
A One-Size-Fits-All Solution to Conservative Bandit Problems

Yihan Du,1 Siwei Wang,1 Longbo Huang1

1 Tsinghua University
duyh18@mails.tsinghua.edu.cn, {wangsw2020, longbohuang}@tsinghua.edu.cn

Abstract
In this paper, we study a family of conservative bandit prob-
lems (CBPs) with sample-path reward constraints, i.e., the
learner’s reward performance must be at least as well as a
given baseline at any time. We propose a general one-size-
fits-all solution to CBPs and present its applications to three
encompassed problems, i.e., conservative multi-armed ban-
dits (CMAB), conservative linear bandits (CLB) and con-
servative contextual combinatorial bandits (CCCB). Differ-
ent from previous works which consider high probability
constraints on the expected reward, our algorithms guaran-
tee sample-path constraints on the actual received reward,
and achieve better theoretical guarantees (T -independent ad-
ditive regrets instead of T -dependent) and empirical per-
formance. Furthermore, we extend the results and consider
a novel conservative mean-variance bandit problem (MV-
CBP), which measures the learning performance in both the
expected reward and variability. We design a novel algorithm
with O(1/T ) normalized additive regrets (T -independent in
the cumulative form) and validate this result through empiri-
cal evaluation.

1 Introduction
The multi-armed bandit (MAB) problem (Thompson 1933;
Auer, Cesa-Bianchi, and Fischer 2002) is a classic on-
line learning model that characterizes the exploration-
exploitation trade-off in sequential decision making. While
existing bandit algorithms achieve satisfactory regret bounds
over the whole learning processes, they can perform wildly
and lose much in the initial exploratory phase. This limita-
tion has hindered their applications in real-world scenarios
such as health sciences, marketing and finance, where it is
important to guarantee safe and smooth algorithm behavior
in initialization. Hence, studying bandit problems with safe
(conservative) exploration contributes to solving this issue.

In this paper, we study the conservative bandit problems
(CBPs) with sample-path reward constraints. Specifically,
a learner is given a set of regular arms and a default arm.
At each timestep, the learner chooses a regular arm or the
default arm to play and receives a reward according to the
played arm. The learning’s objective is to minimize the ex-
pected cumulative regret (equivalently, maximize the ex-
pected cumulative reward), while ensuring that the received
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cumulative reward must stay above a fixed percentage of
what one can obtain by always playing the default arm.

CBPs have extensive real-world applications including
recommendation systems, company operation and finance.
For instance, in finance, investors are offered various finan-
cial products including the fixed-income security such as
bank deposit (default arm), and the fluctuating equity secu-
rities such as stocks (regular arms). While the fixed-income
security is a safe and reasonable option, investors want to
find better choices to earn higher returns. Meanwhile, com-
pared to the returns they can obtain by simply depositing
the money, investors do not want to lose too much when ex-
ploring other investment choices. CBPs provide an effective
model for such exploration-exploitation trade-off with the
safe exploration guarantees.

We propose a general one-size-fits-all solution GenCB
for CBPs, and present its applications to three impor-
tant CBP problems, i.e., conservative multi-armed bandits
(CMAB), conservative linear bandits (CLB) and conserva-
tive contextual combinatorial bandits (CCCB). We provide
theoretical analysis and empirical evaluations for these al-
gorithms, and show that our algorithms outperform existing
ones both theoretically and empirically. Table 1 presents the
comparison of regret bounds between our algorithms and
existing ones. In the table, each regret term contains two
components, the first component incurred by regular arms
and the second term due to playing the default arm. One
can see that our algorithms possess better regret guaran-
tees. Moreover, unlike existing algorithms that only provide
high probability bounds with T -dependent conservative re-
grets, we not only obtain expected bounds but also have T -
independent conservative regrets.

Our work distinguishes itself from previous conservative
bandit works, e.g., (Wu et al. 2016; Kazerouni et al. 2017;
Garcelon et al. 2020; Zhang, Li, and Liu 2019) in two as-
pects: (i) Previous works consider high probability guaran-
tees on the expected reward. Such models cannot directly
handle many risk-adverse tasks, e.g., a start-up does not
wish to tolerate any failure probability to reach the basic
earning under the debt, or an asset management company
must perform better than the promised return. While one
can choose a very small δ in previous algorithms to pro-
vide high-probability guarantees, the ln(1/δ)-dependent re-
grets will boost accordingly. Instead, we focus on a certainty
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Problem Algorithm Regret bound Type

CMAB GenCB-CMAB (ours) O
(
H lnT + H

α [ln(Hα )]2
)

E

CMAB ConUCB (Wu et al. 2016) O
(
H ln(Tδ ) +

∑K
i=1

1
αmax{∆i,∆0−∆i} ln(T /δ)

)
H

CMAB Lower Bound (Wu et al. 2016) O
(

max{Kα ,
√
KT}

)
E

CLB GenCB-CLB (ours) O
(
d ln(T )

√
T + d2

α [ln( dα )]2
)

E

CLB CLUCB (Kazerouni et al. 2017) O
(
d ln(Tδ )

√
T + d2

α [ln( d
αδ )]2

)
H

CLB CLUCB2 (Garcelon et al. 2020) O
(
d ln(Tδ )

√
T + d2

α2 [ln( d
αδ )]2

)
H

CCCB GenCB-CCCB (ours) O
(
d ln(KT )

√
T + (K+d)2

α [ln(K+d
α )]2

)
E

CCCB C3UCB (Zhang, Li, and Liu 2019) O
(
d ln(KT )

√
T + d

α

√
d
K ln(Kδ T )

)
H

Table 1. Comparison of regret bounds for CBPs. “Type” refers to the type of regret bounds. “E” and “H” denote the expected
and high probability bounds, respectively. Here H =

∑K
i=1 ∆−1

i . d is the dimension in CLB and CCCB. For high probability
bounds, the convention in the bandit literature is to choose δ = 1/T . Note that our formulation focuses on a sample-path reward
constraint, while the other results consider the constraints on the expected reward.

(sample-path) guarantee on the actual empirical reward. Do-
ing so ensures safe exploration (our regret bounds do not
contain δ) and better suits such tasks. (ii) Our problem for-
mulation, solution and analysis offer a general framework
for studying a family of CBPs, including CMAB (Wu et al.
2016), CLB (Kazerouni et al. 2017; Garcelon et al. 2020)
and CCCB (Zhang, Li, and Liu 2019). Moreover, our algo-
rithms achieve better theoretical and empirical performance
than previous schemes.

We also extend our results to the mean-variance setting
(Markowitz et al. 1952; Sani, Lazaric, and Munos 2012),
called conservative mean-variance bandit problem (MV-
CBP), which focuses on the balance between the expected
reward and variability with safe exploration. Different from
the typical CBPs which only consider the expected reward
into learning performance, MV-CBP takes into account both
the mean and variance of the arms, and is more suitable for
practical tasks that are sensitive to reward fluctuations, e.g.,
clinical trials and finance. For example, many risk-adverse
investors prefer stable assets (e.g., bonds) with satisfactory
returns than volatile assets (e.g., derivatives) with high re-
turns, and they do not want to suffer wild fluctuations when
exploring different financial products.

Note that the mean-variance regret in MV-CBP (formally
defined in Eq. (4) in next section) consists not only the gap
of mean-variance (a combination of both measures) between
the played arms and the optimal arm, but also an additional
variance for playing arms with different means, called ex-
ploration risk, which requires alternative techniques beyond
those in typical CBPs. To tackle this issue, we carefully
adapt our solution and analysis for the CBPs and make non-
trivial extensions. Our results offer new insight into algo-
rithm design for mean-variance bandit problems.

Our contributions are summarized as follows.

• We study a family of CBPs with sample-path re-
ward constraints, which encompasses previously studied

CMAB (Wu et al. 2016), CLB (Kazerouni et al. 2017;
Garcelon et al. 2020) and CCCB (Kazerouni et al. 2017).
We propose a general one-size-fits-all solution GenCB
for CBPs, which can translate a standard bandit algo-
rithm into a conservative bandit algorithm and achieve
better (T -independent conservative regret rather than T -
dependent) theoretical regret bounds than previous works
in the three specific problems.

• We extend the conservative bandit formulation to a novel
conservative mean-variance bandit setting, which char-
acterizes the trade-off between the expected reward and
variability. We propose an algorithm, MV-CUCB, and
prove that it achieves an O(1/T ) normalized additive re-
gret for the extended problem.

• We conduct extensive experiments for the considered
problems. The results match our theoretical bounds and
demonstrate that our algorithms achieve the performance
superiority compared to existing algorithms.

1.1 Related Work
Conservative Bandit Literature. Recently, there are sev-
eral works (Wu et al. 2016; Kazerouni et al. 2017; Zhang,
Li, and Liu 2019; Garcelon et al. 2020) studying ban-
dit problems with conservative exploration constraints. Un-
der the constraints on the expected rewards, (Wu et al.
2016) propose an algorithm ConUCB for CMAB. (Kaze-
rouni et al. 2017) design an algorithm CLUCB for CLB
and (Garcelon et al. 2020) further propose an improved al-
gorithm CLUCB2. (Zhang, Li, and Liu 2019) present an
algorithm C3UCB for CCCB. Under the stage-wise con-
straints, (Khezeli and Bitar 2020) restrict the expected re-
ward at any timestep to stay above a given baseline. (Amani,
Alizadeh, and Thrampoulidis 2019) confine the played arm
at any timestep to stay in a given safe set. Under the inter-
leaving constraint, (Katariya et al. 2019) require the chosen
action at any timestep to perform better than the default ac-
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tion when interleaving in the combinatorial semi-bandit set-
ting. (Bubeck, Perchet, and Rigollet 2013) study the stan-
dard K-armed bandit problem with knowledge of the high-
est expected reward and the smallest gap, (Locatelli, Gutzeit,
and Carpentier 2016) consider the thresholding pure explo-
ration problem, and the settings and methods in both works
are different from ours.

Mean-variance Bandit Literature. (Sani, Lazaric, and
Munos 2012) open the mean-variance bandit literature
which considers both the expected reward and variabil-
ity into performance measures, and a series of follow-ups
(Maillard 2013; Vakili, Boukouvalas, and Zhao 2019; Car-
doso and Xu 2019) have emerged recently. To our best
knowledge, this paper is the first to study the mean-variance
bandit problem with conservative exploration.

2 Problem Formulation
In this section, we first review previous standard (non-
conservative) bandit problems (SBPs) and then give the for-
mulation of the Conservative Bandit Problems (CBPs).

Standard Bandit Problems (SBPs). In a standard bandit
problem, a learner is given a set of arms X , where each arm
x ∈ X has an unknown reward distribution in [0, 1] with
mean of µx. Each arm x at timestep t has a random reward
rt,x = µx+ηt,x, where ηt,x is an independent random noise
with respect to t. At each timestep t, the learner plays an arm
xt and only observes the reward rt,xt of the chosen arm. Let
x∗ = argmaxx∈X µx denote the optimal arm. The learning
performance over a time horizon T is measured by expected
cumulative regret

E[RT ] = µx∗T − E

[
T∑
t=1

µxt

]
=
∑
x 6=x∗

E[Nx(T )]∆x, (1)

where ∆x = µx∗ − µx and Nx(T ) is the number of times
arm x was played over time T . The regret characterizes the
loss due to not always playing the optimal arm. The goal of
standard bandit algorithms is to minimize Eq. (1).

Conservative Bandit Problems (CBPs). The CBPs pro-
vide an alternative default arm x0 to play. In this case, since
playing x0 is a default (baseline) policy that the learner
is familiar with, for ease of analysis we assume that x0

has a known constant reward 0 < µ0 < µx∗ as previous
works (Wu et al. 2016; Kazerouni et al. 2017; Zhang, Li,
and Liu 2019) do.1

Then, during the learning process, the learner is required
to ensure that the cumulative reward under the chosen policy
is lower bounded by a fraction of the reward from always
pulling the default arm. Specifically, given a parameter α ∈
(0, 1), for any timestep t, the learner’s cumulative empirical
reward should be least 1−α fraction of the reward of always

1This assumption can be relaxed to that x0 has a random re-
ward within a known interval [r`0, rh0 ] (r`0 > 0) by sightly changing
the right-hand-side of the if statements in our algorithms, and our
analysis procedure still works. While previous works can remove
this assumption by estimating µ0, this is due to that their constraints
are imposed on the expected reward.

playing x0, i.e.,
t∑

s=1

rs,xs ≥ (1− α)µ0t, ∀t ∈ {1, . . . , T}. (2)

Here α controls the strictness of the constraint, i.e., how con-
servative we want the leaner to behave, and can be viewed
as the weight we place on safety in exploration. The goal of
conservative bandit algorithms is to minimize the expected
cumulative regret (Eq. (1)) while satisfying the reward con-
straint (Eq. (2)).

We note that constraint (2) is a sample-path reward con-
straint, which is different from the high-probability con-
straints on the expected reward in prior works (Wu et al.
2016; Kazerouni et al. 2017; Garcelon et al. 2020; Zhang, Li,
and Liu 2019). This setting is particularly useful when the
practical tasks cannot tolerate higher losses than the base-
line with certainty, e.g., health care and investment. On the
other hand, it also imposes new challenges in algorithm de-
sign and regret analysis.

Our formulation is a general framework which encom-
passes various bandit problems from the prospective of con-
servative exploration. For example, in CMAB which stud-
ies a conservative version of the classic K-armed bandit
problem (Thompson 1933; Auer, Cesa-Bianchi, and Fischer
2002; Agrawal and Goyal 2012), X = [K] and µx is an
arbitrary value.2 In CLB which considers the linear bandit
problem (Dani, Hayes, and Kakade 2008; Abbasi-yadkori,
Pál, and Szepesvári 2011) with conservative exploration, X
is a compact subset of Rd and each arm x ∈ Rd has an ex-
pected reward µx = x>θ∗, where θ∗ ∈ Rd is an unknown
parameter. In CCCB which investigates the contextual com-
binatorial bandit problem (Qin, Chen, and Zhu 2014) with
the safe exploration requirement, there is a set of base arms
[K] and X is a collection of subsets of base arms, which
represents certain combinatorial structure (e.g., matchings
and paths). For each x ∈ X , µx is associated with the ex-
pected rewards of its containing base arms. We will analyze
the CBPs under specific bandit settings in the next section.

3 A General Solution to Conservative
Bandits

In this section, we first present a general solution for CBPs,
and its regret analysis. Then, we present its applications to
three specific problems, i.e., CMAB, CLB and CCCB, and
show that in all three cases, our algorithm achieves tighter
bounds than existing algorithms.

Algorithm 1 illustrates the proposed solution to CBPs,
called GenCB, which offers a general scheme for translat-
ing a standard non-conservative bandit algorithm AS into a
conservative bandit algorithm. In the algorithm, m denotes
the time horizon of AS , and the number of times we play
the regular arms, rS(t) denotes the cumulative reward from
sampling regular arms, and N0(t) denotes the number of
times x0 is played up to time t.

The main idea of GenCB is to play regular arms as much
as possible while ensuring the sample-path reward constraint

2[K]
def
= {1, . . . ,K}.
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Algorithm 1: General Solution to Conservative Ban-
dits (GenCB)
Input: Standard bandit problem and algorithm AS ,

regular arms X , default arm x0 with reward
µ0, parameter α.

1 ∀t ≥ 0, N0(t)← 0, rS(t)← 0. m← 0;
2 for t = 1, 2, . . . do
3 if rS(t− 1) +N0(t− 1)µ0 ≥ (1− α)µ0t then
4 m← m+ 1;
5 Play an arm xt according to AS , observe

rt,xt and update the statistical information;
6 N0(t)← N0(t− 1);
7 rS(t)← rS(t− 1) + rt,xt ;
8 else
9 Play x0 and receive reward µ0;

10 N0(t)← N0(t− 1) + 1;
11 rS(t)← rS(t− 1);

in the worst case, since playing the default arm cannot pro-
vide any information for identifying the optimal arm. At
each time, GenCB checks if playing a regular arm can sat-
isfy the sample-path reward constraint in the worst case (this
pull feedbacks zero reward). If it can, we play a regular arm
xt according toAS , observe reward rt,xt and update the sta-
tistical information. Otherwise, we choose the default arm.

Different from previous conservative algorithms (Wu
et al. 2016; Kazerouni et al. 2017; Zhang, Li, and Liu 2019),
GenCB guarantees the constraint with certainty rather than
with high probability, and GenCB uses the received cu-
mulative reward rather than the lower confidence bound to
check the constraint. Doing so makes our algorithm less con-
servative and boosts its empirical performance significantly
(see Section 5 for empirical comparisons).

Next, we present the regret analysis for GenCB. Note
that, the regret for CBPs can be decomposed into (i) the re-
gret incurred by regular arms, and (ii) the regret due to play-
ing the default arm, i.e., conservative regret. Since the analy-
sis of the former is similar to that in SBPs, as in the conserva-
tive bandit literature (Wu et al. 2016; Kazerouni et al. 2017;
Garcelon et al. 2020; Zhang, Li, and Liu 2019), we mainly
focus the conservative regret. We remark that our analysis
is different from those in prior works, and can be applied to
several specific CBPs including CMAB, CLB and CCCB.
We give the regret bound of GenCB as follows.
Theorem 1. Given a standard bandit problem and a corre-
sponding algorithm AS with regret E[RT (AS)] ≤ B(T ),
GenCB (Algorithm 1) guarantees the sample-path reward
constraint Eq. (2) and achieves a regret bound

E[RT (GenCB)] ≤ B(T ) + C∆0,

where C is a problem-specific constant independent of T
and ∆0 = µx∗ − µx0

.

Proof. First, it can be seen from the algorithm that the
sample-path reward constraint Eq. (2) can be guaranteed.
Next, we prove the regret bound of GenCB. We use St to
denote the set of timesteps up to time t during which we play
regular arms and use mt to denote its size. Let τ denote the

last timestep we play x0, i.e., τ is the last timestep such that
rS(τ −1) +N0(τ −1)µ0 < (1−α)µ0τ holds. Rearranging
the terms, and subtracting (1 − α)µ0N0(τ − 1) from both
sides (note that τ = N0(τ − 1) +mτ−1 + 1), we have
αµ0N0(τ − 1) <(1− α)µ0(mτ−1 + 1)− rS(τ − 1)

=(1− α)µ0(mτ−1 + 1)

+
∑

t∈Sτ−1

(µxt − rt,xt)−
∑

t∈Sτ−1

µxt . (3)

∑
t∈Sτ−1

(µxt − rt,xt) is the deviation between the
sum of mτ−1 samples and their means. Using the
Azuma-Hoeffding inequality, it can be upper bounded by
F
√
mτ−1 ln(1/δ) with probability at least 1 − δ, for some

constant F that varies in different settings. By setting
δ = 1/τ , we can obtain an expected upper bound as
F
√
mτ−1 ln τ + 1. Taking expectation on both sides of Eq.

(3), settingm = E[mτ−1+1] and replacing E[
∑
t∈Sτ−1

µxt ]

with µx∗E[mτ−1]− E[Rmτ−1
(AS)], we have

αµ0E[N0(τ − 1)] <− (∆0 + αµ0)m+ E[B(mτ−1)]

+ E[F
√
mτ−1 ln(τ)] + 1

(a)
<− (∆0 + αµ0)m+B(m) + 2

+ F
√
m ln(E[N0(τ − 1)] +m),

where (a) comes from Jensen’s inequality. Note that since
B(m) and F

√
m ln(E[N0(τ − 1)] +m) are sublinear with

respect to m, for any m ≥ 2, the right-hand-side can be
upper bounded by G[ln(

√
E[N0(τ − 1)])]2 where G is a

constant factor that only depends on problem parameters.
Then, we obtain E[N0(τ − 1)] ≤ G

αµ0
[ln( G

αµ0
)]2. Thus,

E[N0(T )] = E[N0(τ)] = E[N0(τ − 1)] + 1 ≤ C, where
C , G

αµ0
[ln( G

αµ0
)]2 + 1 is independent of T .

Combining the regrets for AS and x0, we obtain that
E[RT (GenCB)] ≤ B(T ) + C∆0.

Remark 1. Theorem 1 shows that GenCB provides a
general algorithmic and analytical framework for translating
a standard bandit problem into a conservative bandit algo-
rithm, and only generate an additional T -independent regret
due to the reward constraint. To the best of our knowledge,
this is the first general analysis procedure which works for
a family of CBPs with sample-path reward constraints, and
it provides an expected regret bound (rather than high prob-
ability bounds in (Wu et al. 2016; Kazerouni et al. 2017;
Garcelon et al. 2020; Zhang, Li, and Liu 2019)) with T -
independent conservative regret.

Below, we apply GenCB to three widely studied CBPs,
i.e., CMAB, CLB and CCCB. Here we only present the main
theorems, and defer the algorithm pseudo-codes and proofs
to the supplementary material (Du, Wang, and Huang 2020).

3.1 Application to Conservative Multi-Armed
Bandits (CMAB)

The conservative multi-armed bandit (CMAB) problem is
a variation of the classic K-armed bandit model with con-
servative exploration (Wu et al. 2016), which has extensive
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applications including clinical trials, online advertising and
wireless network. In CMAB, X = [K] and µi (1 ≤ i ≤ K)
can be an arbitrary value. Without lose of generality, we as-
sume µ1 ≥ µ2 ≥ · · · ≥ µK and denote µ∗ , µ1.

We apply the GenCB algorithm with the UCB algo-
rithm (Auer, Cesa-Bianchi, and Fischer 2002) to this set-
ting, by replacing Line 5 in Algorithm 1 with xt ←
argmaxi∈[K]

(
µ̂i +

√
2 lnm/Ni(t− 1)

)
, where µ̂i is the

reward empirical mean for arm i, and name this version of
the algorithm GenCB-CMAB.

The main idea of GenCB-CMAB is to play the arm with
the maximum upper confidence bound whenever the reward
constraint is satisfied (otherwise we play the default arm).
The regret bound for GenCB-CMAB is summarized below.

Theorem 2. For the conservative multi-armed bandit prob-
lem, GenCB-CMAB guarantees the sample-path reward
constraint Eq. (2) and achieves the regret bound

O

(
HlnT+

H∆0

αµ0(∆0 + αµ0)

[
ln

(
H

αµ0(∆0 + αµ0)

)]2
)
,

where H =
∑
i>1 ∆−1

i .

Remark 2. The first term owes to playing the regular
arms, which is similar to the result in standard MAB (Auer,
Cesa-Bianchi, and Fischer 2002), and the second term is
caused by the default arm, i.e., the conservative regret, which
is the main focus in conservative bandit study. Compared to
the existing algorithm ConUCB (Wu et al. 2016), GenCB-
CMAB only incurs a T -independent conservative regret
rather than lnT (see Table 1). Our result also matches the
regret lower bound derived in (Wu et al. 2016) for CMAB
with expected reward constraints, which also holds for our
sample-path reward constraint setting.

3.2 Application to Conservative Linear Bandits
(CLB)

The conservative linear bandit (CLB) (Kazerouni et al. 2017;
Garcelon et al. 2020) problem considers the linear bandit
problem (Dani, Hayes, and Kakade 2008; Abbasi-yadkori,
Pál, and Szepesvári 2011) with safe exploration. In CLB
where there is a linear structure among arms, X is a com-
pact subset of Rd and µx = x>θ∗, where θ∗ ∈ Rd is an un-
known parameter. We make the common assumptions, i.e.,
‖x‖2 ≤ L, ∀x ∈ X and ‖θ∗‖2 ≤ S, as previous linear ban-
dit papers (Dani, Hayes, and Kakade 2008; Abbasi-yadkori,
Pál, and Szepesvári 2011; Kazerouni et al. 2017) do.

For CLB, we apply GenCB with the LinUCB al-
gorithm (Abbasi-yadkori, Pál, and Szepesvári 2011) by
replacing Line 5 in Algorithm 1 with (xt, θ̃t) ←
argmax(x,θ)∈X×Ct x

>θ. Here Ct = {θ ∈ Rd : ‖θ −
θ̂t−1‖Vt−1 ≤

√
d ln(2m2(1 +mL2/λ)) +

√
λS} is a confi-

dence ellipsoid that contains θ∗ with high probability, and
we define θ̂t = V −1

t bt, Vt = λI +
∑t
s=1 xsx

>
s , bt =∑t

s=1 rs,xsxs and λ ≥ max{1, L2}.3 We name this version
of the algorithm GenCB-CLB, whose key idea is to play a

3‖x‖V
def
=
√
x>V x, ∀x ∈ Rd, ∀V ∈ Rd×d.

regular arm according to the optimism in the face of uncer-
tainty principle while ensuring the sample-path reward con-
straint. Below, we have the regret bound of GenCB-CLB.

Theorem 3. For the conservative linear bandit prob-
lem, GenCB-CLB guarantees the sample-path reward con-
straint Eq. (2) and has the regret bound

O

d ln

(
LT

λ

)√
T+

d2S2λ∆0

αµ0∆̃0

[
ln

(
dS
√
λ

αµ0∆̃0

)]2
,

where ∆̃0 = ∆0 + αµ0.

Remark 3. Similarly, the first term is aligned with the
result in standard linear bandits (Dani, Hayes, and Kakade
2008; Abbasi-yadkori, Pál, and Szepesvári 2011), and the
second term is the conservative regret due to the default arm.
While the existing algorithms CLUCB (Kazerouni et al.
2017) and CLUCB2 (Garcelon et al. 2020) have ln(1/δ)-
dependent conservative regrets with high probability (do not
contain T either), these results are of lnT order when mak-
ing the convention δ = 1/T . In contrast, we provide an ex-
pected bound with a T -independent conservative regret.

3.3 Application to Conservative Contextual
Combinatorial Bandits (CCCB)

The conservative contextual combinatorial bandit (CCCB)
problem (Zhang, Li, and Liu 2019) investigates the contex-
tual combinatorial bandit problem under the safe exploration
requirement. In CCCB, X is a collection of subsets of base
arms x1, . . . , xK ∈ Rd and generated from certain combina-
torial structure (e.g., matchings and paths). The learner plays
a super arm (subset of base arms)At ∈ X or the default arm
x0 at each timestep. The expected reward of base arm xe is
w∗e = x>e θ

∗ and that of super arm A is f(A,w∗), where
θ∗ is an unknown parameter and f satisfies two mild as-
sumptions, i.e., monotonicity and Lipschitz continuous with
parameter P (Qin, Chen, and Zhu 2014; Zhang, Li, and Liu
2019). Similar to CLB, we assume ‖x‖2 ≤ L, ∀x ∈ X and
‖θ∗‖2 ≤ S. At timestep t, the random reward of a base arm
xe and a super arm A are wt,e = w∗e + ηt,e ∈ [0, 1] and
rt,A = f(A,w∗)+ηt,A ∈ [0,K], respectively. After pulling
super arm At, we receive the random reward rt,At and ob-
serve a semi-bandit feedback, i.e., wt,e for each e ∈ At.

For CCCB, we apply GenCB with the C2UCB al-
gorithm (Qin, Chen, and Zhu 2014), by replacing Line
5 in Algorithm 1 with At ← argmaxA∈X f(A, w̄t).
Here w̄t,e = x>e θ̂t−1 + (

√
d ln(2m2(1 +mKL2/λ)) +√

λS)‖xe‖V −1
t−1

is the upper confidence bound of w∗e , and

we define θ̂t = V −1
t bt, Vt = λI +

∑t
s=1

∑
e∈As xex

>
e ,

bt =
∑t
s=1

∑
e∈As ws,exe and λ ≥ max{1, L2}. The key

idea here is to play a super arm with the maximum upper
confidence bound according to the historical observations
on base arms. Theorem 4 below gives the regret bound of
GenCB-CCCB.

Theorem 4. For the contextual combinatorial bandit prob-
lem, GenCB-CCCB ensures the sample-path reward con-
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Algorithm 2: MV-CUCB
Input: Reugular arms [K], default arm x0 with

MV0 = ρµ0, parameters α, ρ > 2
αµ0

.
1 ∀t ≥ 0, ∀0 ≤ i ≤ K,Ni(t)← 0. m← 0.

M̂V0(A)← 0;
2 for t = 1, 2, . . . do
3 if (t− 1)M̂Vt−1(A)− 2 ≥ (1− α)MV0t then
4 m← m+ 1;

5 xt ← argmax
i∈[K]

(
M̂Vi+(5+ρ)

√
ln(12Km3)
2Ni(t−1)

)
;

6 Pull arm xt, observe the random reward rt,xt
and update M̂Vxt ;

7 Nxt(t)← Nxt(t− 1) + 1 and
∀0 ≤ i ≤ K, i 6= xt, Ni(t)← Ni(t− 1);

8 else
9 Play x0 and receive reward µ0;

10 N0(t)← N0(t− 1) + 1 and
∀1 ≤ i ≤ K,Ni(t)← Ni(t− 1);

straint Eq. (2) and achieves the regret bound

O

(
Pd ln

(
KLT

λ

)√
T+

D2

αµ0∆̃0

[
ln

(
D

αµ0∆̃0

)]2
)
,

where D = K + P
√
λSd and ∆̃0 = ∆0 + αµ0.

Remark 4. The first term is consistent with the result in
standard contextual combinatorial bandits (Qin, Chen, and
Zhu 2014), and the second conservative regret term is due
to playing the default arm. Compared to the state-of-the-
art algorithm C3UCB (Zhang, Li, and Liu 2019), GenCB-
CCCB provides a T -independent conservative regret, while
C3UCB incurs a lnT regret (see Table 1).

4 Conservative Mean-Variance Bandits
We now extend CBPs to the mean-variance (Sani, Lazaric,
and Munos 2012; Maillard 2013; Cardoso and Xu 2019) set-
ting (MV-CBP), which focuses on finding arms that achieve
effective trade-off between the expected reward and vari-
ability. MV-CBP increments the typical conservative ban-
dit model and better suits the tasks emphasizing on reward
fluctuations. It also brings additional complications for algo-
rithm design and regret analysis beyond GenCB.

4.1 Problem Formulation for MV-CBP
To introduce our MV-CBP formulation, we first review the
standard mean-variance bandit setting (Sani, Lazaric, and
Munos 2012). Each arm x ∈ [K] is associated with a mea-
sure mean-variance, which is formally defined as MVx =
ρµx − σ2

x, where σ2
x is the reward variance and ρ is a

weight parameter. Let xMV
∗ = argmaxx∈[K] MVx denote

the mean-variance optimal arm. Given i.i.d. reward samples
{Zx,s}ts=1 of arm x, we define the empirical mean-variance
M̂Vx,t = ρµ̂x,t − σ̂2

x,t, where µ̂x,t = 1
t

∑t
s=1 Zx,s and

σ̂2
x,t = 1

t

∑t
s=1(Zx,s − µ̂x,t)2.

For an algorithm A and its sample path {rt,xt}Tt=1
over time horizon T , we define the empirical mean-
variance M̂VT (A) = ρµ̂T (A) − σ̂2

T (A), where µ̂T (A) =
1
T

∑T
t=1 rt,xt and σ̂2

T (A) = 1
T

∑T
t=1(rt,xt− µ̂T (A))2. Nat-

urally, for algorithm A over time T , we define the mean-
variance regret RMV

T (A) = M̂Vx∗,T − M̂VT (A), which is
the difference of the mean-variance performance betweenA
and what we could have achieved by always playing xMV

∗ .
Due to the difficulty of the RMV

T (A) metric, we follow
the mean-variance bandit literature and use a more tractable
mesure mean-variance pseudo-regret (Sani, Lazaric, and
Munos 2012) defined as:

R̃MV
T (A)=

1

T

∑
x 6=x∗

Nx,T∆MV
x +

2

T 2

∑
x∈X

∑
y 6=x

Nx,TNy,TΓ2
x,y, (4)

where Nx,T is a shorthand for Nx(T ), ∆MV
x = M̂Vx∗ −

M̂Vx and Γx,y = µx − µy . It has been shown that any
bound on R̃MV

T (A) immediately translates into an bound on
RMV
T (A) (Lemma 1 in (Sani, Lazaric, and Munos 2012)).

Thus, most theoretical analysis (Sani, Lazaric, and Munos
2012; Maillard 2013; Cardoso and Xu 2019) on mean-
variance bandits has been done via R̃MV

T (A). Note that, in
MV-CBP the measures M̂VT (A) andRMV

T (A) are both nor-
malized quantities over T .

In addition to minimizing the regret, the learner is also re-
quired to guarantee the following mean-variance constraint:

M̂Vt(A) ≥ (1− α)MV0, ∀t ∈ {1, . . . , T}. (5)
Here MV0 denotes the mean-variance of our default arm x0

with known constant reward µ0 and zero variance. The goal
in MV-CBP is to minimize Eq. (4) while satisfying Eq. (5).

4.2 Algorithm for MV-CBP
We propose a novel algorithm named MV-CUCB for MV-
CBP (illustrated in Algorithm 2). The main idea is to com-
pute the upper confidence bound of mean-variance for each
arm and select one according to the optimism principle
whenever the constraint is not violated. Theorem 5 summa-
rizes the performance results of MV-CUCB (see the supple-
mentary material (Du, Wang, and Huang 2020) for its proof).

Theorem 5. For the conservative mean-variance multi-
armed bandit problem with αMV0 > 2, MV-CUCB (Algo-
rithm 2) ensures the mean-variance constraint Eq. (5) and
achieves the following regret bound:4

Õ

(
ρ2 ln(KT )

T

(
H1 +H2 +

ρ2 ln(KT )

T
H3

)

+
ρ3
√
K(HMV

1 +4HMV
2 )+(ρ4KHMV

3 +ρK)∆̃MV
0

(αMV0 − 2)∆̃MV
0 T

·∆MV
0

)
,

where HMV
1 =

∑
i>1(∆MV

i )−1, HMV
2 =

∑
i>1(∆MV

i )−2,
HMV

3 =
∑
i>1

∑
j>1,j 6=i(∆

MV
i ∆MV

j )−2 and ∆̃MV
0 = ∆MV

0 +
αMV0.

4Õ omits the logarithmic terms that are independent of T .

7259



Remark 5. Since a pull of x0 not only accumulates MV0

but also causes an exploration risk (bounded by 2 for reward
distributions in [0, 1]) due to the switch between different
arms, we need the mild assumption αMV0 > 2 to guaran-
tee that a pull of x0 will not violate the constraint. Recall
that the result is a normalized regret over T , the first term of
O(lnT/T ) order owes to regular arms, which agrees with
the previous non-conservative mean-variance result (Sani,
Lazaric, and Munos 2012). The second term is the conser-
vative regret for satisfying the constraint, which is of only
O(1/T ) order and independent of T in the cumulative form.
To our best knowledge, Theorem 5 is the first result for con-
servative bandits with mean-variance objectives.

5 Experiments
We conduct experiments for our algorithms in four prob-
lems, i.e., CMAB, CLB, CCCB and MV-CBP, with a wide
range of parameter settings. Due to space limit, only par-
tial results are presented here (see the supplementary mate-
rial (Du, Wang, and Huang 2020) for full results).

In all experiments, we assume the rewards to take i.i.d.
Bernoulli values. For CMAB, we set K ∈ {24, 72, 144},
α ∈ {0.05, 0.1, 0.15}, µ0 = 0.7 and µ1, . . . , µK as an
arithmetic sequence from 0.8 to 0.2. For CLB and CCCB,
we set d ∈ {5, 7, 9}, α ∈ {0.01, 0.02, 0.03}, K = 2d
and f(A,w∗) =

∑
e∈A w

∗
e . For MV-CBP, we use the

same parameter settings as CMAB and additionally set ρ ∈
{10, 30, 60}. For each algorithm, we perform 50 indepen-
dent runs and present the average (middle curve), maximum
(upper curve) and minimum (bottom curve) cumulative re-
grets across runs. For each figure, we also zoom in the ini-
tial exploratory phase in the sub-figure to compare algorithm
performance in this phase.

Experiments for CBPs. In the experiments for CMAB
(Figure 1(a)), CLB (Figure 1(b)) and CCCB (Figure 1(c)),
we compare GenCB-CMAB, GenCB-CLB and GenCB-
CCCB to previous CBP algorithms CUCB (Wu et al. 2016),
CLUCB (Kazerouni et al. 2017) and C3UCB (Zhang, Li,
and Liu 2019), the standard bandit algorithms UCB (Auer,
Cesa-Bianchi, and Fischer 2002), LinUCB (Abbasi-yadkori,
Pál, and Szepesvári 2011) and C2UCB (Qin, Chen, and Zhu
2014), and the conservative baseline (1−α)µ0, respectively.

We see that, in the exploration phase, existing non-
conservative algorithms suffer higher losses than the base-
line, while our algorithms and previous CBP algorithms
achieve similar performance as (or better than) the baseline
due to the conservative constraints. However, since previous
CBP algorithms use lower confidence bounds (rather than
the empirical rewards in ours) to check the constraints, they
are forced to play the default arm more and act more conser-
vatively compared to ours.

In the exploitation phase, when compared to non-
conservative algorithms, our algorithms have additional re-
grets that keep constant as T increases, which matches
our T -independent conservative regret bounds. Compared to
previous CBP algorithms, our schemes achieve significantly
better performance, since we play the default arm less and
enjoy a lower conservative regret.

(a) CMAB (K = 72, α =
0.05)

(b) CLB (d = 7, α = 0.01)

(c) CCCB (d = 7, α = 0.01) (d) MV-CBP (K = 24, α =
0.05, ρ = 10)

Figure 1. Experiments for the studied problems, i.e., CMAB,
CLB, CCCB and MV-CBP.

Experiments for MV-CBP. In the experiments for MV-
CBP (Figure 1(d)), we present the mean-variance regret in
the cumulative form T ·R̃MV

T for clarity of comparison. Since
MV-CUCB is the first algorithm for MV-CBP, we compare it
with the standard mean-variance bandit algorithm MV-UCB
and the baseline (1−α)MV0T . We can see that, in the explo-
ration phase, MV-UCB suffers from a higher regret than the
baseline while MV-CUCB follows the baseline closely. One
also sees that MV-CUCB achieves this with only an addi-
tional constant overall regret compared to MV-UCB, which
matches our T -independent bound of conservative regret.

6 Conclusion and Future Works
In this paper, we propose a general solution to a family of
conservative bandit problems (CBPs) with sample-path re-
ward constraints, and present its applications to three en-
compassed problems, i.e., conservative multi-armed bandits
(CMAB), conservative linear bandits (CLB) and conserva-
tive contextual combinatorial bandits (CCCB). We show that
our algorithms outperform existing ones both theoretically
(incurs T -independent conservative regrets rather than T -
dependent) and empirically. Moreover, we study a novel ex-
tension of CBPs to the mean-variance setting (MV-CBP) and
develop an algorithm with O(1/T ) normalized conservative
regret (T -independent in the cumulative form). We also val-
idate this result through empirical evaluation.

There are several directions worth further investigation.
One is to consider more general conservative mean-variance
bandits other than the K-armed setting, e.g., a contextual
extension. Another direction is to consider other practical
conservative constraints which capture the safe exploration
requirement in real-world applications.
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