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Abstract
Collaborative learning has received huge interests due to its
capability of exploiting the collective computing power of the
wireless edge devices. However, during the learning process,
model updates using local private samples and large-scale pa-
rameter exchanges among agents impose severe privacy con-
cerns and communication bottleneck. In this paper, to address
these problems, we propose two differentially private (DP)
and communication efficient algorithms, called Q-DPSGD-1
and Q-DPSGD-2. In Q-DPSGD-1, each agent first performs
local model updates by a DP gradient descent method to pro-
vide the DP guarantee and then quantizes the local model
before transmitting it to neighbors to improve communica-
tion efficiency. In Q-DPSGD-2, each agent injects discrete
Gaussian noise to enforce DP guarantee after first quantizing
the local model. Moreover, we track the privacy loss of both
approaches under the Rényi DP and provide convergence
analysis for both convex and non-convex loss functions. The
proposed methods are evaluated in extensive experiments on
real-world datasets and the empirical results validate our the-
oretical findings.

Introduction
Machine learning is increasingly deployed into large-scale
distributive systems that can improve the quality of our life,
such as smart home security (Komninos, Philippou, and Pit-
sillides 2014), and AI-aided medical diagnosis (Jiang, Li,
and Lv 2017). With the proliferation of mobile phone de-
vices, a vast amount of data has been generated at an ever-
increasing rate, which leads to significant computational
complexity for data collection and processing via a cen-
tralized machine learning approach. Therefore, collaborative
training of a machine learning model among edge comput-
ing devices is beneficial and essential in dealing with large
scale decentralized learning tasks (Abadi et al. 2016a; Dean
et al. 2012; McDonald, Hall, and Mann 2010). However,
since the dimension of learning model increases (which is
the current trend in large-scale distributed machine learn-
ing), model exchanges among agents become the signifi-
cant communication bottleneck. Moreover, the computation
speed and computational load of local agents vary greatly,
which can substantially slow down the overall system effi-
ciency.
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While communication is a key concern in collaborative
machine learning, an equally important consideration is
the critical privacy leakage of sensitive training data dur-
ing the training process (Fredrikson, Jha, and Ristenpart
2015; Agarwal et al. 2018). Fortunately, differential pri-
vacy (Dwork et al. 2006) has been exploited as a well-
defined framework for providing privacy protection in ma-
chine learning, which guarantees that the adversary with ar-
bitrary background knowledge cannot extract any sensitive
information about the training data. Many existing mecha-
nisms have been proposed to ensure DP, like gradient pertur-
bation (Wang, Ye, and Xu 2017; Abadi et al. 2016b) and out-
put perturbation approaches (Chaudhuri, Monteleoni, and
Sarwate 2011; Wu et al. 2017; Ding et al. 2019b). However,
directly hammering those centralized mechanisms into dis-
tributed settings will potentially introduce a heavy commu-
nication burden.

A majority of the existing research focuses on either com-
munication efficiency (Wang et al. 2018; Bernstein et al.
2018; Rothchild et al. 2020) or data privacy (Shokri and
Shmatikov 2015; Ding et al. 2019b; Jayaraman et al. 2018).
However, only a limited amount of works consider both
(Agarwal et al. 2018; Zhang et al. 2020; Wang, Jia, and
Song 2021). Agarwal et al. (Agarwal et al. 2018) proposed
the cpSGD algorithm based on the randomized quantization
and Binomial mechanism. However, the method was spe-
cialized for the distributed mean estimation problem under
the server/worker architecture. The performance of collab-
orative learning is not clear in general network topologies.
Furthermore, in (Zhang et al. 2020), Zhang et al. adopted a
sparsification operator to compress the differentially private
local differentials before transmitting to neighboring agents
to reduce the communication cost while guaranteeing pri-
vacy. However, the above works ignore the critical impact
of the straggling agents, which may significantly slow down
the wall-clock time of the convergence.

In this paper, we propose two differentially private and
communication efficient algorithms, named Q-DPSGD-1
and Q-DPSGD-2, by considering different orders between
the random quantization and DP mechanism. Particularly,
in Q-DPSGD-1, a Gaussian mechanism is applied before
random quantization, and the privacy guarantee of quan-
tized model roots from the post-processing property of DP.
In Q-DPSGD-2, we consider an alternative design in re-
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verse order, i.e., by applying a Gaussian mechanism after
random quantization. Due to the discretization of the quanti-
zatized local model parameters, we propose to sample Gaus-
sian noises from a discretization of Gaussian distribution
and add the discrete Gaussian noise to the quantization val-
ues without sacrificing the communication efficiency. We
provide the privacy analysis of discrete Gaussian mecha-
nism under the Rényi DP (RDP) instead of Concentrated
DP, i.e., CDP (Canonne, Kamath, and Steinke 2020). The
reason is that CDP does not support privacy amplification
from subsampling and analytical moments accountant (Zhu
and Wang 2019), both of which may broaden the practical
applications of discrete Gaussian mechanisms. Moreover, a
deadline based scheme for local computations is leveraged
in both algorithms to address the straggler problems and
reduce the elapsed time of convergence. We also provide
convergence results of both algorithms for convex and non-
convex loss functions. Our salient contributions are summa-
rized as follows.
• We propose a Q-DPSGD-1 method which will update the

local models by integrating DP noise and random quanti-
zation operator to simultaneously enforce DP and com-
munication efficiency. Especially, different from the fixed
(mini-batch) gradient computation approaches, we utilize
a deadline based approach (Ferdinand et al. 2018) to ef-
fectively integrate DP and random quantization for col-
laborative learning, where no privacy budget will be con-
sumed if there is no gradient computation before the dead-
line. We prove the convergence results under convex and
non-convex cases, and analyze the trade-off between pri-
vacy and accuracy in terms of expected population risk.

• To exploit the capability of perturbing quantized local
model by DP noise in collaborative learning, we propose
a Q-DPSGD-2 method that employs discrete Gaussian
mechanism after random quantization, instead of using
Binomial mechanism (Agarwal et al. 2018). We analyze
privacy guarantee of discrete Gaussian mechanism under
the RDP that breaks its limited application under CDP.
The convergence results of Q-DPSGD-2 are also pro-
vided for both convex and non-convex objectives.

• Through extensive experiments on the CIFAR-10 and
MNIST datasets, we show the superior performance of
the proposed algorithms over the baseline algorithms, and
the experimental results validate our theoretical analysis.

Related Works
Decentralized consensus optimization has been studied ex-
tensively. The most popular first-order choices for the con-
vex setting are distributed gradient descent-type methods
(Jakovetić, Xavier, and Moura 2014; Qu and Li 2019), dis-
tributed variants of the alternating direction method of multi-
pliers (ADMM) (Shi et al. 2014), and dual averaging (Duchi,
Agarwal, and Wainwright 2011). Recently, there have been
some works which study non-convex decentralized consen-
sus optimization and establish convergence to a stationary
point (Zeng and Yin 2018; Lian et al. 2017). There are two
categories of communication-efficiency of distributed op-
timization. One way to improve communication-efficiency

of distributed optimization procedures is by communicating
compressed local gradients or models to parameter server
via quantization (Reisizadeh et al. 2019a,b; Li et al. 2021)
and sparsification (Tang et al. 2018; Stich, Cordonnier, and
Jaggi 2018). Another line is to reduce the number of com-
munication rounds by techniques such as periodic averag-
ing that pay more local computation for less communica-
tion (Zhou and Cong 2018). However, most of the above
communication-efficient schemes ignore the privacy aspect.

To prevent privacy leakage in distributed machine learn-
ing, many related works focus on secure multi-party compu-
tation or homomorphic encryption, which involve both high
computation and communication overhead, and cannot pre-
vent the information leakage from the final learned model.
Thus, many works (Ding et al. 2019a,b, 2020; Shokri and
Shmatikov 2015) have studied how to effectively integrate
distributed learning algorithms (ADMM, gradient descent)
with DP. However, most of them ignore the communication
efficiency aspect.

Problem Setting and Preliminaries
In this paper, we aim to solve the following population risk
problem

min
x∈Rp

F (x) = Eθ∼P l(x, θ) (1)

where ` : Rp×Rq → R is a stochastic loss function, θ ∈ Rq
is a data sample drawn from an unknown probability distri-
bution P . Instead of directly solving (1), we consider min-
imizing the following Empirical Risk Minimization (ERM)
problem

min
x∈Rp

FN (x, D) =
1

mn

∑
θ∈D

l(x, θ) (2)

where D = {θ1, · · · , θmn} is the overall data samples.
In collaborative training, our goal is to collaboratively

solve problem (2) to train a common classifier x ∈ Rp in a
decentralized manner (i.e., no centralized controller) while
keeping the privacy for each data sample. Thus, we con-
sider a wireless edge network containing n agents with a
node set N = {1, · · · , n}, and each agent i has a dataset
Di = {θ1i , · · · , θmi }. The communication among agents
can be represented by an undirected connected graph G =
{N ,E }, where E ⊆ N ×N denotes the set of communi-
cation links between agents. Note that two agents i and j can
communicate with each other only when they are neighbors,
i.e., (i, j) ∈ E . We denote the set of neighbors of agent i as
Ni. Thus, the collaborative ERM problem can be formulated
as

min
x∈Rp

f(x, D) =
1

n

n∑
i=1

fi(x, Di) (3)

where D = D1 ∪ · · · ∪Dn is the union of all local datasets,
and fi(x, Di) = 1

m

∑
θ∈Di `(x; θ), which is only observ-

able to agent i. In order to collaboratively solve problem (3)
in a decentralized manner, we then rewrite it as a consensus
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optimization problem as follows,

min
x1,··· ,xn

F̂ (x) =
1

n

n∑
i=1

fi(xi, Di), (4)

s.t. xi = xj , ∀i, j ∈ Ni
where the vector x = [x1; · · · ;xn] ∈ Rnp denotes the con-
catenation of all the local models xi at agent i, and the con-
straint here is to enforce all the local classifiers reach con-
sensus, i.e., x1 = x2 = · · · = xn. Thus, (3) and (4) are
equivalent, i.e., the optimal solution {x∗i }ni=1 of problem (3)
holds that x∗ = x∗1 = x∗2 = · · · = x∗n.

To solve Problem (4) in a decentralized manner, each
agent i can minimize the local objective function fi(x, Di)
over its own private dataset Di, and exchange local model
xi among its neighboring agents j ∈ Ni to enforce xi close
enough to the local model xj of its neighbors j. Although
there is no need to share the local private dataset during
this iterative process, local model exchange between the dis-
tributed agents imposes the risk of information leakage. For
example, the adversary may perform model inversion attack
(Fredrikson, Jha, and Ristenpart 2015; Wu et al. 2020) and
membership inference attack (Shokri et al. 2017) together
with some background knowledge to infer sensitive informa-
tion in the dataset. Furthermore, model exchange also brings
a potentially heavy communication burden, and this prob-
lem becomes worse when performing on edge devices due
to the receiver sensitivity and transmitter power constraints,
etc. Therefore, in this paper, our objective is to achieve com-
munication efficient collaborative learning while preserving
DP guarantee at the same time.

We then assume that the weight matrix, the quantizer, and
local objective functions satisfy the assumptions, which are
commonly used in related works (Reisizadeh et al. 2019a,b).
We use dxe to denote the least integer greater than or equal
to x, and ‖ · ‖ to denote the l2-norm of a vector.
Assumption 1. The weight matrix W ∈ Rn×n with en-
tries wij ≥ 0 satisfies the following conditions: W = W>,
W1 = 1 and null(I −W ) = span(1).
Assumption 2. The random quantizer Q(·) is unbiased and
variance-bounded, i.e., E[Q(x)|x] = x and E[‖Q(x) −
x‖2|x] ≤ σ̃2, for any x ∈ Rp; and quantizations are car-
ried out independently.

Assumption 3. The local loss function ` is K̂-smooth and
K-Lipschitz continuous with respect to x, i.e., for any
x, x̂ ∈ Rp and any θ ∈ D, ‖∇`(x, θ)−∇`(x̂, θ)‖ ≤
K̂‖x− x̂‖, and ‖`(x, θ)− `(x̂, θ)‖ ≤ K‖x− x̂‖.
Assumption 4. Stochastic gradients∇`(x, θ) are unbiased
and variance bounded, i.e., Eθ∼P [∇`(x, θ)] = ∇F (x) and
Eθ∼P

[
‖∇`(x, θ)−∇F (x)‖2

]
≤ γ2.

Assumption 5. The function ` is µ-strongly convex, i.e.,
for any x, x̂ ∈ Rp and θ ∈ D we have that 〈∇`(x, θ) −
∇`(x̂, θ),x− x̂〉 ≥ µ‖x− x̂‖2.

Differential Privacy
Definition 1 ((ε, δ)-DP (Dwork et al. 2006)). Given any
two neighboring datasets D and D̂ differing in at most

one single data sample, we say that a randomized mecha-
nism M satisfies (ε, δ)-DP if for any possible output o ∈
Range(M), we have Pr[M(D) = o] ≤ eεPr[M(D̂) =
o] + δ.

Next, we introduce a generalization of DP, called Rényi
differential privacy (RDP) (Mironov 2017), which is widely
used in stochastic iterative learning algorithms due to the
tighter composition and subsample amplification results.

Definition 2 (RDP). Given any neighboring datasets D, D̂
differing by one element, we say that a randomized mecha-
nism M satisfies (ρ, ε)-RDP, if for ρ > 1, ε > 0, we have
Dρ

(
M(D)||M(D̂))

)
:= logE

(
M(D)/M(D̂)

)ρ
/(ρ −

1) ≤ ε, where the expectation is taken overM(D̂).

The following lemmas from (Mironov 2017) show that
Gaussian mechanism can achieve RDP.

Lemma 1. Given any functionMq : D → Rd, the Gaus-
sian Mechanism is defined as:MG(D, q) = Mq(D) + u,
where u is drawn from a Gaussian distribution N (0, σ2Id),
and ∆2 is the L2-sensitivity of function Mq , i.e., ∆2 =

supD∼D̂ ‖Mq(D) − Mq(D̂)‖. Gaussian Mechanism sat-
isfies (ρ, ρ∆2

2/(2σ
2))-RDP.

Main Methods
Q-DPSGD-1
In this section, we introduce Q-DPSGD-1 algorithm that
takes into account privacy-preservation and communication
efficiency in collaborative learning. To ensure DP guarantee,
each agent utilizes Gaussian mechanism to perturb the gra-
dients of model update and then performs noisy SGD to up-
date the local model before sharing to neighboring agents.
To reduce the communication overhead, we consider that
each agent only exchanges a randomly quantized version
of its local model to its neighbors. Exchanging quantized
local model instead of the original model indeed improves
the communication efficiency at the cost of injecting quan-
tization noise to the information received by the agents in
the network. However, using quantized model and Gaussian
mechanism induces extra noise in the training process which
makes the analysis of our algorithm more challenging.

The details of Q-DPSGD-1 algorithm are given in Algo-
rithm 1. At each iteration t, consider xi,t as the local clas-
sifier, each agent i sends zi,t = Q(xi,t), the quantized ver-
sion of the vector xi,t, to all neighbors j ∈ Ni to reduce
the communication burden on the shared bus. For instance,
we consider the precision quantizer decribed by quantiza-
tion resolution η and s bits with the representation range
{−η ·2s−1, · · · , η ·(2s−1)}. Then the quantization function
Q(x) can be expressed as

Q(x) =

{
kη w.p. 1− (x− kη)/η,
(k + 1)η w.p. (x− kη)/η,

(5)

where x ∈ [kη, (k + 1)η]. Note that the above quantizer
satisfied Assumption 2 (Reisizadeh et al. 2019a).

Note that Q-DPSGD-1 is different from the fixed (mini-
batch) gradient computation in previous works (Reisizadeh

7221



Algorithm 1 Q-DPSGD-1 run by agent i

1: Input: Weights {wij}nj=1; Deadline Td.
2: Set initial variables xi,0 = 0 and zi,0 = Q(xi,0).
3: for t = 0, · · · , T − 1 do
4: Broadcast zi,t = Q(xi,t) to all neighbors j ∈ Ni.
5: Receive zj,t from its neighbor j ∈ Ni.
6: Take and evaluate stochastic gradients

{∇`(xi,t; θ) : θ ∈ Si,t} till reaching the
deadline Td, with Si,t ⊆ {1, · · · ,m}.

7: Generate gradient:
∇̃fi(xi,t) = 1

|Si,t|
∑
θ∈Si,t ∇`(xi,t; θ)

8: Update xi,t+1 = (1 − ε + εwii)xi,t +

ε
∑
j∈Ni wijzj,t − αε(∇̃fi(xi,t) + ζi,t), where

ζi,t ∼ N (0, σ2K2Ip)).
9: end for

et al. 2019a; Zhang et al. 2020; Agarwal et al. 2018), where
each agent i selects a subset of local data samples to esti-
mate the stochastic gradient. Motivated by (Ferdinand et al.
2018; Reisizadeh et al. 2019b), Q-DPSGD-1 considers a
deadline based approach by setting a deadline Td to limit the
time that each agent can perform stochastic gradient estima-
tion. Further, this deadline based approach can also avoid
waiting for the slowest agent to finish its local model up-
date, i.e., straggler’s delay problem. Thus, at iteration t, each
agent is given a deadline time Td to compute its per sam-
ple gradient ∇`(xi,t; θ). At the end of the deadline, each
agent computes its local mini-batch gradient ∇̃fi(xi,t) =

1
|Si,t|

∑
θ∈Si,t ∇`(xi,t; θ), where we treat the set of col-

lected samples as Si,t. Note that we set ∇̃fi(xi,t) = 0
when there are not any gradient estimates by deadline Td,
i.e., |Si,t| = 0.

In order to enforce DP guarantee, each agent i
adds a noise ζi,t drawn from a Gaussian distribution
N (0, σ2K2Ip)) to perturb the local stochastic gradient
∇̃fi(xi,t). After that, the perturbed local stochastic gradi-
ent, its local variables xi,t and the local variables received
from its neighbors {zj,t = Q(xj,t); j ∈ Ni} are used to
update its local model xi,t+1. Note that we denote the com-
munication matrix wij as the weight that agent i assigns to
the information that it receives from agent j. If agents i and
j are not neighbors, wij = 0. In particular, at iteration t,
agent i updates xi,t+1 according to the update

xi,t+1 =(1− ε+ εwii)xi,t + ε
∑
j∈Ni

wijzj,t

− αε(∇̃fi(xi,t) + ζi,t) (6)

where ζi,t ∼ N (0, σ2K2Ip)) and α and ε are positive con-
stants. The parameter α behaves as the step size of the gra-
dient descent step regarding to the local objective function
fi and ε acts as an averaging parameter between performing
the distributed gradient update ε(wiixi,t+

∑
j∈Ni wijzj,t−

α(∇̃fi(xi,t) + ζi,t) versus using the previous decision vari-
able (1− ε)xi,t.

Privacy guarantee The following theorem provides the
privacy guarantee of Q-DPSGD-1 algorithm.

Theorem 1. The Q-DPSGD-1 algorithm satisfies (ε, δ)-DP
with ε = ε(ρ) + log(1/δ)

ρ−1 and ε(ρ) = maxi
∑T−1
t=0 ε′i,t(ρ)

with ε′i,t(ρ) = 8ρ
m2σ2 if |Si,t| 6= 0, and ρ = 2 log(1/δ)/ε+ 1.

Remark 1. Since we adopt a deadline based scheme in
Q-DPSGD-1 algorithm instead of the fixed mini-batch
scheme used in (Zhang et al. 2020; Abadi et al. 2016b), the
size of mini-batch Si,t, i.e., |Si,t| is not deterministic but a
random variable. We then need to carefully state our com-
putation model used for the processing time of agents in the
communication network. Following the similar approach in
(Ferdinand et al. 2018; Reisizadeh et al. 2019b), we denote
the processing speed of each machine as the number of per-
example gradient ∇`(xi,t; θ) that it computes per second.
We also assume that the processing speed of each machine
i at iteration t is a random variable Vi,t, and Vi,t’s are i.i.d
with probability distribution FV (v). We further assume that
the domain of the random variable V is bounded and its
realizations are in [v, v]. If Vi,t is the number of stochas-
tic gradient which can be computed per second, the size of
mini-batch Si,t is given by |Si,t| = Vi,tTd. Therefore, the
privacy budget ε in Theorem 1 is also a random variable
and provides a good manner to characterize the privacy con-
sumption of decentralized learning under the straggler’s de-
lay problem. For instance, when Si,t ⊆ ∅, i.e., there is no
gradient computation by deadline Td, agent i then updates
xi,t+1 by xi,t+1 = (1 − ε + εwii)xi,t + ε

∑
j∈Ni wijzj,t

and broadcasts zi,t+1 = Q(xi,t+1) without spending any
privacy budget while preventing stragglers holding up the
entire network.

Convergence analysis We characterize the convergence
of Q-DPSGD-1 algorithm for strongly convex and non-
convex objectives, respectively.

Theorem 2 (Strongly Convex). If the conditions in As-
sumptions 1–5 are satisfied and step-sizes are picked as
ε = T−3δ̃/2, α = 2T−δ̃/2, for any δ̃ ∈ (0, 1/2), then for
large enough number of iterations T ≥ T c

min, the iterates
generated by the Q-DPSGD-1 algorithm satisfy

1

n

n∑
i=1

E ‖xi,T−x∗‖2 ≤ O

(
E2(K̂/µ)2

(1− β)2
+
σ̃2

µ

)
1

T δ̃

+O
(
γ2

µ
max

{
E[1/V ]

Td
,

1

m

}
+
pK2σ2

µ

)
1

T 2δ̃
,

where E2 = 2K
∑n
i=1(fi(0) − f∗i ), and f∗i =

minx∈Rp fi(x) and x∗ is the solution of Problem (4).

Remark 2. Theorem 2 shows that the exact convergence of
each local model to the global optimal can be achieved with
the sublinear convergence rate which isO(1/

√
T ) by setting

δ̃ close to 1/2. Furthermore, the above results also show
the effect of stochastic gradients variance γ2, the Gaus-
sian noise σ2 used to provide privacy guarantee, as well
as the deadline based scheme parameters E[1/V ]/Td that
describes the inverse of the batch size computed before the
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deadline Td. Moreover, the coefficient of 1/T δ̃ describes the
effects of objective function condition number K/µ, vari-
ance σ̃2 introduced by random quantization, and the graph
connectivity parameter 1/(1−β). Notice that the error term
introduced by DP decays faster than the one introduced by
random quantization.
Remark 3. Utilizing the strong convexity of objective func-
tion, if we choose |Si,t| = B and σ2 = 16T (2 log(1/δ)/ε+1)

m2ε

and T = O( m4ε2µ2

(log(1/δ)/ε+1)2p2K4 ), Q-DPSGD-1 is (ε, δ)-DP
and the empirical risk FN (xi,T ) − FN (x∗) = f(xi,T ) −
f(x∗) ≤ O( (2 log(1/δ)/ε+1)pK2

m2εµ ). Then according to (Bottou
and Bousquet 2008), the difference between population risk
F and empirical risk FN over mn data samples is bounded
by supx |F (x) − FN (x)| ≤ O(1/mn). Thus, the overall
error of Q-DPSGD-1 with respect to population risk F is
O( (2 log(1/δ)/ε+1)pK2

m2εµ + 1
mn ).

We next present the convergence result of Q-DPSGD-1
for non-convex objectives regarding to first-order optimality
and consensus convergence rate.
Theorem 3 (Non-convex). Under Assumptions 1–4, and for
step-sizes α = T−1/6 and ε = T−1/2, Q-DPSGD-1 guar-
antees the following convergence and consensus rates:

1

T

T−1∑
t=0

E ‖∇f (xt)‖2

≤ O

(
K̂σ̃2

n
+

K̂2γ2

(1− β)2m
+
σ2K2K̂2p

(1− β)2

)
1

T 1/3

+O

(
K̂
γ2

n
max

{
E[1/V ]

Td
,

1

m

}
+
σ2K̂K2p

n

)
1

T 2/3

1

T

T−1∑
t=0

1

n

n∑
i=1

E ‖xt − xi,t‖2 ≤ O
(

γ2

m(1− β)2

)
1

T 1/3

+O

(
K̂2

(1− β)4
γ2

m
+

K̂

(1− β)2
σ̃2

n
+
σ2K2K̂2p

(1− β)4

)
1

T 2/3

for large enough number of iterations T ≥ T nc
min. Here xt =

1
n

∑n
i=1 xi,t denotes the average models at iteration t.

Q-DPSGD-2
Note that in Q-DPSGD-1, the DP noise is applied before
random quantization, and the privacy guarantee of quanti-
zation operator roots from the post-processing property of
DP. Is it possible that we can implement communication ef-
ficient and private collaborative learning in a reverse order,
i.e., adopting DP noise after random quantization? Agarwal
et al. in (Agarwal et al. 2018) indeed implemented such a
design on the distributed mean estimation problem by ap-
plying the Binomial mechanism after random quantization.
However, compared with the Gaussian mechanism, Bino-
mial mechanism has very complicated privacy analysis and
incurs large noise errors under the same privacy budget. Be-
sides, as pointed out by (Kairouz et al. 2019), the Bino-
mial mechanism cannot inherently benefit from the power-
ful privacy accountant like the moments accountant method.

Thus, we consider to add Gaussian noises after quantization
instead of Binomial noises to implement the collaborative
learning.

The main challenge is that the transmitted values now
are real numbers and the benefits of model quantization
are lost, if we directly adding Gaussian noise after quan-
tization. Our solution is to sample Gaussian noise from a
discretization of Gaussian distribution and add the discrete
Gaussian noise to the quantization values without sacrificing
the communication efficiency. However, the problem here is
whether the discrete Gaussian distribution still guarantees
the same DP as the continuous Gaussian distribution. Fortu-
nately, (Canonne, Kamath, and Steinke 2020) has shown that
discrete Gaussian provides the same CDP (Bun and Steinke
2016) as the continuous one. In general, the RDP view of
privacy is broader than the CDP view as it captures finer in-
formation. Unlike RDP, CDP cannot enjoy the benefit from
the privacy amplification of subsampling. Therefore, we in
this paper provide the RDP analysis for discrete Gaussian,
which can use tight composition theory like analytical mo-
ments accountant (Zhu and Wang 2019).
Definition 3 (Discrete Gaussian (Canonne, Kamath, and
Steinke 2020)). The discrete Gaussian distribution with lo-
cation µ ∈ R and scale σ ∈ R is denoted as NZ(µ, σ2).
The corresponding probability distribution supported on the
integers and defined by

∀x ∈ Z, P
X∼NZ(µ,σ2)

[X = x] =
e−(x−µ)

2/2σ2∑
y∈Z e

−(y−µ)2/2σ2

Theorem 4 (Discrete Gaussian Satisfies RDP). Let ∆, σ >
0, ρ > 1. LetMq : D → Z satisfy |Mq(D)−Mq(D̂)| ≤ ∆

for all D, D̂ ∈ D differing on a single sample. Define a
randomized algorithm M(D) = Mq(D) + X , where X
is drawn from a discrete Gaussian distribution NZ(0, σ2).
ThenM satisfies (ρ, ρ∆2/(2σ2))-RDP.
Corollary 1 (Discrete Gaussian with Arbitrary Precision).
Let ∆, σ, η > 0, ρ > 1. LetMq : D → ηZ with ηZ = {ηz :

z ∈ Z} satisfy |Mq(D) −Mq(D̂)| ≤ ∆ for all D, D̂ ∈ D
differing on a single sample. Define a randomized algorithm
M(D) = Mq(D) + Y , where Y is drawn from a discrete
Gaussian distribution NηZ(0, σ2).

∀x ∈ ηZ, P
X∼NηZ(0,σ2)

[X = x] =
e−x

2/2σ2∑
y∈ηZ e

−y2/2σ2

ThenM satisfies (ρ, ρ∆2/(2σ2))-RDP.
The details of Q-DPSGD-2 is given in Algorithm 2. At

iteration t − 1, each agent is given a deadline time Td to
compute its per sample gradient∇`(xi,t−1; θ). At the end of
the deadline, each agent computes its local mini-batch gradi-
ent ∇̃fi(xi,t−1) = 1

|Si,t−1|
∑
θ∈Si,t−1

∇`(xi,t−1; θ), where
Si,t−1 is the batch size in such time period. Formally, agent
i updates xi,t according to

xi,t =(1− ε+ εwii)xi,t−1 + ε
∑
j∈Ni

wijzj,t−1 (7)

− αε∇̃fi(xi,t−1).

7223



Algorithm 2 Q-DPSGD-2 run by agent i

1: Input: Weights {wij}nj=1; Deadline Td.
2: Set initial variables xi,0 = 0 and zi,0 = Q(xi,0).
3: for t = 0, · · · , T − 1 do
4: Broadcast zi,t = Q(xi,t) + ζi,t to all neighbors

j ∈ Ni, where ζi,t ∼ NηZ(0, σ2K2Ip).
5: Receive zj,t from its neighbor j ∈ Ni.
6: Take and evaluate stochastic gradients

{∇`(xi,t; θ) : θ ∈ Si,t} till reaching the
deadline Td, with Si,t ⊆ {1, · · · ,m}.

7: Generate gradient:
∇̃fi(xi,t) = 1

|Si,t|
∑
θ∈Si,t ∇`(xi,t; θ).

8: Update xi,t+1 = (1 − ε + εwii)xi,t +

ε
∑
j∈Ni wijzj,t − αε∇̃fi(xi,t).

9: end for

Local variables xi are then exchanged between neighbor-
ing agents. To reduce the communication cost of exchanging
such variables, the quantization operator Q(·) is enforced
to reduce the required number of bits. Thus, each agent i
sends zj,t = Q(xi,t) + ζi,t to all neighbors j ∈ Ni, where
ζi,t ∼ NηZ(0, σ2K2Ip) is used to enforce DP guarantee
of the quantization model variables. If the range of private
local model zj,t surpasses the representation range, post-
processing (i.e., truncating) can be used to limit it.
Privacy guarantee We then provide the privacy guaran-
tee of Q-DPSGD-2 algorithm in the following theorem.
Theorem 5. The Q-DPSGD-2 algorithm sat-
isfies (ε, δ)-DP with ε = ε(ρ) + log(1/δ)

ρ−1 and

ε(ρ) = maxi
∑T−1
t=0

8ρ
σ2m2 (αε +

η
√
p

K |Si,t|)
2 with

ρ = 2 log(1/δ)/ε+ 1.
Remark 4. From Theorem 5, we can see that the privacy
budget is related to the step sizes α and ε, and the quantiza-
tion resolution η and model dimension p. Diminishing step
sizes α and ε can not only help balance the randomness in-
troduced by exchanging quantized and private local models,
but also improve the privacy guarantee (i.e., reduce the pri-
vacy budget).
Convergence analysis The following is the convergence
rate of Q-DPSGD-2 algorithm for strongly convex and non-
convex objectives, respectively.
Theorem 6 (Strongly Convex). If the conditions in As-
sumptions 1–5 are satisfied and step-sizes are picked as
ε = T−3δ̃/2, α = T−δ̃/2, for any δ̃ ∈ (0, 1/2), then for
large enough number of iterations T ≥ T c

min the iterates
generated by the Q-DPSGD-2 algorithm satisfy

1

n

n∑
i=1

E ‖xi,T−x∗‖2 ≤ O

E2(K̂/µ)2

(1− β)2
+
σ̃2 + pK2σ2

η2

µ

 1

T δ̃

+O
(
γ2

µ
max

{
E[1/V ]

Td
,

1

m

})
1

T 2δ̃
,

where E2 = 2K
∑n
i=1(fi(0) − f∗i ), and f∗i =

minx∈Rp fi(x) and x∗ is the solution of Problem (4).

Remark 5. Utilizing the strong convexity of ob-
jective function, if we choose |Si,t| = B and

σ2 =
16T (2 log(1/δ)/ε+1)(αε+ηB

√
p/K)2

m2ε and T =

( µεm2

p(2 log(1/δ)/ε+1)(αεK/η+
√
pB)2 )2/3, then Q-DPSGD-2

is (ε, δ)-DP and the empirical risk FN (xi,T ) − FN (x∗) =

f(xi,T )−f(x∗) ≤ O((
p(2 log(1/δ)/ε+1)(αεK/η+

√
pB)2

µεm2 )2/3).
The overall error of Q-DPSGD-2 regarding to population
risk F isO((

p(2 log(1/δ)/ε+1)(αεK/η+
√
pB)2

µεm2 )2/3 + 1
mn ). No-

tice that the overall risk of Q-DPSGD-2, i.e., Õ( p4/3

m4/3ε4/3
),

is higher than that of Q-DPSGD-1, i.e., Õ( p
m2ε2 ), where Õ

term omits logarithmic and other factors.

Theorem 7 (Non-convex). Under Assumptions 1–4, and for
step-sizes α = T−1/6 and ε = T−1/2, Q-DPSGD-2 guar-
antees the following convergence and consensus rates:

1

T

T−1∑
t=0

E ‖∇f (xt)‖2 ≤ O(K̂
γ2

n
max {E[1/V ]

Td
,

1

m
}) 1

T 2/3

+O

(
K̂

n
(σ̃2 +

pK2σ2

η2
) +

K̂2γ2

(1− β)2m

)
1

T 1/3

1

T

T−1∑
t=0

1

n

n∑
i=1

E ‖xt − xi,t‖2 ≤ O
(

γ2

m(1− β)2

)
1

T 1/3

+O

 K̂2

(1− β)4
γ2

m
+

K̂

(1− β)2

(σ̃2 + pK2σ2

η2 )

n

 1

T 2/3

for large enough number of iterations T ≥ T nc
min. Here xt =

1
n

∑n
i=1 xi,t denotes the average models at iteration t.

Experimental Results
In this section, we present the performance evaluation of the
proposed two algorithms for solving a non-convex decen-
tralized optimization problem. In particular, we compare the
privacy-accuracy trade-off and the total run-time of our pro-
posed algorithms against the ones for two baselines:

• Decentralized SGD (DSGD) (Yuan, Ling, and Yin 2016):
Each agent updates its local model parameter as xi,t+1 =∑
j∈Ni wijxj,t − α∇̃fi(xi,t). Note that the exchanged

local parameter xi with its neighbors is not quantized or
compressed and the local gradients ∇̃fi(xi,t) are com-
puted for a fixed batch size.

• Sparse differential Gaussian-masked stochastic gradients
(SDM) (Zhang et al. 2020): This algorithm communicates
compressed local differentials di,t−1 = yi,t−1 − xi,t−1
with its neighbors and then estimating neighbor’s copies
xi,t = xi,t−1 + S(di,t), where S(·) is a sparsifier opera-
tor. The output of S(·) follows theBernoulli(c) distribu-
tion, i.e., Pr[S(x) = x/c] = c and Pr[S(x) = 0] = 1− c.
Thus, the update rule of SDM is yi,t = (1 − θ)xi,t +

θ(
∑
j∈Ni wijxj,t − α(∇̃fi(xi,t) + ζi,t)), where ζi,t is a

Gaussian random noise.
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Figure 1: Compare loss on MNIST (Tc = 3, batch size B =
20, s = 3, c = 0.3).
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Figure 2: Compare loss on CIFAR-10 (Tc = 3, batch size
B = 20, s = 3, c = 0.3).

Dataset and Experiment Settings We conduct the experi-
ments over two benchmark datasets: MNIST and CIFAR-10.
For MNIST, we consider a fully connected network with a
hidden layer of size 50. The image is transformed to a vec-
tor of length 784. For CIFAR-10, we use a fully connected
neural network with one hidden layer with 40 neurons to
classify the input image into 10 classes, where the input im-
age is converted to a vector with 3072 dimensions. We use
sigmoid function as the activation in both network.

In the experiments, we set the step sizes (α, ε) =
(0.3/T 1/6, 11/T 1/2) for Q-DPSGD-1 and Q-DPSGD-2,
and α = 0.2 for DSGD and SDM. Moreover, we
also set θ = 0.6 as stated in (Zhang et al. 2020)
for SDM. To control the sensitivity of the gradient, we
adopt gradient clipping threshold technique, ∇`(xi,t; θ) =
∇`(xi,t; θ)/max (1, ‖∇`(xi,t; θ)‖/K). Here, we set K =
0.5 for Q-DPSGD-1 and Q-DPSGD-2 and SDM. In each
simulation, we randomly sample 10, 000 records for train-
ing and divide them into n parties, and thus each party con-
sists of 10000/n data samples (i.e., m = 10000/n). In all
experiments, we set δ = 10−5.

We also set the processing speed of each machine follows
a uniform distribution given as V ∼ Uniform(10, 90), and
then choose the deadline Td = B/E[V ], where B is the
expected batch size used in each machine. We consider a
low precision quantizer in (5) with various quantization lev-
els s, and we denote Tc as the communication time of a p-
dimension vector without quantization (16 bits). Thus, the
communication time for a quantized vector and compressed
vector are proportioned according the quantization level and
the compressed rate c, respectively.
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Figure 3: Left: loss comparisons for different number of
agents on MNIST (B = 20, Tc = 3, c = 0.3); Right: loss
comparisons for large batch size B = 50 on MNIST.

Network Model We adopt a network with 10 agents, where
the communication graph G is generated by the ERdös-
Rényi graph with edge connectivity pc = 0.4. The weight
matrix is designed as W = I − L/κ with Laplacian ma-
trix L of G and κ > λmax(L)/2, where λmax is the largest
eigenvalue of L.

We present the convergence performance (i.e., loss) of
different algorithms on MNIST and CIFAR-10 under the
same budgets and same communication time, as shown in
Figure 1. We can observe that when privacy budget de-
creases from 1.5 to 1, the loss values of private algorithms
increase. Moreover, our proposed algorithms significantly
outperform the baseline algorithms in terms of total run-
time, since the utilization of quantization and deadline based
scheme can reduce the communication cost while mitigating
the straggler problem. Notice that Q-DPSGD-2 exhibits a
lower convergence rate compared to Q-DPSGD-1, which is
consistent with our theoretical analysis in Remark 5.

Moreover, we also consider the impact of number of
agents on the algorithm convergence, as shown in Fig. 3(a),
The results shows that the proposed algorithms continue to
have the highest accuracy for large networks. To evaluate
the effect of batch sizes, we observe that large batch size can
further reduce the loss while consuming more training time
from Fig 1(a) and Fig. 3(b).

Conclusion
In this paper, we have developed two differentially pri-
vate and communication efficient collaborate learning al-
gorithms, Q-DPSGD-1 and Q-DPSGD-2. In Q-DPSGD-1,
the Gaussian mechanism is applied before random quanti-
zation. In Q-DPSGD-2, we adopt the Gaussian mechanism
after random quantization. From theoretical analysis and ex-
perimental results, Q-DPSGD-1 outperforms Q-DPSGD-2
in terms of the expected population risk and convergence.
Our algorithms give practical guidelines for differentially
private and communication efficient collaborate learning,
and are superior to the state-of-the-art works.
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