-truth robust loss changes
during training by our joint training scheme. The gradient
update and the prioritization scheme provide an approximate
maximizer for the inner maximization. Below, we provide
theoretical analyses on how robust loss changes when two
gradients agree with each other and how abstract loss changes
when two gradients disagree with each other.

In detail, let x∗(θ)= arg maxx′∈S(x,ε) L(fθ(x
′), y). x̂(θ)

is a δ-approximation solution to x∗, if it satisfies that (Wang
et al. 2019)

c(x̂(θ))= max
x′∈S(x,ε)

〈x′−x̂(θ),∇x′L(fθ(x̂(θ)), y)〉≤δ (6)

Let the robust loss in (1) be L(θ), and its gra-
dient be ∇L(θ)=E[∇θL(fθ(x

∗(θ)), y)]. We de-
note the stochastic gradient of L(θ) as g(θ) =
1/|B|

∑
i∈B∇θL(fθ(x

∗
i (θ)), yi), where B is the mini-

batch. Similarly, we denote the abstract loss as L(θ),
and its gradient as ∇L(θ) = E[∇θL(−m(x, ε); y; θ)].
We denote the stochastic gradient of L(θ) as
g(θ)=1/|B|

∑
i∈B∇θL(−m(xi, ε); yi; θ). Note that

E[g(θ)]=∇L(θ) and E[g(θ)]=∇L(θ). The adversarial loss,
Ladv(θ), is E[L(fθ(x̂(θ)), y)] and its stochastic gradient is
ĝ(θ)=1/|B|

∑
i∈B∇θL(fθ(x̂i(θ)), yi). We make assump-

tions similar to those in Wang et al. (2019) and present the
theoretical analysis of our method below.

Assumption 1. The function L(θ;x) and L(θ;x) satisfies
the gradient Lipschitz conditions s.t.

sup
x
‖∇θL(θ;x)−∇θL(θ′;x)‖2≤Lθθ‖θ−θ′‖2

sup
x
‖∇θL(θ;x)−∇θL(θ′;x)‖2≤Lθθ‖θ−θ′‖2

sup
θ
‖∇θL(θ;x)−∇θL(θ;x′)‖2≤Lθx‖x−x′‖2

sup
θ
‖∇θL(θ;x)−∇θL(θ;x′)‖2≤Lθx‖x−x′‖2

sup
x
‖∇xL(θ;x)−∇xL(θ′;x)‖2≤Lxθ‖θ−θ′‖2

sup
x
‖∇xL(θ;x)−∇xL(θ′;x)‖2≤Lxθ‖θ−θ′‖2

where Lθθ , Lθx, Lx,θ, Lθθ , Lθx, Lx,θ are positive scalars.

Assumption 1 was made in (Wang et al. 2019) to assume
the smoothness of the loss function. Recent studies (Du et al.
2019a,b) help justify it by showing that the loss function of
overparameterized neural networks is semi-smooth.

Let L=(LθxLxθ/µ+Lθθ) and L=(LθxLxθ/µ+Lθθ).
For stochastic gradient descent, we can assume that the vari-
ances of stochastic gradients g(θ) and g(θ) are bounded
by constants σ, σ > 0. Let ∆=L(θ0)−minθ L(θ) and
∆=L(θ0)−minθ L(θ). Under Assumption 1 , we have the
following theoretical results.
Theorem 1. If the dot product of the gradients of the two
objectives is greater than 0 and the step size of the training is
set to ηt=η= min(1/6L,

√
∆/TLσ2), then the expectation

of the gradient of robust loss satisfies

1

T

T−1∑
t=0

E[‖∇L(θt)‖22] ≤ 8σ

√
L∆

T
+

7L2
θxδ

3µ
.

Theorem 2. If the dot product of the gradients of the two
objectives is smaller or equal to 0, adversarial loss is not
tight enough (c(xadv)>ct), and the step size of training is set

to ηt=η= min(2 ∗ E[LIBP(θt)]/L− 1/L,
√

∆/TLσ2) with

E[LIBP(θt)]>1/2, then the expectation of the gradient of IBP
abstract loss satisfies

1

T

T−1∑
t=0

E[‖∇LIBP(θt)‖22]≤2σ

√
L∆

T
(1+

T−1∑
t=0

(1+E[LIBP(θt)])2).

The complete proof can be found in the Appendix. If the
two gradients agree with each other (i.e. their dot product
is greater than 0), Theorem 1 suggests that the robust loss
minimization can converge to a first-order stationary point
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at a sublinear rate with sufficiently small δ. Using FOSC
ensures that the adversarial loss approximates the robust loss
up to a precision less than δ as in (6). Note that it is difficult
for the perturbed input xadv to reach the maximum adver-
sarial strength (minimum FOSC value which is 0) as the
model becomes more robust during training. Algorithm 2
will mostly prioritize the abstract loss minimization when the
two gradients disagree with each other since ct is decreasing
to 0. In this case, Theorem 2 suggests that the abstract loss
(as obtained by IBP) minimization can converge to a first-
order stationary point at a sublinear rate. Although L̄IBP is
not guaranteed to converge, our joint training scheme actively
reduces the abstract loss to avoid its divergence. In practice,
potential divergence of the L̄IBP is controlled with a stable
training process in our method. Although Theorem 2 requires
E[LIBP(θt)]>1/2, the abstract loss will be sufficiently small
if the condition does not hold. With Theorem 1 and 2, the
robust loss or its upper bound abstract loss can be minimized
at a sublinear convergence rate. These results provide theo-
retical support for our approach.

Experiment
Experiment setup. We evaluate AdvIBP on all the network
model structures used in (Gowal et al. 2018; Zhang et al.
2020) on the MNIST and CIFAR-10 datasets with differ-
ent l∞ perturbation bounds, ε. We denote these models as
DM-Small, DM-Medium and DM-Large. We perform all
experiments on a desktop server using at most 4 GeForce
GTX 1080 Ti GPUs. All models are trained using a single
GPU except for DM-Large which requires all 4 GPUs.

Metrics. We use the following metrics to compare the
trained neural networks: (i) IBP verified error, which is the
percentage of test examples that are not verified by IBP, (ii)
standard error, which is the test error evaluated on the clean
test dataset, and (iii) PGD error, which is the test error under
200-step PGD attack. Verified errors provide the worst-case
test error against l∞ perturbations. PGD errors provide valid
lower bounds of test errors against l∞ perturbations.
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(a) MNIST, ε = 0.3
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Figure 2: Comparison with the baseline.

Baseline comparison. We consider a baseline method that
uses the same warm-up strategy in Algorithm 2 but fixes
the coefficients to κadv=1.0 and κIBP=1.0 (effectively using
the weighted sum method). As shown in Figure 2, AdvIBP ,
which automatically adapts the coefficients, reduces the IBP
verified errors by 9.1% to 31.9% compared with the baseline.

Comparison with prior works. Table 2 and 4 shows the
standard, verified and PGD errors under different ε on CIFAR-
10 and MNIST. On CIFAR-10, our method outperforms the
state-of-art methods on verified errors obtained from IBP.
In addition to CROWN-IBP, we also present the best errors
reported by IBP method (Gowal et al. 2018), MIP (Xiao et al.
2019) and COLT (Balunovic and Vechev 2020). Note that
MIP (Xiao et al. 2019) reports the verified error obtained
by mixed integer programming, which is able to compute
the exact value of robust loss. COLT (Balunovic and Vechev
2020) uses RefineZono to compute the verified errors and
RefineZono is supposed to a much higher precision than IBP.
On both MNIST and CIFAR-10, even though our method
does not use regular loss, we still achieve lower standard
errors across different models in most cases. The verified
errors obtained by AdvIBP on MNIST can match the prior
state-of-art results. The result of l∞ perturbation 2/255 out-
performs existing approaches except for the results in (Zhang
et al. 2020; Singh et al. 2019). However, we note here that
both methods in (Zhang et al. 2020; Singh et al. 2019) use
over-approximation methods with better precision in both
training and verification, which may result in significant com-
putation overhead and memory requirement. We hypothesize
that the main reason for this performance gap is that with
a relatively small l∞ perturbation, the minimization of IBP
abstract loss reduces the capacity of the models to learn well
as reflected by the higher standard errors.

Additionally, we compare AdvIBP with CROWN-IBP
across a wide range of neural network models (Table F) rather
than on a few hand-selected models. In Table 3, we present
the best, median and worst verified and standard test errors
for models trained on MNIST and CIFAR-10 using CROWN-
IBP (with default settings) and AdvIBP respectively. Ad-
vIBP ’s best, median and worst verified errors outperform
those of CROWN-IBP in almost all cases. AdvCROWN-
IBP . In our joint training scheme, one can replace IBP with
a more precise method for computing the abstract loss. We
present here the results of AdvCROWN-IBP which uses
CROWN-IBP to compute the abstract loss on the MNIST
dataset. CROWN-IBP uses a linear combination of CROWN
bounds and IBP bounds to compute the abstract loss during
the warm-up period. After the warm-up period, the abstract
loss is computed solely with IBP bounds. In Table 4, we
can observe that with a more precise abstract loss, our joint
training scheme outperforms CROWN-IBP and AdvIBP in
IBP verified errors consistently across different model struc-
tures. In fact, to the best of our knowledge, AdvCROWN-IBP
achieves the best verified error rates compared to those re-
ported in existing literature on the MNIST dataset across
different choices of network models for these ε bounds.

Conclusion
We propose a new certified adversarial training framework
that bridges the gap between adversarial training and prov-
able robustness from a joint training perspective. We show
that our joint training framework outperforms prior certified
adversarial training methods in both standard and verified
errors, and achieves state-of-the-art verified test errors for l∞
robustness.
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DM-Small err. (%) DM-Medium err. (%) DM-Large err. (%) Best errors reported in literature (%)2

ε (l∞ norm) Method
Standard Verified PGD Standard Verified PGD Standard Verified PGD Method Standard Verified

IBP (2018)3 39.22 55.19CROWN-IBP 38.15 52.57 50.35 32.78 49.57 44.22 28.48 46.03 40.28 MIP (2019) 38.88 54.07
COLT (2020) 21.60 39.50ε= 2

255
1

AdvIBP 42.33 56.00 50.08 35.36 52.27 43.75 40.61 51.66 46.97

IBP (2018)3 58.43 70.81CROWN-IBP 59.94 70.76 69.65 58.19 68.94 67.72 54.02 66.94 65.42 MIP (2019) 59.55 79.73
COLT (2020) 48.30 72.50ε= 8

255
AdvIBP 57.88 70.31 66.52 54.20 68.21 61.21 52.86 66.57 61.66

IBP (2018)3 68.97 78.12CROWN-IBP 67.42 78.41 76.86 67.94 78.46 77.21 66.06 76.80 75.23 MIP (2019) n/a n/a
COLT (2020) n/a n/aε= 16

255
AdvIBP 67.32 78.12 73.44 66.26 77.79 73.52 64.40 76.05 71.78

1 The verified error of CROWN-IBP in this setting is computed using CROWN.
2 Some of the best errors from literature are obtained from models with different architectures from ours. Some of the verified errors are also

obtained using more precise verification methods.
3 The results are reproduced by (Zhang et al. 2020) on the same perturbation settings and models used by our method and CROWN-IBP. The

verified error is obtained from IBP.

Table 2: Evaluation on the CIFAR-10 dataset between models trained by AdvIBP and those by CROWN-IBP. AdvIBP
outperforms the state-of-art, CROWN-IBP, and other best reported results under all perturbation and model settings if IBP is
used to compute the verified errors. If different network architectures and more precise verification methods are also considered,
our IBP verified errors still outperform the best prior results for both ε = 8

255 and ε = 16
255 .

Standard Error (%) Verified Error (%) PGD Error (%)
Dataset ε (l∞ norm) Method

best median worst best median worst best median worst

Number of AdvIBP models
with lower verified errors

among all trained model structures

CROWN-IBP 2.49 3.50 5.39 4.81 6.33 8.82 3.42 4.94 7.33
ε = 0.2

AdvIBP 2.41 3.36 5.29 4.76 6.13 8.52 3.31 4.70 7.01
9/10

CROWN-IBP 2.49 3.50 5.39 7.19 9.12 11.58 3.85 5.47 8.46
MNIST

ε = 0.3
AdvIBP 2.41 3.36 5.29 7.21 8.86 11.32 4.04 5.40 8.00

8/10

CROWN-IBP 57.25 59.84 63.46 69.02 71.32 72.40 65.56 67.57 70.17
CIFAR-10 ε = 8

255
AdvIBP 57.03 58.85 60.97 68.50 69.36 71.40 65.08 66.90 68.74

7/7

Table 3: Standard, verified and PGD test errors for a wide range of models trained on MNIST and CIFAR-10 datasets using
CROWN-IBP and AdvIBP . The purpose of this experiment is to compare model performance statistics on a wide range of
models, rather than a few selected models. For each settings, we report 3 statistics, the smallest, median and largest verified
errors. We also report the standard and PGD errors in the same way.
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DM-Small err. (%) DM-Medium err. (%) DM-Large err. (%)
ε (l∞ norm) Method

Standard Verified1 PGD Standard Verified1 PGD Standard Verified1 PGD

CROWN-IBP 1.67 3.44 3.09 1.14 2.64 2.23 0.97 2.25 1.81

AdvIBP2 1.63 3.69 2.70 1.41 3.24 2.26 1.03 2.28 1.53ε = 0.1

AdvCROWN-IBP 1.52 3.19 2.39 1.23 2.88 2.18 1.22 2.19 1.57

CROWN-IBP 2.96 6.11 5.74 2.37 5.35 4.90 1.62 3.87 3.81

AdvIBP2 4.15 7.68 5.81 2.33 5.37 3.54 1.58 4.70 2.59ε = 0.2

AdvCROWN-IBP 3.22 6.02 4.50 2.45 5.16 3.27 1.51 3.87 1.98

CROWN-IBP 3.55 9.40 8.50 2.37 8.54 7.74 1.62 6.68 5.85

AdvIBP2 4.15 10.80 6.83 2.33 8.73 4.35 1.58 8.23 3.17ε = 0.3

AdvCROWN-IBP 3.22 9.03 5.42 2.45 8.31 3.81 1.90 6.60 2.87

CROWN-IBP 3.78 15.21 13.34 3.16 14.19 11.31 1.62 12.46 9.47

AdvIBP 4.15 17.57 8.48 2.72 16.18 5.58 1.88 16.57 3.23ε = 0.4

AdvCROWN-IBP 3.22 14.42 6.69 2.98 13.88 6.38 1.90 12.30 3.46

1 To further probe the true robustness of the trained models, we verify the robustness of the AdvIBP trained models with a more
precise method, RefineZono. The results are shown in Table D in the Appendix.

2 We have also tested three model structures similar to DM-Small, DM-Medium and DM-Large. Results are reported in Table C in the
Appendix. For these models, AdvIBP already outperforms CROWN-IBP in all settings.

Table 4: Evaluation on the MNIST dataset between models trained by AdvIBP , AdvCROWN-IBP and those by CROWN-IBP.
The CROWN-IBP result is from Table C. in (Zhang et al. 2020). AdvIBP achieves competitive performance compared to
CROWN-IBP on MNIST. AdvCROWN-IBP outperforms CROWN-IBP under all settings, and achieves state-of-the-art verified
errors on MNIST dataset for l∞ robustness.
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