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Abstract

The standard feedback model of reinforcement learning re-
quires revealing the reward of every visited state-action pair.
However, in practice, it is often the case that such frequent
feedback is not available. In this work, we take a first step
towards relaxing this assumption and require a weaker form
of feedback, which we refer to as trajectory feedback. In-
stead of observing the reward obtained after every action, we
assume we only receive a score that represents the quality
of the whole trajectory observed by the agent, namely, the
sum of all rewards obtained over this trajectory. We extend
reinforcement learning algorithms to this setting, based on
least-squares estimation of the unknown reward, for both the
known and unknown transition model cases, and study the
performance of these algorithms by analyzing their regret.
For cases where the transition model is unknown, we offer a
hybrid optimistic-Thompson Sampling approach that results
in a tractable algorithm.

1 Introduction

The field of Reinforcement Learning (RL) tackles the prob-
lem of learning how to act optimally in an unknown dynam-
ical environment. Recently, RL witnessed remarkable em-
pirical success (e.g., Mnih et al. 2015; Levine et al. 2016;
Silver et al. 2017). However, there are still some matters that
hinder its use in practice. One of them, we claim, is the type
of feedback an RL agent is assumed to observe. Specifically,
in the standard RL formulation, an agent acts in an unknown
environment and receives feedback on its actions in the form
of a state-action dependent reward signal. Although such an
interaction model seems undemanding at first sight, in many
interesting problems, such reward feedback cannot be real-
ized. In practice, and specifically in non-simulated environ-
ments, it is hardly ever the case that an agent can query a
state-action reward function from every visited state-action
pair since such a query can be very costly. For example. con-
sider the following problems:

(i) Consider the challenge of autonomous car driving.
Would we want to deploy an RL algorithm for this setting, we
would need a reward signal from every visited state-action
pair. Obtaining such data is expected to be very costly since
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it requires scoring each state-action pair with a real number.
For example, if a human is involved in providing the feed-
back, (a) he or she might refuse to supply with such feedback
due to the Sisyphean nature of this task, or (b) supplying with
such feedback might take too much time for the needs of the
algorithm designer.

(ii) Consider a multi-stage UX interface that we want to
optimize using an RL algorithm. To do so, in the standard RL
setting, we would need a score for every visited state-action
pair. However, as we ask the users for more information on
the quality of different state-action pairs, the users’ opinions
might change due to the information they need to supply. For
example, as we ask for more information, the user might be
prone to be more negative about the quality of the interface
as the user becomes less patient to provide the requested
feedback. Thus, we would like to keep the number of queries
from the user to be minimal.

Rather than circumventing this problem by deploying
heuristics (e.g., by hand-engineering a reward signal), in this
work, we relax the feedback mechanism to a weaker and
more practical one. We then study RL algorithms in the pres-
ence of this weaker form of feedback mechanism, a setting
which we refer to as RL with trajectory feedback. In RL with
trajectory feedback, the agent does not have access to a per
state-action reward function. Instead, it receives the sum of
rewards on the performed trajectory as well as the identity
of visited state-action pairs in the trajectory. E.g., for au-
tonomous car driving, we only require feedback on the score
of a trajectory, instead of the score of each individual state-
action pair. Indeed, this form of feedback is much weaker
than the standard RL feedback and is expected to be more
common in practical scenarios.

We start by defining our setting and specifying the inter-
action model of RL with trajectory feedback (Section 2).
In Section 3, we introduce a natural least-squares estima-
tor with which the true reward function can be learned
based on the trajectory feedback. Building on the least-
squares estimator, we study algorithms that explicitly trade-
off exploration and exploitation. We start by considering the
case where the model is known while the reward function
needs to be learned. By generalizing the analysis of stan-
dard linear bandit algorithms (OFUL (Abbasi-Yadkori, Pil,
and Szepesvdri 2011) and Thompson-Sampling (TS) for lin-



ear bandits (Agrawal and Goyal 2013)), we establish perfor-
mance guarantees for this setup in sections 4 and 5.1. Al-
though the OFUL-based algorithm gives better performance
than the TS-based algorithm, its update rule is computation-
ally intractable, as it requires solving a convex maximization
problem. Thus, in Section 5.2 we generalize the TS-based
algorithm to the case where both the reward and the transi-
tion model are unknown. To this end, we learn the reward
by a TS approach and learn the transition model by an op-
timistic approach. The combination of the two approaches
yields a computationally tractable algorithm, which requires
solving an empirical Markov Decision Process (MDP) in
each round. For all algorithms, we establish regret guaran-
tees that scale as VK , where K is the number of episodes.
Finally, in Section 5.3, we identify the most computationally
demanding stage in the algorithm and suggest a variant to the
algorithm that rarely performs this stage. Notably, we show
that the effect of this modification on the regret is minor. A
summary of our results can be found in Table 1.

2 Notations and Definitions

We consider finite-horizon MDPs with time-independent
dynamics. A finite-horizon MDP is defined by the tuple
M = (S, A R, P,H), where S and A are the state and
action spaces with cardinalities S and A, respectively. The
immediate reward for taking an action a at state s is a ran-
dom variable R(s,a) € [0, 1] with expectation E[R(s, a)]
r(s, a). The transition kernel is P(s’ | s, a), the probability
of transitioning to state s’ upon taking action a at state s.
H € Nis the horizon, i.e., the number of time-steps in each
episode, and K € N is the total number of episodes. We de-

fine [N] & {1,..., N}, forall N € N,and use i € [H] and
k € [K] to denote time-step inside an episode and the index
of an episode, respectively. We also denote the initial state
in episode k € [K] by s¥, which can be arbitrarily chosen.
A deterministic policy 7 : S x [H] — A is a mapping
from states and time-step indices to actions. We denote by

def . .
ap, = 7(sp, h), the action taken at time h at state s, accord-
ing to a policy 7. The quality of a policy 7 from state s at
time h is measured by its value function, which is defined as

H

E Z T(Sh’vﬁ(sh’vh/)) | Sh = 8, T |,
h’=h

def

Vir(s)

where the expectation is over the environment randomness.
An optimal policy maximizes this value for all states s and

time-steps i simultaneously, and the corresponding optimal
ef

value is denoted by V}*(s) & max, Vir(s), forall h € [H].
We can also reformulate the optimization problem using the
occupancy measure (e.g., Puterman 1994; Altman 1999).
The occupancy measure of a policy 7 is defined as the dis-
tribution over state-action pairs generated by executing the
policy 7 in the finite-horizon MDP M with a transition ker-
nel p (e.g., Zimin and Neu 2013):

def
ar(s,a;p) € E[l(s, = s,a, = a) | s1 = s1,p,7]
=Pr{s, =s,ap =a| s1 = s1,p, 7}
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For brevity, we define the matrix notation ¢™(p) € R#54
where its (s,a, h) element is given by g7 (s, a; p). Further-
more, let the average occupancy measure be d(p) € R4
such that d (s, a;p) & Zthl qr (s,a;p). For ease of no-
tation, when working with the transition kernel of the true
model p = P, we write ¢" = ¢"(P) and d, = d.(P).

This definition implies the following relation:

Z < Z 7(Shy an)qp (Shs ah;P)>

he[H]

> de(s,aip)r(s,a) = dx(p)Tr, (1)

Vi (s1;p,7)

where V" (s1;p,r) is the value of an MDP whose reward
function is r and its transition kernel is p.

Interaction Model of Reinforcement Learning with Tra-
jectory Feedback. We now define the interaction model
of RL agents that receive trajectory feedback, the model that
we analyze in this work. We consider an agent that repeat-
edly interacts with an MDP in a sequence of episodes [K].
The performance of the agent is measured by its regret, de-
fined as R(K) & K | (Vi (sh) — V™ (st)). We denote
by sF and af for the state and the action taken at the h'"
time-step of the k' episode. At the end of each episode
k € [K], the agent only observes the cumulative reward ex-
perienced while following its policy 7 and the identity of
the visited state-action pairs, i.e.,

H
N H41
Vk(sllc) = ZR(SZJLZ% and, {(Sl}cuai) h=1"
h=1

2

This comes in contrast to the standard RL setting, in which
the agent observes the reward per visited state-action pair,

{R(sﬁ,aﬁ)}fﬂ. Thus, RL with trajectory feedback re-
ceives more obscured feedback from the environment on
the quality of its actions. Obviously, standard RL feedback

allows calculating Vk(s’f), but one cannot generally recon-
struct { R(s, a’fl)}le by accessing only Vj,(s¥).

Next, we define the filtration F}, that includes all events
(states, actions, and rewards) until the end of the kth episode,
as well as the initial state of the episode k 4 1. We denote by
T = K H, the total number of time-steps (samples). More-
over, we denote by n(s, a), the number of times that the

agent has visited a state-action pair (s, a), and by X}, the
empirical average of a random variable X . Both quantities
are based on experience gathered until the end of the k'"
episode and are F}, measurable.

Notations. We use O(X) to refer to a quantity that is up-
per bounded by X, up to poly-log factors of S, A, T, K, H,
and %. Furthermore, the notation O(X) refers to a quantity

that 1s upper bounded by X up to constant multiplicative

factors. We use X VYV & max{X,Y} and denote I, as

the identity matrix in dimension m. Similarly, we denote by



Result Exploration | Model Learning Time Complexity Regret
Theorem 3 OFUL X Computationally-Hard o (S AHVK )
Theorem 4 TS X o ((SA)3/ 2H\/F)
Theorem 5 TS v O(s24 22 VE)
Theorem 7 TS v o(s A + 4)+ S0 EL) | 6((84)2HVE (VBT +0))

Table 1: S and A are the state and action sizes, respectively, and H is the horizon. K is the number of episode and C' > 0 is
a parameter of Algorithm 4. Exploration - whether the reward exploration is optimistic (‘OFUL") or uses posterior sampling
(‘TS’). Model Learning - whether the algorithm knows the model (X) or has to learn it (V). Time complexity - per-episode
average time complexity. The hardness of the optimistic algorithm is explained at the end of Section 4 and the time complexity
of the TS-based algorithm is explained in Section 5.3. Regret bounds ignore log-factors and constants and assume that SA > H.

0,, € R™, the vector whose components are zeros. Finally,
for any positive definite matrix M € R™*™ and any vector

xz € R™, we define ||z||,, = VaT M.

3 From Trajectory Feedback to
Least-Squares Estimation

In this section, we examine an intuitive way for estimating
the true reward function r, given only the cumulative re-
wards on each of the past trajectories and the identities of
visited state-actions. Specifically, we estimate r via a Least-
Squares (LS) estimation. Consider past data in the form
of (2). To make the connection of the trajectory feedback to
LS estimation more apparent, let us rewrite (2) as follows,

Vi(st) = di R, 3)
where ¢, € RSAH is the empirical state-action visitation
vector given by Gi(s,a,h) = 1(s =sf,a=af) € [0,1],
and R € R4 is the noisy version of the true reward func-
tion, namely R(s, a, h) = R(sp, ay). Indeed, since the iden-

tity of visited state-action pairs is given to us, we can com-
pute g using our data. Furthermore, observe that

qusah (s,a)

s,a,h

H
=y (Z r (s, a, h))r( a) & dly
s,a \h=1

where the first equality holds since we assume the re-
wards are i.i.d. and drawn at the beginning of each episode.
In the last inequality we defined the empzrzcal state-

action frequency vector d, € RS54 where dj(s,a) =
Z h—1 Gx (s, a, h), or, alternatively,

Qk R|Qk

H

Zl(s-sﬁ,a—ah)

h=1

di(s,a) = [0, H].
This observation enables us to think of our data as noisy

samples of d}.r, from which it is natural to estimate the re-
ward 7 by a (regularized) LS estimator, i.e., for some A > 0,

k
i, € arg min (Z(<Jz,7’> -V + MSA>,

=1
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This estimator is also given by the closed form solution

def

= A Y, 4)

where D, € R¥*S4 is a matrix with {d{} in its rows, Y =

Sk dV, € R54 and Ay, = DT Dy, + Mga € RSAXSA,

A needed property of the estimator 7, is for it to be ‘con-
centrated’ around the true reward r. By properly defining
the filtration and observing that Vi is /H /4 sub-Gaussian

given dj, (as a sum of H independent variables in [0, 1]), it
is easy to establish a uniform concentration bound via The-
orem 2 of (Abbasi-Yadkori, Pél, and Szepesvari 2011) (for
completeness, we provide the proof in Appendix I).

e = (DF Dy 4+ Mga) 7Y, =

Proposition 1 (Concentration of Reward). Let A > 0 and

A = = DTDk + Mga. Forany ¢ € (0, 1), with probability
greater than 1 — 6/10 uniformly for all k > 0, it holds that

I = #illa, < \/}15,41{ log (2557522 ) + VASA L.

5/10

Relation to Linear Bandits. Assume that the transition
kernel P is known while the reward r is unknown. Also,
recall that the set of the average occupancy measures, de-
noted by K(P), is a convex set (Altman 1999). Then, Equa-
tion (1) establishes that RL with trajectory feedback can be
understood as an instance of linear-bandits over a convex set.
Le., it is equivalent to the problem of minimizing the regret
R(K) = Y, maxgei(py d'r — dL r, where the feedback

is a noisy version of d r since E {Vk | Fk_l} =dL r.Un-

der this formulation, choosing a policy 7, is equivalent to
choosing an ‘action’ from the convex set d, € K(P).

However, we make use of cZk, and not the actual ‘action’
that was taken, d, . Importantly, this view allows us to gen-
eralize algorithms to the case where the transition model P
is unknown (as we do in Section 5). When the transition
model is not known and estimated via P, there is an error
in identifying the action, in the view of linear bandits, since
dr # d-(P). This error, had we used the ‘naive’ linear ban-
dit approach of choosing contexts from /C(P), would result
in errors in the matrix Aj. Since our esAtimator uses the em-
pirical average state-action frequency, dy, the fact the model
is unknown does not distort the reward estimation.



Algorithm 1 OFUL for RL with Trajectory Feedback and
Known Model

Require: § € (0,1), A = H,
Iy = \/iSAH log (L1222 ) + VASA

Initialize: Ag = Mg, Yy =054
fork=1,..., K do
Calculate 71 via LS estimation (4)

Solve m, € arg max; (dzm_l + lk—1]|drl| 41 )
k—1

Play 4, observe Vj, and {(s}, afl)}thl

Update A, = Aj_1 + dpdl and Yy, = Vi1 + di Vi
end for

Policy Gradient Approach for RL with Trajectory Feed-
back. Another natural algorithmic approach to the setting
of RL with trajectory feedback is to use policy search. That
is, instead of estimating the reward function via least-square
and follow a model-based approach, one can directly opti-
mize over the policy class. By the log-derivative trick (as in
the REINFORCE algorithm (Williams 1992)):

VV7(s)

H H
=E {(Z Vxlog 7r(ah|sh)> (Z r(sh, ah)> |s1 = s,7r:| .

h=1 h=1
Thus, if we are supplied with the cumulative reward of
a trajectory we can estimate the derivative V.V 7™ (s) and
use stochastic gradient ascent algorithm. However, this ap-
proach fails in cases the exploration is challenging (Agar-
wal et al. 2020), i.e., the sample complexity can increase
exponentially with . We conjecture that by combining ex-
ploration bonus the REINFORCE algorithm can provably
perform well, with polynomial sample complexity. We leave
such an extension as an interesting future research direction.

4 OFUL for RL with Trajectory Feedback
and Known Model

Given the concentration of the estimated reward in Propo-
sition 1, it is natural to follow the optimism in the face of un-
certainty approach, as used in the OFUL algorithm (Abbasi-
Yadkori, Pél, and Szepesvari 2011) for linear bandits. We
adapt this approach to RL with trajectory feedback, as de-
picted in Algorithm 1; on each episode, we find a pol-
icy that maximizes the estimated value V™ (sy; P, #p—1) =
dX'7),_1, and an additional ‘confidence’ term Ij,_; HdﬂHA;ll

that properly encourages the policy 7 to be exploratory.
The analysis of OFUL is based upon two key ingredi-
ents, (i) a concentration result, and (ii) an elliptical po-
tential lemma. For the setting of RL with trajectory feed-
back, the concentration result can be established with similar
tools to Abbasi-Yadkori, Pal, and Szepesvari (see Proposi-
tion 1). However, (ii), the elliptical potential lemma, should
be re-derived. The usual elliptical potential lemma (Abbasi-
Yadkori, Pdl, and Szepesvéri 2011) states that for x;, € R™,

K
> llarllany < O(Jlzll/mE/x),
k=1
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where Ay, = Ax_1 + zpa}, Ag = My, and ||zg]| < [z
However, for RL with trajectory feedback, the term we wish
to bound is ZszlﬂdﬂkHAkﬂ, where A, = Ap_1 + dpd?l,

Ao = Mga. Thus, since dr, # dk, we cannot apply the
usual elliptical potential lemma. Luckily, it is possible to de-
rive a variation of the lemma, suited for our needs, by rec-

ognizing that d,, = E {czk|Fk_1} where the equality holds
component-wise. Based on this observation, the next lemma
— central to the analysis of all algorithms in this work — can
be established (in Appendix B we prove a slightly more gen-
eral statement that will be useful in next sections as well).

Lemma 2 (Expected Elliptical Potential Lemma). Let A >

0. Then, uniformly for all K > 0, with probability greater
than 1 — 6, it holds that

K }{2

Proof Sketch. Applying Jensen’s inequality (using the con-
vexity of norms), we get

KH?
SA

ldrillar, = ||E[dl s

< Tl - _
s, ¥l ]

Therefore, we can write

K K
> el < S E[Idell 4o [1Fioa]
k=0 k=1

S (B[l 1] = il o)

K
= +3 Nl
k=1 k=1

(®)

(a)

where in the last relation, we added and subtracted the ran-
dom variable ||dy|| ,—: . It is evident that (a) is a bounded
k—1

martingale difference sequence and, thus, can be bounded
with probability 1 — §/2 by
2K
5 )

Term (b) can be bounded by applying the usual elliptical
potential (Abbasi-Yadkori, Pél, and Szepesvari 2011)) by

(b) < ﬁ\/QKSAlog(A+ )

Combining the bounds on (a), (b) concludes the proof. [

2
— K log

(a) <4 X

KH?
SA

Based on the concentration of the estimated reward 7
around the true reward r (Proposition 1) and the expected
elliptical potential lemma (Lemma 2), the following per-
formance guarantee of Algorithm 1 is established (see Ap-
pendix C for the full proof).

Theorem 3 (OFUL for RL with Trajectory Feedback and

Known Model). Forany é € (0,1), it holds with probability
greater than 1 — § that for all K > 0,

R(K) <O (&m@m(%) ) .



Algorithm 2 TS for RL with Trajectory Feedback and
Known Model

Require: § € (0,1), A\ = H, v =

kH?
5/10

Iy = \/iSAH 10g(%#) +VASA

Initialize: Ag = A g4, Yo =094

fork=1,..., K do
Calculate 71 via LS estimation (4)
Draw noise &, ~N(0,v7 A, ") and define 7 =741 +&
Solve an MDP with perturbed empirical reward 7, €
arg max, d(P)L7y

9SAH log

Play 7., observe Vi and {(sF, a’fb)}hH:l

Update A, = Ay, + dpdl and Yy, = Vi1 + di Vi
end for

To exemplify how the expected elliptical potential lemma
is applied in the analysis of Algorithm 1 we supply a sketch
of the proof.

Proof Sketch. By the optimism of the update rule, follow-
ing (Abbasi-Yadkori, Pal, and Szepesvari 2011), it is possi-
ble to show that with high probability,

Vl*(sllc) = d7Tr*r < drqskfk—l + lk—1l/dx, ”A;_llv

for any £ > 0. Thus, we only need to bound the on-policy
prediction error given as follows,

K
R(K) = (Vi = V™)
k=1
K
< kz_:l(dzkfkfl + k1 Hdﬂ'k ||A;i1 - dz;kr)
K
<2k ;Hdﬂk”/;;il : 5
where the last inequality can be derived using Proposition 1
and the Cauchy Schwartz inequality. Applying the expected

elliptical potential lemma (Lemma 2) and setting A\ = H
concludes the proof. O

Although Algorithm 1 provides a natural solution to the
problem, it results in a major computational disadvantage.
The optimization problem needed to be solved in each it-
eration is a convex maximization problem (known to gen-
erally be NP-hard (Atamtiirk and Gémez 2017)). Further-
more, since ||d || A1, is non-linear in d, it restricts us from

solving this problem by means of Dynamic Programming. In
the next section, we follow a different route and formulate
a Thompson Sampling based algorithm, with computational
complexity that amounts to sampling a Gaussian noise for
the reward and solving an MDP at each episode.

S Thompson Sampling for RL with
Trajectory Feedback

The OFUL-based algorithm for RL with trajectory feedback,
analyzed in the previous section, was shown to give good
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performance in terms of regret. However, implementing the
algorithm requires solving a convex maximization problem
before each episode, which is, in general, computationally
hard. Instead of following the OFUL-based approach, in this
section, we analyze a Thompson Sampling (TS) approach
for RL with trajectory feedback.

We start by studying the performance of Algorithm 2,
which assumes access to the transition model (as in Sec-
tion 4). Then, we study Algorithm 3 which generalizes the
latter method to the case where the transition model is un-
known. In this generalization, we use an optimistic-based
approach to learn the transition model, and a TS-based ap-
proach to learn the reward. The combination of optimism
and TS results in a tractable algorithm in which every iter-
ation amounts to solving an empirical MDP (which can be
done by Dynamic Programming). The reward estimator in
both Algorithm 2 and Algorithm 3 is the same LS estima-
tor (4) used for the OFUL-like algorithm. Finally, we focus
on improving the most computationally-demanding stage of
Algorithm 3, which is the reward sampling, and suggest a
more efficient method in Algorithm 4.

5.1 TS for RL with Trajectory Feedback and
Known Model

For general action sets, it is known that OFUL (Abbasi-
Yadkori, P4l, and Szepesvari 2011) results in a computation-
ally intractable update rule. One popular approach to miti-
gate the computational burden is to resort to TS for linear
bandits (Agrawal and Goyal 2013). Then, the update rule
amounts to solving a linear optimization problem over the
action set. Yet, the reduced computational complexity of TS
comes at the cost of an increase in the regret. Specifically,
for linear bandit problems in dimension m, OFUL achieves
O(m+/T), whereas TS achieves O(m?/2\/T) (Agrawal and
Goyal 2013; Abeille, Lazaric et al. 2017).

Algorithm 2 can be understood as a TS variant of Algo-
rithm 1, much like TS for linear bandits (Agrawal and Goyal
2013)is a TS variant of OFUL. Unlike the common TS algo-
rithm for linear bandits, Algorithm 2 uses the LS estimator
in Section 3, i.e., the one which uses the empirical state-
action distributions dk, instead of the ‘true action’ d, . In
terms of analysis, we deal with this discrepancy by applying
— as in Section 4 — the expected elliptical potential lemma,’
instead of the standard elliptical potential lemma. Then, by
extending techniques from (Agrawal and Goyal 2013; Russo
2019) we obtain the following performance guarantee for
Algorithm 2 (see Appendix D for the full proof).

Theorem 4 (TS for RL with Trajectory Feedback and
Known Model). Forany 6 € (0,1), it holds with probability
greater than 1 — § that for all K > 0,

R(K) < O((SA)Q‘/ZH\/mlOg(%))

KH?
5 .
"We use a slightly more general version of the expected ellipti-
cal potential lemma, presented in Appendix B

+ 0O <SAH log(



Observe that Theorem 4 establishes a regret guarantee of
m?3/2y/K since the dimension of the specific linear bandit
problem is m SA (see (1)). This is the type of regret
is expected due to TS type of analysis (Agrawal and Goyal
2013). It is an interesting question whether this bound can
be improved due to the structure of the problem.

5.2 UCBVI-TS for RL with Trajectory Feedback

In previous sections, we devised algorithms for RL with
trajectory feedback, assuming access to the true transition
model and that only the reward function is needed to be
learned. In this section, we relax this assumption and study
the setting in which the transition model is also unknown.
This setting highlights the importance of the LS estima-
tor (4), which uses the empirical state-action frequency d,
instead of d, . L.e., when the transition model is not known,
we do not have access to d,. Nevertheless, it is reason-

able to assume access to dj, since it only depends on the
observed sequence of state-action pairs in the k' episode

{sﬁ,ai}fﬂ and does not require any access to the true
model. For this reason, the LS estimator (4) is much more
amenable to use in RL with trajectory feedback when the
transition model is not given and needed to be estimated.

Algorithm 3, which we refer to as UCBVI-TS (Upper
Confidence Bound Value Iteration and Thompson Sam-
pling), uses a combined TS and optimistic approach for RL
with trajectory feedback. At each episode, the algorithm
perturbs the LS estimation of the reward 7;_; by a ran-
dom Gaussian noise &, similarly to Algorithm 2. Further-
more, to encourage the agent to learn the unknown transition
model, UCBVI-TS adds to the reward estimation the bonus
vyY | € RS where

H

ng_1(s,a) V1’
up to logarithmic factors (similarly to Azar, Osband, and
Munos 2017). Then, it simply solves the empirical MDP de-
fined by the plug-in transition model Pj_; and the reward
function 7,1 + & + b} ;. Specifically, the transition kernel

P,_, is estimated by

_ Zle Zthl 1(32 =s,a), =a, SLH = s')
N ni(s,a) V1

The next result establishes a performance guarantee for
UCBVI-TS with trajectory feedback (see proof in Appendix
E.3). The key idea for the proof is showing that the addi-
tional bonus term (6) induces sufficient amount of optimism
with fixed probability. Then, by generalizing the analysis of
Theorem 4 while using some structural properties of MDPs
we derive the final result.

Theorem 5 (UCBVI-TS Performance Guarantee). For any
d € (0,1), it holds with probability greater than 1 — ¢ that
forall K >0,

/)

R(K) < O(SH(SA-I—H)\/AHKlogKlog(
2
SA(JS'{K) m)

b (s,a) ~

(6)

F’k(s' |'s,a) . (D

SAHK

+0 (HZ\/E(SA + H)? log(
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Algorithm 3 UCBVI-TS for RL with Trajectory Feedback

Require: § € (0,1), A = H,vx = {/9SAH log 524,
Iy = \/ isAH 1og(1+§/’§;”) + VASA,

2 40SAHZ2 K3
bPU(s,a) = ) L8 i ——
k ’ ng(s,a)Vv1

Initialize: Ag = A ga, Yo = 0524,
Counters ny(s,a) =0, Vs, a.
fork=1,..,K do ~
Calculate 71 via LS estimation (4) and Py, by (7)
Draw noise & ~ N(0,02A;')) and define 7%
Pr—1+ & + b5,
Solve empirical MDP with optimistic-perturbed re-
ward, 7, € arg max; d(Pk,l)Tf,’;

Play 7., observe Vi and { (s, aﬁ)}thl
Update counters ny(s,a), Ax = Ar_1 + cfkcff and

Vi = Vi1 + di Vi
end for

thus, discarding logarithmic factors and constants and as-
suming SA > H, R(K) < @(SQA3/2H3/2\/R>_

5.3 Improving the Computational Efficiency of
UCBVI-TS

In this section, we present a modification to UCBVI-TS
that uses a doubling trick to improve the computational effi-
ciency of Algorithm 3. Specifically, for m = S A, the com-
plexity of different parts of UCBVI-TS is as follows:

A" can be iteratively updated using O (m?) computa-
tions by the Sherman-Morrison formula (Bartlett 1951).

Given Ak_,l, calculating 7, requires O (mz) computations.

Generating the noise &y requires calculating A,;l/ 2 that,
in general, requires performing a singular value decom-
position to A, ! at a cost of O(m?) computations.
Finally, calculating the policy using dynamic program-
ming requires O(S? AH) computations.

In overall, UCBVI-TS requires O((SA)* + SZA(H + A))
computations per episode, where the most demanding part is
the noise generation. Thus, we suggest a variant of our algo-
rithm, called Rarely-Switching UCBVI-TS (see Appendix F
for the full description of the algorithm), that updates Ay
(and, as a result, the LS estimator) only after the updates in-
crease the determinant of Ay by a factor of 1 + C, for some
C > 0, similarly to (Abbasi-Yadkori, Pél, and Szepesvari
2011). Specifically, we let By = Aga + Zle dyd? and
update A, = By, if det(By) > (1 + C)det(Ay), where
By = Ay = M g4. Otherwise, we keep A, = Ax_1. By
the matrix-determinant lemma, det(Bj) can be iteratively

updated by det(By) = (1 + d{B;}ldk) det(By_1), which
requires O(SA) calculations given B,:_ll; in turn, B,;_ll can

be updated by the Sherman-Morrison formula. Notably, Ay
is rarely updated, as we prove in the following lemma:



Lemma 6. Under the update rule of Rarely-Switching
UCBVI-TS, and for any C' > 0,\ > 0, it holds that

K 2
S LA # Apo) < oy log(1+ 587).

Therefore, the average per-round computational complex-
ity of Rarely-Switching UCBVI-TS after K episodes is

) |

Moreover, rarely updating Ay, only affects the lower-order
terms of the regret, as we prove in the following theorem:
Theorem 7 (Rarely-Switching UCBVI-TS Performance

Guarantee). For any § € (0,1), it holds with probability
greater than 1 — § that for all K > 0,

(s4)!
log(1+ C)

log %
K

0 <52A(H +A) +

R(K)< O (SH(SA + H)WAHK + H*VS(SA + H)2)
+ @((SA)B/QH\/(l ¥ C)K) .

The proof can be found in Appendix F. See that the differ-
ence from Theorem 5 is in the last term, which is negligible,
compared to the first term, for reasonable values of C' > 0.

6 Discussion and Conclusions

In this work, we formulated the framework of RL with tra-
jectory feedback and studied different RL algorithms in the
presence of such feedback. Indeed, in practical scenarios,
such feedback is more reasonable to have, as it requires a
weaker type of feedback relative to the standard RL one.
For this reason, we believe studying it and understanding
the gaps between the trajectory feedback RL and standard
RL is of importance. The central result of this work is a
hybrid optimistic-TS based RL algorithm with a provably
bounded /K regret that can be applied when both the re-
ward and transition model are unknown and, thus, needed to
be learned. Importantly, the suggested algorithm is computa-
tionally tractable, as it requires to solve an empirical MDPs
and not a convex maximization problem.

Regret minimization for standard RL has been extensively
studied. Previous algorithms for this scenario can be roughly
divided into optimistic algorithms (Jaksch, Ortner, and Auer
2010; Azar, Osband, and Munos 2017; Jin et al. 2018; Dann
et al. 2019; Zanette and Brunskill 2019; Simchowitz and
Jamieson 2019; Efroni et al. 2019) and Thompson-Sampling
(or Posterior-Sampling) based algorithms (Osband, Russo,
and Van Roy 2013; Gopalan and Mannor 2015; Osband and
Van Roy 2017; Russo 2019). Nonetheless, and to the best
of our knowledge, we are the first to present a hybrid ap-
proach that utilizes both concepts in the same algorithm.
Specifically, we combine the optimistic confidence-intervals
of UCBVI (Azar, Osband, and Munos 2017) alongside lin-
ear TS for the reward and also take advantage of analysis
tools for posterior sampling in RL (Russo 2019).

In the presence of trajectory-feedback, our algorithms
make use of concepts from linear bandits to learn the re-
ward. Specifically, we use both OFUL (Abbasi-Yadkori,
Pél, and Szepesvari 2011) and linear TS (Agrawal and
Goyal 2013; Abeille, Lazaric et al. 2017), whose regret
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bounds for m-dimension problems after K time-steps with
1-subgaussian noise are @{m\/f} and @{m?’/gx/f}, re-
spectively. These bounds directly affect the performance
in the RL setting, but the adaptation of OFUL leads to
a computationally-intractable algorithm. In addition, when
there are at most N context, it is possible to achieve a re-
gret bound of O{y/mK log N'} (Chu et al. 2011); however,
the number of deterministic policies, which are the number
of ‘contexts’ for RL with trajectory-feedback, is exponential
in S, namely, A% Therefore, such approaches will lead to
similar guarantees to OFUL and will also be computation-
ally intractable.

In terms of regret bounds, the minimax regret in the stan-

dard RL setting is O{/SAHT ¢ (Osband and Van Ro
g y

2016; Azar, Osband, and Munos 2017), however, for stan-
dard RL the reward feedback is much stronger than for
RL with trajectory feedback. For linear bandits with /H-
subgaussian noise, the minimax performance bounds are

@{m\/ HK } (Dani, Hayes, and Kakade 2008). Specifi-

cally, in RL we set m = S A, which leads to @{SA\/ HK}.

Nonetheless, for RL with trajectory feedback and known
model, the context space is the average occupancy mea-
sures d,, which is heavily-structured. It is an open question

whether the minimax regret bound remains @{SA\/ HK }

for RL with trajectory feedback, when the transition model
is known, or whether it can be improved. Moreover, when
the model is unknown, our algorithm enjoys a regret of
@(SQAS/QHS/Q\/I?) when H < SA. A factor of VSA
is a direct result of the TS-approach, that was required to
make to algorithm tractable, and an additional v/S appears
when the model is unknown. Moreover, extending OFUL to
the case of unknown model and following a similar analy-
sis to Theorem 5 would still yield this extra v/S factor (and
would result in a computationally hard algorithm), in com-
parison to when we know the model. It is an open question
whether this additional factor can also be improved.

Finally, we believe that this work paves the way to
many interesting future research directions, notably, study-
ing RL with additional, more realistic, feedback models of
the reward. Furthermore, we believe that the results can be
adapted to cases where the feedback is a more complex map-
ping from state-actions into trajectory-reward, and, specifi-
cally, a noisy generalized linear model (GLM) of the trajec-
tory (Filippi et al. 2010; Abeille, Lazaric et al. 2017; Kveton
et al. 2020). In this case, even though the reward function
is not Markovian, our approach should allow deriving re-
gret bounds. More generally, this can be viewed as a form
of reward-shaping with theoretical guarantees, which is, in
general, an open question.
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