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Abstract

In this work we focus on designing a fast algorithm for λ-
density level set estimation via DBSCAN clustering. Previ-
ous work (Jiang ICML’17, and Jang and Jiang ICML’19)
shows that under some natural assumptions DBSCAN and
its variant DBSCAN++ can be used to estimate the λ-density
level set with near-optimal Hausdorff distance, i.e., with rate
Õ(n−1/(2β+D)). However, to achieve this near-optimal rate,
the current fastest DBSCAN algorithm needs near quadratic
running time. This running time is not practical for large
datasets. Usually when we are working with large datasets
we desire linear or almost linear time algorithms. With this
motivation, in this work, we present a modified DBSCAN al-
gorithm with near optimal Hausdorff distance for density level
set estimation with Õ(n) running time. In our empirical study,
we show that our algorithm provides significant speedup over
the previous algorithms, while achieving comparable solution
quality.

Introduction
Density-based clustering is one of the core problems in data
science with a wide range of applications in machine learn-
ing, computer vision, and medical imaging among others.
Intuitively, in density-based clustering, we have a set of n
points in a space and we want to cluster these points by
separating the connected dense parts of the space. The cele-
brated DBSCAN (Ester et al. 1996) is one of the most popular
methods for density-based clustering. DBSCAN has been im-
plemented in several data mining tool kits (Team et al. 2013;
Hall et al. 2009; Pedregosa et al. 2011; Schubert et al. 2015)
and has been successfully used in many applications.

Day after day we are collecting more data and hence have
larger datasets to deal with. To the extent that many popular
polynomial-time algorithms that we have inherited from the
past are not applicable to such massive datasets. For example,
an algorithm with a quadratic running time is infeasible when
we are dealing with millions of points, let alone hundreds of
millions of points. As a result, in the context of large scale
algorithm design, it is often desired to have an almost linear
time algorithm.

*All authors contribute equally.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Initially, Ester et al. (Ester et al. 1996) claimed that DB-
SCAN runs in O(n log n) time, however, Gunawan and De
Berg refuted this claim and showed that this algorithm needs
Ω(n2) time in the worst-case (Gunawan and de Berg 2013).
There are several attempts to improve this running time and
get closer the ideal Õ(n) worst-case running time1. How-
ever, all of the previous results highly depend on the di-
mension and hence are only claimed to work well when the
dimension of the space is a small constant. For example,
in 2D it is possible to implement DBSCAN in O(n log n)
time (de Berg, Gunawan, and Roeloffzen 2017; Gunawan
and de Berg 2013). For larger dimensions the state-of-the-
art algorithms (Chen, Smid, and Xu 2005; Gan and Tao
2017) require O(n2−O(1/D)) time, where D is the dimen-
sion of the space. This bound is certainly of great theoretical
value, but as D grows, it behaves similar to O(n2). More-
over, there are some approximation algorithms for DBSCAN
that run in O(n log n) and O(n) when the dimension is a
constant (Chen, Smid, and Xu 2005; Gan and Tao 2017).
But the running time of these algorithms explicitly depends
exponentially on the dimension, which is a drawback.

DBSCAN++ is the state-of-the-art approximation algo-
rithm for DBSCAN that is provably faster than DBSCAN,
while interestingly, provides higher quality solutions than
DBSCAN in practice (Jang and Jiang 2018). The analysis of
DBSCAN++ is based on a standard parameter in level-set
analyses called β-regularity2. Specifically, they show that it
is possible to approximate DBSCAN in O(n2−

2β
2β+D ) time.

In addition to this, DBSCAN++ can be used to estimate the
λ-density level set with near-optimal Hausdorff distance.

Our main result in this paper is to provide a provable Õ(n)-
time approximation algorithm for DBSCAN. The algorithm
has two main components: The first part is a near linear time
core point set construction based on a novel grid density
estimation method which unlike previous work avoids k-
nearest neighbor search which is a bottleneck in previous
work. The second part is a graph construction component in
which we apply locality sensitive hashing to construct the
clusters. Moreover, our algorithm can be used to estimate the
λ-density level set with near-optimal Hausdorff distance in

1We use Õ(f(n)) to denote O(f(n) · log f(n)).
2See Assumtion 7 and the corresponding section for a definition.
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Õ(n) time improving over the O(n2−
2β

2β+D ) running time of
DBSCAN++, which might be of independent interest.

Although, the main goal of this paper is to design a fast
algorithm in the classical setting, as a side result, we show
how to apply our idea to design a distributed algorithm in the
MapReduce model using Õ(n) work and O(log n) rounds of
computation.

In addition to our theoretical guarantees, we provide an
empirical study of the algorithms on real and synthetic data
sets. Based on our experiments, our algorithm significantly
improves the running time of DBSCAN and DBSCAN++.
Moreover, even though our algorithm is an approximation al-
gorithm specifically designed to improve the running time, it
achieved comparable quality clusterings to that of DBSCAN
and DBSCAN++. Furthermore, we observe that speedup in-
creases significantly as the size of data sets increases, e.g., at
108 points, we reach 100× speedup.

Algorithm
In this section, we first review the density level set estimation
based clustering methods including the classic DBSCAN
algorithm (Ester et al. 1996) and its current state-of-the-art
approximation DBSCAN++ (Jang and Jiang 2018). Then we
introduce our new algorithm — near linear time DBSCAN.

Before delving into more detailed discussions, let us intro-
duce some notation used in this paper. We use R≥0 to denote
the set of non-negative real numbers. We use RD to denote
D-dimensional Euclidean space. The distance between two
points x, y ∈ RD is defined as d(x, y) := ‖x − y‖2 =√∑D

i=1(xi − yi)2. We use ‖x−y‖p to denote the `p distance

between x and y, i.e., ‖x− y‖p =
(∑D

i=1 |xi − yi|p
)1/p

. In
particular, for p =∞, ‖x− y‖∞ = maxi |xi − yi|. We use
[m] to denote the set {1, 2, · · · ,m}.

Clustering via Density Level Set Estimation
The input data is a set of n points X in D-dimensional Eu-
clidean space. The goal is to partition X into several clusters.
The seminal DBSCAN work (Ester et al. 1996) provides
a natural way to generate clusters based on the density of
the data points. Suppose X are i.i.d. samples drawn from a
distribution F over RD. Let f : X → R≥0 be the density
function of F , where X is the support of F . The definition
of λ-density level set (or λ-level-set for short) is given in the
following.

Definition 1 (Density level set). Given λ ≥ 0, the λ-level-set
of f is defined as Lf (λ) := {x ∈ X | f(x) ≥ λ}.

Notice that λ-level-set may contain multiple connected
components in the space. For a given level λ, an ideal way to
partition the data points is via the connected components in
the λ-level-set, i.e., points that fall into the same component
are grouped into the same cluster. For data points which
are outside of the λ-level-set, they are put into the cluster
corresponding to the closest component in the λ-level-set.
Thus, to generate clusters, the goal becomes to estimate the
density level set.

Algorithm 1 DBSCAN

1: Inputs: X ⊂ RD, ε, k
2: Initialize core C ← ∅.
3: For each x ∈ X: if |{y ∈ X | d(x, y) ≤ ε}| ≥ k, add x to C.
4: Construct a graph G: each node corresponds to a point in X .
5: For each core point c ∈ C, add an edge in G between c and
x ∈ X which satisfies d(c, x) ≤ ε.

6: Return connected components of G.

The high level idea of DBSCAN is as the following. Firstly
it wants to approximately recognize the points that fall into
the density level set. By the definition of the density level set,
such points have high density and thus should be in dense
regions of the input. Data points in dense regions are called
core points. These points are used to estimate the density
level set. Next it wants to estimate the connected components
of the density level set. Thus, it wants to find connected
dense regions. To achieve this goal, it generates a graph
by connecting close core points and then it finds connected
components of the graph. The remaining data points are
clustered by assigning them to the close dense regions. Based
on this idea, DBSCAN is described in Algorithm 1.

As shown in Algorithm 1, if there are at least k points in the
ε-radius neighborhood of a certain point, it is regarded as a
core point. In other words, a core point given by Algorithm 1
has a dense ε-radius neighborhood. To use the output of
Algorithm 1 to estimate the connected components of λ-level-
set for a given λ, one needs to set k and ε properly according
to λ. For detailed related theoretical analysis, we refer readers
to (Jiang 2017; Jang and Jiang 2018). In practice, when λ is
not explicitly given, k and ε are usually tuning parameters
for obtaining good clustering results.

DBSCAN++ (Jang and Jiang 2018) has a simple modifi-
cation over DBSCAN. It shows that a downsampled subset
of core points still estimates the density level set well. Based
on this idea, they first select a subset of m points from the
entire dataset and only recognize core points among the sam-
pled m points. Then they follow the remaining steps in the
DBSCAN algorithm. In their analysis and experiments, they
show that if m ≈ n1−2β/(2β+D), the obtained results have
good qualities.

Consider the running time of both algorithms. For DB-
SCAN, it needs to find k-nearest neighbors for each point.
Thus, the total running time is n times the time for k-nearest
neighbor search over n points. For DBSCAN++, it needs
to find k-nearest neighbors for m sampled points. Thus, the
total running time is m times the running time for k-nearest
neighbor search over n points. As discussed by (Jang and
Jiang 2018), although there is a line of work improving the
running time of DBSCAN by boosting the k-nearest neighbor
search in some certain cases (see e.g., (Kumar and Reddy
2016; Vijayalaksmi and Punithavalli 2012; Huang and Bian
2009)), DBSCAN takes near quadratic time and DBSCAN++
takes O(mn) time in general. These running times are far
away from near linear runnint time.
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Near Linear Time DBSCAN
We develop a new DBSCAN algorithm which avoids the
bottleneck, k-nearest neighbor search. By rethinking Algo-
rithm 1, there is a natural question to ask: is there any way
beyond looking at the ε-radius neighborhood to distinguish
whether a point is in a dense region or not? Suppose data
points are drawn from a continuous distribution. If point x
has high density, then any point which is close to x must
also have high density. Thus, if we look at any small (hy-
per)cube containing x, the probability that a sample falls
into the (hyper)cube will be roughly the volume of the (hy-
per)cube times the density of x. Thus, if the data set X is
sufficiently large, we will observe a large number of samples
in the (hyper)cube, and we can regard such x as a core point.
Inspired by this observation, we propose a new core point set
construction method in Algorithm 2. Notice that for a point
u ∈ RD, we use buc to denote a point v ∈ ZD such that
each entry of v is obtained by rounding down each entry of u,
i.e., ∀i ∈ {1, 2, · · · , D}, vi = buic. Roughly speaking, Al-
gorithm 2 partitions the space RD into cells where each cell
is a (hyper)cube with side length 2ε. Notice that two points
are in the same cell if and only if they have the same rounded
coordinates. Thus, we can easily count the number of points
that fall into each cell by sorting and indexing rounded points.
If a cell contains at least k points, it will mark every point in
this cell as a core point.

Once we obtain core points, the next step is to construct
the graph over points. Then another question comes: do we
really need to restrict on only connecting the points in the
ε-radius neighborhood? If the distance between any two dif-
ferent dense regions are much larger than ε, it is safe to
connect core points with distance moderately larger than
ε. This observation motivates us to use Locality Sensitive
Hashing (LSH), which has broad applications in approximate
nearest neighbor search problems. An LSH family is a set
of hash functions such that if we draw a hash function from
such family, the probability of mapping two close points to
the same hash value is high and the probability of mapping
two far points to the same hash value is low. We refer readers
to a survey (Andoni and Indyk 2008) for more background
and literature of LSH. In this work, we use the following
LSH in our algorithm.
Lemma 2. Given ε ∈ R≥0, let η be a random variable which
has uniform distribution over [0, 2ε]. Let h : RD → ZD be a
hash function such that ∀x ∈ RD, h(x) := bx+η·~1D2ε c, where
~1D is a D-dimensional all-one vector. Then, for any two
points x, y ∈ RD,

1. Prh[h(x) = h(y)] ≥ 1− ‖x−y‖12ε .

2. h(x) = h(y)⇒ ‖x− y‖∞ ≤ 2ε.

Algorithm 2 Core Point Set Construction via Rounding

1: Inputs: X ⊂ RD, ε, k
2: Construct ĥ : RD → ZD: for x ∈ RD, ĥ(x) := b x

2ε
c.

3: Initialize core C ← ∅.
4: For x ∈ X , if |{y ∈ X | ĥ(x) = ĥ(y)}| ≥ k, add x into C.
5: Return C.

Algorithm 3 Near Linear time DBSCAN

1: Inputs: X ⊂ RD, t, ε, k
2: //Construct core point set:
3: Let core C be the output of Algorithm 2.
4: //Construct a graph over core points:
5: Draw t independent hash functions h1, h2, · · · , ht : RD →

ZD , where hi is constructed as the same as described in
Lemma 2: choose ηi ∈ [0, 2ε] uniformly at random, and

∀x ∈ RD , let hi(x) :=
⌊
x+ηi·~1D

2ε

⌋
.

6: Construct a graph G: for i ∈ [t] and for each maximal subset of
core points S ⊆ C with the same hash value of hi(·), choose
an arbitrary point in S and connect it to all other points in S in
the graph G.

7: //Handle non-core points:
8: For each non-core point x ∈ X \ C, find one arbitrary core

point c ∈ C such that ∃i ∈ [t], hi(c) = hi(x). If such point c
exists, connect x to c in G.

9: //Final Clustering:
10: Return connected components of G

Proof. Consider two points x, y ∈ RD. Fix a coordinate i ∈
[D]. The probability that b(xi+η)/2εc 6= b(yi+η)/2εc is at
most |xi−yi|/2ε. By taking union bound over all coordinates,
the probability that h(x) 6= h(y) is at most ‖x − y‖1/2ε,
and thus the first claim holds. Now, consider two points
x, y ∈ RD with ‖x − y‖∞ > 2ε. There exists a coordinate
i such that xi − yi > 2ε which means that for any η ∈ R,
b(xi+η)/2εc can never be equal to b(yi+η)/2εc. Thus, the
second claim holds.

By combining the above LSH with our new core point set
construction method (Algortihm 2), we give our near linear
time DBSCAN algorithm in Algorithm 3.

Theorem 3 (Running time of Algorithm 3). Algorithm 3
can be implemented in Õ(ntD) time. In particular, if t =

O(log n), it has running time Õ(nD) which is near linear in
the size of X .

Proof. In the stage of core point set construction, we run
Algorithm 2. Algorithm 2 can be implemented in Õ(nD)

time: for each x ∈ X , we use O(D) time to compute ĥ(x).
Then we use sorting which takes Õ(nD) time to group all
points by their rounding value ĥ(x). We can determine the
core by looking at the size of each group. In the stage of
constructing graph over core points, we use t ·O(nD) time
to compute hash value hi(x) for each i ∈ [t] and x ∈ X .
Similarly, for each i ∈ [t], we can use sorting to group all
core points by their hash value hi(x). We create a star in
G for each group, i.e., we choose a node in the group and
connect it to everyone in the group. Thus, the running time
in this stage is at most t · Õ(n ·D). In the stage of handling
non-core points, we still use sorting to group points by their
hash values. For each core point, we mark the groups it falls
in. Since a non-core point only needs to find an arbitrary core
point with the same hash value, we only need O(t) time to
handle each non-core point. The time in this stage is Õ(t·nD).
The connected components of the graph G can be found in
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the time linear in the number of edges which is at mostO(nt).
Thus, the total running time is at most Õ(ntD).

Theoretical Analysis for Density Level Set
Estimation

It was shown that DBSCAN and DBSCAN++ are consistent
estimators of the density level sets (Jiang 2017; Jang and
Jiang 2018). In this section, we will show that our near linear
time DBSCAN algorithm (Algorithm 3) also achieves similar
statistical consistency guarantees. As in (Jiang 2017; Jang and
Jiang 2018), our density level set estimator is near optimal
under Hausdorff distance. Due to space limits, we will put all
missing details into Appendix.

The following is a uniform convergence bound (Chaud-
huri and Dasgupta 2010). It plays an important role in our
analysis.

Lemma 4 (Theorem 15 of (Chaudhuri and Dasgupta 2010)).
Let X be a set of n i.i.d. samples drawn from a distri-
bution F over X . With probability at least 1 − δ/3, for
any cube K ⊂ RD, Prx∼F [x ∈ K] ≥ Cδ,n

√
D logn
n ⇒

|X ∩K| > 0; Prx∼F [x ∈ K] ≥ k
n +Cδ,n

√
k
n ⇒ |X ∩K| ≥

k; Prx∼F [x ∈ K] < k
n − Cδ,n

√
k
n ⇒ |X ∩K| < k, where

Cδ,n = C0 log(1/δ)
√
D log n, C0 is a universal constant,

and k ≥ Cδ,n.

Regularity Assumptions
We have two assumptions in our theoretical analysis.

Assumption 5. f is continuous and has convex compact
support X ⊆ RD.

Definition 6. For x ∈ RD, A ⊆ RD, define d(x,A) :=
infx′∈A ‖x − x′‖2. For C ⊆ X , r ≥ 0, define B(C, r) :=
{x ∈ X | d(x,C) ≤ r}.
Assumption 7 (β-regularity of level-sets). Let β ∈ (0,∞).
There exist C1, C2, λc > 0 such that ∀x ∈ Lf (λ − λc) \
Lf (λ), C1 ·d(x, Lf (λ))β ≤ λ− f(x) ≤ C2 ·d(x, Lf (λ))β .

We adopted the same assumptions made by (Jang and
Jiang 2018). The first one (Assumption 5) is a natural as-
sumption which asks the distribution to be continuous. The
second assumption (Assumption 7) is a standard assumption
in level set analysis (see e.g., (Jang and Jiang 2018; Singh
et al. 2009)). In high level, it requires that the boundary of
the target estimated density level set should have some good
properties. One is that the boundary should be salient enough.
This is parameterized by the parameter β. Another is that the
distance between two different connected components of the
density level set should be far enough. This is described by
both β and λc (See the following lemma and corollary).

Lemma 8. Under Assumption 5 and Assumption 7, ∀x ∈
B(Lf (λ), rc) \ Lf (λ), C1 · d(x, Lf (λ))β ≤ λ − f(x) ≤

C2 · d(x, Lf (λ))β , where rc =
(
λc
C2

)1/β
.

Corollary 9. The distance between any two connected com-
ponents of Lf (λ) is at least rc.

Parameters Used in Theoretical Analysis
In this section, we describe our parameter settings. Let n
be the size of the point set, i.e., n = |X|. Let λ be the de-
sired density level. Define Cδ,n = C0

√
D log(n/δ), where

δ is a confidence parameter, i.e., the desired probability
that our guarantees hold is at least 1 − δ. We suppose that
n is sufficiently large. We choose k to be in the range:
κ1 · (log n)1.5 ≤ k ≤ κ2 · (log n)

D
2β+D n

2β
2β+D , for some

sufficiently large parameter κ1 and sufficiently small parame-
ter κ2, where κ1, κ2 only depends on D,λ, δ and the density

function f(·). We choose ε = 1
2

(
k

n·λ·(1−2Cδ,n/
√
k)

)1/D
and

let t = Ct log(n/δ) for some sufficiently large universal
constant Ct.

Density Level Set Estimation
In this section, we show that the output of our new core point
set construction, Algorithm 2, is indeed a good estimation
to the desired density level set. Firstly, we show that if a
sampled point is too far away from the desired density level
set, it will not be added into the core.

Lemma 10. ∀x ∈ X , if d(x, Lf (λ)) ≥ 2
(
λ
C1
· 10

Cδ,n√
k

) 1
β

,
then x is not in the core.

Proof. If y ∈ X satisfies ĥ(y) = ĥ(x), then ‖x −
y‖2 ≤

√
D‖x − y‖∞ ≤ 2

√
Dε. We have d(y, Lf (λ)) ≥

d(x, Lf (λ)) − 2
√
Dε ≥ d(x, Lf (λ))/2, where the last in-

equality follows from that ε is properly chosen and κ2
is sufficiently small. By Assumption 7, we have f(y) ≤
λ− λ · 10Cδ,n/

√
k. Then,

∫
X f(z) · 1

(
ĥ(z) = ĥ(x)

)
dz ≤

(2ε)D · (λ − λ · 10Cδ,n/
√
k) ≤ k

nλ(1−2Cδ,n/
√
k)
· λ(1 −

10Cδ,n/
√
k) ≤ k

n −
√
k
n · 8Cδ,n. According to Lemma 4, we

know that |{y ∈ X | ĥ(x) = ĥ(y)}| < k which means that
x will not be added into the core.

Then we show that if a sampled point is in the density level
set, or it is sufficiently close to the density level set, it must
be added into the core by Algorithm 2.

Lemma 11. ∀x ∈ X , if d(x, Lf (λ)) ≤ 1
2

(
λ
C2
· Cδ,n√

k

) 1
β

,
then x will be added into the core.

Proof. If y ∈ X satisfies ĥ(y) = ĥ(x), then ‖x − y‖2 ≤√
D‖x−y‖∞ ≤ 2

√
Dε. Thus, d(y, Lf (λ)) ≤ d(x, Lf (λ))+

2
√
Dε ≤

(
λ
C2
· Cδ,n/

√
k
)1/β

, where the last inequality
follows from that ε is properly chosen and κ2 is suffi-
ciently small. By Assumption 7, we have f(y) ≥ λ −
λCδ,n/

√
k. Then,

∫
X f(z) · 1(ĥ(z) = ĥ(x))dz ≥ (2ε)D ·(

λ− λCδ,n/
√
k
)
≥ k

nλ(1−2Cδ,n/
√
k)
· λ(1 − Cδ,n/

√
k) ≥

k
n + Cδ,n

√
k
n . According to Lemma 4, we know that |{y ∈

X | ĥ(x) = ĥ(y)}| ≥ k which means that x will be added
into the core.
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Next, we show that for any point which is in the desired
density level set, there is a close sampled point which will be
added into the core.
Lemma 12. ∀x ∈ Lf (λ), ∃ a core point x′ ∈ C such that

‖x− x′‖2 ≤ ε
2 ≤

1
2

(
λ
C2
· Cδ,n/

√
k
)1/β

.

Proof. Let r0 = 1
2

(
2Cδ,n

√
D logn

nλ

)1/D
. We have:

∫
X f(z) ·

1(‖z − x‖∞ ≤ r0)dz ≥ (2r0)D(λ − C2 · rβ0 ) ≥
(2r0)Dλ/2 ≥ Cδ,n

√
D logn
n . By Lemma 4, there is a point

x′ ∈ X such that ‖x − x′‖∞ ≤ r0. Since κ1 is sufficiently
large, by analyzing the range of k, we have r0 ≤ ε

2
√
D

. Since
ε is chosen properly and κ2 is sufficiently small, we have
ε
2 ≤

1
2 ·
(
λ
C2
· Cδ,n/

√
k
)1/β

. By Lemma 11, x′ is in C.

The Hausdorff Distance is defined as dHaus(A,A
′) =

max {supx∈A dist(x,A′), supx′∈A′ dist(x′, A)} . Now, we
are able to bound the Hausdorff error of using the core re-
turned by Algorithm 2 to estimate the desired density level set.
The theorem follows directly from Lemma 12 and Lemma 10.
Theorem 13. Let C be the output of Algorithm 2, then,

dHaus(C,Lf (λ)) ≤ 2
(
λ
C1
· 10

Cδ,n√
k

)1/β
.

Remark 14. If we choose maximum possible k, the above
quantity is at most Õ

(
κ3 · n−

1
2β+D

)
, where κ3 is a parame-

ter only depends on D, δ, λ and the density function f . This
matches the lower bound shown in Theorem 4 of (Tsybakov
et al. 1997). Thus, our density level set estimation is near
optimal.

Connected components estimation. After obtaining the
core point set, the next step in Algorithm 3 is to construct the
graph over the data points. We show that there is actually a
one-to-one correspondence between the connected compo-
nents of λ-density level sets and the connected components
of the graph constructed by Algorithm 3. We defer these
results to Appendix.

Efficient DBSCAN in Distributed Models
Observe that all operations in our algorithm are highly par-
allelizable. In theory, beyond classic sequential setting, our
algorithm can also be efficiently implemented in parallel
setting and distributed setting in general. As one example,
our algorithm can be implemented in MapReduce (Dean and
Ghemawat 2008). A commonly studied formal model for
MapReduce is the (Massively Parallel Computation) MPC
model which is introduced by (Karloff, Suri, and Vassilvit-
skii 2010; Goodrich, Sitchinava, and Zhang 2011; Beame,
Koutris, and Suciu 2017). In this model, there are p machines
where each has local memory size s = O(N δ). Here N is
the total size of the input data and δ ∈ (0, 1) is a constant. It
implies that the local memory of each machine is sublinear
in the input size. In the most restricted case, the total space
p · s in the system is Õ(N) where N is the total size of the
input data, i.e., the total space is slightly larger than the input

size. Before the computation starts, the input is distributed
on Θ(N/s) input machines. The computation proceeds in
rounds. In each round, a machine does some local computa-
tion and sends messages to other machines at the end of the
round. In a round, the total communication of a machine must
be bounded by its local memory size s. In the next round,
each machine only holds the received messages in its local
memory. At the end of the computation, the output data is
distributed on the output machines. The goal is to design an
algorithm with small number of rounds.

Theorem 15 (DBSCAN in MapReduce). Except final clus-
tering stage, Algorithm 3 can be implemented in the MPC
model with O(1) number of rounds and Õ(ntD) total space.
In particular, if t = O(log n), the total space needed is
Õ(nD).

Complete Algorithm 3 in the MPC model. The only
stage remaining is to compute connected components of the
constructed graph G. In the MPC model, this can be done
in ∼ log(Diameter of the graph) number of rounds (Andoni
et al. 2018; Behnezhad et al. 2019a). In a stronger Adaptive
Massively Parallel Computation (AMPC) model (Behnezhad
et al. 2019b), connected components can be computed in
O(log log n) rounds. By combining with Theorem 15, we
can run our DBSCAN clustering algorithm in MPC model
with O(log n) rounds and in AMPC model with O(log log n)
rounds. In general, if connected components can be com-
puted in MPC/AMPC model in R rounds, our algorithm can
be implemented in MPC/AMPC model in R+O(1) rounds.

Experiments
Setup. We evaluated our algorithm, Algorithm 3, on both
synthetic and real world datasets. We implemented DBSCAN,
DBSCAN++ (Jang and Jiang 2018) and our algorithm. We
implemented two versions (indexed as DSv1 and DSv2 re-
spectively) of DBSCAN, where one is exactly the same as
Algorithm 1 and another is a natural variant but has a better
accuracy in practice (See Appendix for more details). There
are also two versions of DBSCAN++, where one (indexed as

Datasets n D c
(A) iris 150 4 3
(B) wine 178 13 3
(C) spam 4601 57 2
(D) images 210 19 7
(E) MNIST 60000 20 10
(F) Libras 360 90 15
(G) mobile 2000 20 4
(H) zoo 101 16 7
(I) seeds 210 7 3
(J) letters 20000 16 26
(K) phonemes 4509 256 5
(L) YouTube8M 764321 128 3

Table 1: Real world datasets summary. In the table, n denotes the
number of data points, D denotes the dimension, and c denotes the
number of ground truth clusters. We index datasets from (A) to (L).
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DSv1 DSv2 DS++
k-ctr

DS++
unif Ours

(A) 0.5681
0.7316

0.6899
0.7316

0.6634
0.7508

0.5823±0.07
0.6512±0.07

0.7066±0.01
0.7316±0.00

(B) 0.2883
0.3636

0.3122
0.4006

0.3694
0.4246

0.3615±0.02
0.4177±0.01

0.3366±0.02
0.4037±0.02

(C) 0.1301
0.0455

0.1453
0.1076

0.1304
0.1210

0.1404±0.00
0.1080±0.00

0.1128±0.00
0.0682±0.00

(D) 0.3244
0.4560

0.3578
0.6238

0.3783
0.5380

0.3477±0.02
0.5168±0.02

0.3979±0.01
0.5828±0.00

(E) 0.1950
0.0760

0.2204
0.4203

0.2356
0.4581

0.2561±0.00
0.4779±0.00

0.2757±0.01
0.4223±0.00

(F) 0.1420
0.2037

0.1173
0.2722

0.1883
0.4461

0.1602±0.01
0.3505±0.02

0.2311±0.01
0.4554±0.01

(G) 0.0192
0.0618

0.3559
0.4550

0.4087
0.4597

0.2989±0.02
0.4143±0.01

0.2005±0.01
0.3196±0.00

(H) 0.7169
0.6832

0.6814
0.6921

0.7171
0.7375

0.5775±0.06
0.6140±0.02

0.7568±0.00
0.8262±0.00

(I) 0.3893
0.3647

0.6948
0.6787

0.5738
0.6032

0.5803±0.04
0.6067±0.03

0.6408±0.02
0.6230±0.01

(J) 0.1096
0.3457

0.1651
0.5004

0.1185
0.4926

0.1117±0.00
0.4875±0.00

0.1390±0.01
0.4664±0.00

(K) 0.4577
0.3297

0.7344
0.8229

0.3558
0.5506

0.6482±0.02
0.7343±0.02

0.3666±0.02
0.2858±0.02

Table 2: Scores of algorithms on real world datasets (A)-(K). For
each dataset, the first row corresponds to Adjusted Rand Index
scores and the second row corresponds to Adjusted Mutual Informa-
tion. In each row, the highest score is shown in bold and the second
highest score is underlined. DBSCAN++ with uniform initialization
and our algorithm are randomized algorithms. We took 10 runs to
report the standard error. Other algorithms are deterministic. As we
can see that our algorithm has the highest score on 7 metrics and
has top-2 score on 12 metrics. For each compared algorithm, our
algorithm has better scores on at least half of the total 22 metrics.

DS++ unif) uses uniform sampling to choose m samples in
its initialization stage, and another (indexed as DS++ k-ctr)
uses greedy k-center initialization (Jang and Jiang 2018) to
choose m samples. For each version of DBSCAN and DB-
SCAN++, we implemented two variants. The first variant
uses KDTree (Bentley 1975) to handle k-nearest neighbor
search while the second variant uses brute-force3. We ran all
of them on 11 real world datasets that are also used in (Jang
and Jiang 2018). In addition, We ran our algorithm and all
implemented versions of DBSCAN++ on an additional large
real world dataset for the scalability test. A brief summary of
these datasets is shown in Table 1. Dataset (E) MNIST (Le-
Cun et al. 1998) contains 10 classes of handwritten digits.
Each original data point in MNIST has 28×28 = 784 dimen-
sions. We use PCA to reduce the dimension to 20. Dataset
(G) mobile is a dataset for mobile price classification. Based
on different price ranges, data points are partitioned into 4
clusters. This dataset is available on Kaggle4. Dataset (K)
phonemes (Friedman, Hastie, and Tibshirani 2001) contains
log periodograms of spoken phonemes. Based on different
phonemes, data points are partitioned into 5 clusters. Dataset

3For KDTree part, we used public codes shared here: https:
//github.com/crvs/KDTree.

4See https://www.kaggle.com/.

DS++ k-ctr DS++ unif Ours
use

kd-tree N Y N Y N/A

(L) 9862.41 8982.18 5146.73 7260.41 56.69

Table 3: Running time for real world dataset (L). We ran our
algorithm and all implemented versions of DBSCAN++ on the
dataset (L). We report the running time (in seconds) for each listed
algorithm on the dataset (L). For each version of DBSCAN++, we
report both running time of using and without using KDTree for
handling k-nearest neighbor search.

(L) YouTube8M5 contains video features (Abu-El-Haija et al.
2016). The full dataset contains 31GB features. We selected
the first 3 classes of videos (Game, Vehicle, Video Game)
as 3 clusters. We choose the 128 dimensional audio features
as data points. Other datasets are available on UCI reposi-
tory (Dua and Graff 2017). Readers may find detailed descrip-
tions of these datasets there. All algorithms are implemented
in C++. Adjusted Rand Index scores and Adjusted Mutual
Information scores are evaluated via the python3 package
scikit-learn with version 0.23.1. All experiments are per-
formed on a machine with 32G main memory and Intel(R)
Xeon(R) CPU @ 2.30GHz. Our synthetic datasets are Gaus-
sian mixtures in Euclidean space with various dimensions
and various number of points. Each dataset has 3 equal-size
clusters.

In all experiments, we fixed k = 10. For each clustering
task, DBSCAN++ needs to subsample m data points and
computes core points among these subsamples. As suggested
by (Jang and Jiang 2018), we set m = b0.1 · nD/(D+4)c for
all experiments. For our algorithm, we set t, the number of
hash functions, to be b2 · ln(n)c. All experiments are done
on a single machine. All programs are in single thread mode.
For experiments on synthetic datasets, we fix ε = 3 ·

√
D for

all algorithms. For more detailed experiment setup, we refer
readers to Appendix.

Evaluation on small real world datasets. We evaluate
both accuracy and speed for all implemented algorithms on
datasets (A) to (K) described in Table 1. The accuracy is
evaluated under metrics Adjusted Rand Index scores and Ad-
justed Mutual Information (Vinh, Epps, and Bailey 2010).
We ran the same optimal tuning procedure to find the best ε
for each algorithm and reported the corresponding scores. As
shown in Table 2 and Table 4, the qualities of the clustering
results obtained by our algorithm are as good as DBSCAN
and DBSCAN++ while the running time of our algorithm is
always the fastest.

Speed-up for large-scale datasets. Table 4 shows that DB-
SCAN++ and our algorithm can gain significant speed-up
even when n is about thousands. It is natural to ask what
the behavior of DBSCAN++ and our algorithm is when the
size of the dataset becomes much larger. We first test our
algorithm and all implemented versions of DBSCAN++ on

5See http://research.google.com/youtube8m/download.html.
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DSv1 DSv2 DS++ k-ctr DS++ unif Ours
use kd-tree N Y N Y N Y N Y N/A

(C) 2.33
±0.00

7.62
±0.01

1.34
±0.00

2.23
±0.01

0.45
±0.00

0.45
±0.00

0.23
±0.00

0.39
±0.00

0.11
±0.00

(E) 73.65
±0.20

84.20
±0.28

89.63
±1.43

225.51
±2.65

2.55
±0.01

9.58
±0.07

2.18
±0.01

13.03
±0.06

1.01
±0.01

(F) 0.02
±0.00

0.06
±0.00

0.02
±0.00

0.07
±0.00

0.01
±0.00

0.02
±0.00

0.01
±0.00

0.02
±0.00

0.00
±0.00

(G) 0.10
±0.00

0.48
±0.00

0.09
±0.00

0.45
±0.00

0.01
±0.00

0.04
±0.00

0.00
±0.00

0.03
±0.00

0.00
±0.00

(J) 7.97
±0.01

7.83
±0.15

7.83
±0.15

17.12
±0.04

0.54
±0.00

2.15
±0.00

0.34
±0.00

1.31
±0.01

0.28
±0.00

(K) 10.00
±0.04

27.52
±0.29

9.46
±0.01

35.46
±0.14

1.34
±0.00

2.93
±0.01

1.17
±0.01

3.95
±0.01

0.23
±0.01

Table 4: Running time for real world datasets (A)-(K). We ran each algorithm on each dataset 10 times. We report the mean running time (in
seconds) and standard errors for each algorithm on each dataset. For datasets (A), (B), (D), (H), (I), every implemented algorithm can finish in
at most 0.01 seconds and has standard error 0.00. For each version of DBSCAN and DBSCAN++, we report both running time of using and
without using KDTree for handling k-nearest neighbor search. In all experiments, our algorithm is the fastest one.

DS++ k-ctr DS++ unif Ours Data generation
use kd-tree N Y N Y N/A N/A
n = 106, D = 10 153.77 1738.85 118.46 1671.93 4.35 0.47
n = 106, D = 100 40043.24 >1day 30643.61 >1day 22.89 3.93
n = 106, D = 300 >1day >1day >1day >1day 113.82 11.66
n = 107, D = 10 >1day >1day >1day >1day 56.08 5.54
n = 108, D = 10 >1day >1day >1day >1day 708.121 48.58

Table 5: Running time (in seconds) for extremely large synthetic datasets. For synthetic datasets with extremely large size, our algorithm only
needs about 10× the time needed to generate the data. Our algorithm can have more than 100× speed-up comparing with DBSCAN++. In
addition, in all experiments, all algorithms have Adjusted Rand Index score 1.0 and Adjusted Mutual Information score 1.0.

(a) (b)
Figure 1: Running time vs. number of points. In both above figures, x-axis corresponds to the number of points in the dataset, and y-axis
corresponds to the running time. In (a) and (b), we can see that the running time of our algorithm is much faster than DBSCAN++. For these
synthetic datasets, KDTree cannot help in improving the running time of DBSCAN++. It even introduces a large overhead. The running time of
our algorithm grows almost linearly while the running time of each version of DBSCAN++ grows much faster than linear. In addition, in all
experiments, all algorithms have Adjusted Rand Index score 1.0 and Adjusted Mutual Information score 1.0.

the large real world dataset (L) which has n = 764321 and
D = 128. We choose ε = 1.5 and the running time of each
algorithm is shown in Table 3. Since all versions of DB-
SCAN++ took several hours for even one run on the dataset
(L), we cannot afford to run optimal tunning procedure to
find the best ε for DBSCAN++ on (L). Thus, we did not
compare the accuracy on (L). Then we test our algorithm and
all implemented versions of DBSCAN++ on two bathces of
synthetic datasets. In the first batch of synthetic experiments,
we generated mixture of Gaussians in 10-dimensional space

with 3 clusters. We enumerate n from 105 to 8 · 105 and see
the change of running time of DBSCAN++ and our algorithm
when n increases. In the second batch of synthetic experi-
ments, we ran DBSCAN++ and our algorithm for extremely
large number of points and larger dimensions. For all syn-
thetic experiments, all evaluated algorithms always recover
3 clusters perfectly. The running time for n ∈ [105, 8 · 105]
is shown in Figure 1. The running time for extremely large
synthetic dataset is given in Table 5.
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rokni, V.; and Schudy, W. 2019b. Massively parallel computa-
tion via remote memory access. In The 31st ACM Symposium
on Parallelism in Algorithms and Architectures, 59–68.

Bentley, J. L. 1975. Multidimensional binary search trees
used for associative searching. Communications of the ACM
18(9): 509–517.

Chaudhuri, K.; and Dasgupta, S. 2010. Rates of convergence
for the cluster tree. In Advances in neural information pro-
cessing systems, 343–351.

Chen, D. Z.; Smid, M.; and Xu, B. 2005. Geometric al-
gorithms for density-based data clustering. International
Journal of Computational Geometry & Applications 15(03):
239–260.

de Berg, M.; Gunawan, A.; and Roeloffzen, M. 2017.
Faster DB-scan and HDB-scan in low-dimensional Euclidean
spaces. arXiv preprint arXiv:1702.08607 .

Dean, J.; and Ghemawat, S. 2008. MapReduce: simplified
data processing on large clusters. Communications of the
ACM 51(1): 107–113.

Dua, D.; and Graff, C. 2017. UCI Machine Learning Reposi-
tory. URL http://archive.ics.uci.edu/ml.

Ester, M.; Kriegel, H.-P.; Sander, J.; Xu, X.; et al. 1996.
A density-based algorithm for discovering clusters in large
spatial databases with noise. In Kdd, volume 96, 226–231.

Friedman, J.; Hastie, T.; and Tibshirani, R. 2001. The ele-
ments of statistical learning, volume 1. Springer series in
statistics New York.

Gan, J.; and Tao, Y. 2017. On the hardness and approximation
of euclidean dbscan. ACM Transactions on Database Systems
(TODS) 42(3): 1–45.

Goodrich, M. T. 1999. Communication-efficient parallel
sorting. SIAM Journal on Computing 29(2): 416–432.

Goodrich, M. T.; Sitchinava, N.; and Zhang, Q. 2011. Sorting,
searching, and simulation in the mapreduce framework. In
International Symposium on Algorithms and Computation,
374–383. Springer.

Gunawan, A.; and de Berg, M. 2013. A faster algorithm
for DBSCAN. Master’s thesis. Eindhoven University of
Technology, the Netherlands .

Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann,
P.; and Witten, I. H. 2009. The WEKA data mining software:
an update. ACM SIGKDD explorations newsletter 11(1):
10–18.

Huang, M.; and Bian, F. 2009. A grid and density based
fast spatial clustering algorithm. In 2009 International Con-
ference on Artificial Intelligence and Computational Intelli-
gence, volume 4, 260–263. IEEE.

Jang, J.; and Jiang, H. 2018. DBSCAN++: Towards fast and
scalable density clustering. arXiv preprint arXiv:1810.13105
.

Jiang, H. 2017. Density level set estimation on manifolds
with dbscan. In Proceedings of the 34th International Con-
ference on Machine Learning-Volume 70, 1684–1693. JMLR.
org.

Karloff, H.; Suri, S.; and Vassilvitskii, S. 2010. A model of
computation for MapReduce. In Proceedings of the twenty-
first annual ACM-SIAM symposium on Discrete Algorithms,
938–948. SIAM.

Kpotufe, S.; and Von Luxburg, U. 2011. Pruning nearest
neighbor cluster trees. arXiv preprint arXiv:1105.0540 .

Kumar, K. M.; and Reddy, A. R. M. 2016. A fast DBSCAN
clustering algorithm by accelerating neighbor searching using
Groups method. Pattern Recognition 58: 39–48.

LeCun, Y.; Bottou, L.; Bengio, Y.; and Haffner, P. 1998.
Gradient-based learning applied to document recognition.
Proceedings of the IEEE 86(11): 2278–2324.

Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; et al. 2011. Scikit-learn: Machine learning
in Python. the Journal of machine Learning research 12:
2825–2830.

Schubert, E.; Koos, A.; Emrich, T.; Züfle, A.; Schmid, K. A.;
and Zimek, A. 2015. A framework for clustering uncertain
data. Proceedings of the VLDB Endowment 8(12): 1976–
1979.

Singh, A.; Scott, C.; Nowak, R.; et al. 2009. Adaptive haus-
dorff estimation of density level sets. The Annals of Statistics
37(5B): 2760–2782.

Team, R. C.; et al. 2013. R: A language and environment for
statistical computing .

7356



Tsybakov, A. B.; et al. 1997. On nonparametric estimation of
density level sets. The Annals of Statistics 25(3): 948–969.
Vijayalaksmi, S.; and Punithavalli, M. 2012. A fast approach
to clustering datasets using dbscan and pruning algorithms.
International Journal of Computer Applications 60(14).
Vinh, N. X.; Epps, J.; and Bailey, J. 2010. Information theo-
retic measures for clusterings comparison: Variants, proper-
ties, normalization and correction for chance. The Journal of
Machine Learning Research 11: 2837–2854.

7357


